Stylish Fashion Creations Made from Non Woven Textile Fabric: Get My TBD

ukslseo 0 views 60 slides Oct 14, 2025
Slide 1
Slide 1 of 60
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60

About This Presentation

The non woven textile sector is becoming a strong part of modern fashion and textile design. Non woven fabrics are made without weaving or knitting, making them lightweight, durable, and versatile for creative use. These materials are widely used in fashion, medical wear, home furnishings, and techn...


Slide Content

SEPTEMBER 2025
www.getmytbd.com
Plus: Online Version
Market Analysis
Agrotech Textiles
Technology Junction
Polypropylene
Building Block For Nonwoven Agrotextiles
Innovations In Textile Machinery
Agrotextiles For Sustainable Agriculture
Scan to
Download
TBD Mobile App

Agrotech textiles, a dynamic subset of technical textiles, are transforming
agriculture by blending innovation with practicality. These specialized fabrics,
designed for agricultural applications, enhance crop protection, improve yields,
and promote sustainable farming. From ancient uses of natural �bers to modern
synthetic solutions, agrotech textiles have evolved into a vital tool for addressing
global food security and environmental challenges.
These textiles come in various forms, including woven, non-woven, and knitted
fabrics. Woven textiles, like anti-hail nets, offer durability for protective applications,
while non-woven mulch mats suppress weeds and conserve soil moisture. Knitted
fabrics, such as shade nets, dominate due to their �exibility and cost-effectiveness.
Key products include crop covers, �shing nets, greenhouse shades, and erosion-
control geotextiles, each tailored to speci�c agricultural needs. For instance, shade
nets regulate light and temperature, while mulch mats made from natural �bers like
jute enhance soil health. However, in this edition of TBD Non-Woven Textiles on
Agritech Textiles we would be focusing on Non-Woven Agrotech Textiles products.
The Agrotech textile market is thriving, with global estimates projecting growth from
$9.37 billion in 2021 to $13.04 billion by 2028, driven by rising demand for high-
quality crops and sustainable practices. Historically, textiles in agriculture relied
on natural �bers, but the shift to synthetics like polyole�ns in the 20th century
improved durability and affordability. Today, consumer preferences are shifting
toward eco-friendly options, fueled by concerns over plastic pollution and climate
change. Biodegradable materials, such as bio-based mulch �lms, are gaining
traction for their minimal environmental impact.
Applications of Agrotech textiles are vast, spanning crop protection, aquaculture,
and horticulture. They reduce pesticide use, conserve water, and shield crops
from harsh weather, boosting yields by up to 40% in some cases. In the U.S.,
the market reached $451.4 million in 2022, while Asia-Paci�c leads globally due
to rapid urbanization and supportive policies in countries like India and China.
Technological advancements, such as UV-resistant fabrics and smart textiles with
sensors, are revolutionizing precision agriculture. Sustainability remains a priority,
with innovations in recyclable and biodegradable textiles reducing reliance on
petroleum-based products. As farmers embrace these solutions, agritech textiles
are sowing the seeds for a greener, more productive future.
In this edition of Non-Woven Textiles dedicated to Agrotech Textile Products, we
have tried to deliberate upon the underlying products and innovations, global
markets analysis and technological advancements. Happy reading…
Editor’s Foreword
Publisher
UNIFIED KNOWLEDGE
SERVICES PVT. LTD.
Sixth �oor, C 56/16, Sector
62,Noida, Uttar Pradesh
201309, INDIA
Email : [email protected]
website: www.uksl.in
Ravi B. Arora
CEO
Rashi Arora
Director
Kumar Abhishek
Director
Alok Satyadev
Editor in Chief
Imran Ahmad
Head-IT
Maninder Singh
Sr. Visual & Graphic Designer
Neha Arya
Visual & Graphic Designer
Shubham
Research Analyst
Noopur Padalia
Research Analyst
Advisors:
Dr. S.M. Ishtiaque
Prof. I.I.T Delhi
Mr. Ashok Juneja
Ex President, TAI
Mr. Gurudas Aras
Independent Director
& Strategic Advisors
Mr. Sharad Tandon
CEO, Standon Consulting

Contents
Focus Product:
Agrotech Textile
AGROTEXTILES: THE INNOVATIVE
SHIELD FOR AGRICULTURE 04
EXPLORING TEXTILE APPLICATIONS
IN AGROTECH 08
AGROTEXTILES: THE FABRIC REVOLUTION
RESHAPING MODERN FARMING 12
BIODEGRADABLE AGROTEXTILES
FOR FUTURE GROWTH 16
04
Market Analysis :
Agrotech Textile 20
GLOBAL AGRO TEXTILE MARKET 20
GLOBAL AGRO TEXTILE MARKET FORECAST 21
INDIAN AGRO TEXTILE MARKET 22
INDIAN AGRO TEXTILE MARKET FORECAST 23
COMPETITIVE ANALYSIS 28
NONWOVEN AGROTECH
ENABLERS AND RESTRAINTS 32
Technology Junction
State at Glance
POLYPROPYLENE BUILDING BLOCK FOR
NONWOVEN AGROTEXTILES 36
INNOVATIONS IN TEXTILE MACHINERY 41
AGROTEXTILES FOR SUSTAINABLE
AGRICULTURE 46
HARYANA 52
36
52

4
Market Analysis
The agriculture industry is increasingly turning towards 
textiles for improving productivity, protection, and 
sustainability. Their primary objective is to deliver 
functional benefits that enhance crop protection, yield, 
and quality, rather than merely focusing on decorative 
purposes. While agrotextiles can be manufactured 
through weaving, knitting, or nonwoven technologies, 
nonwoven agrotextiles have captured substantial 
attention in recent decades due to their versatile 
functionality, economic production, and adaptability to 
diverse climatic conditions. Agrotextiles refer to textile 
materials specially designed for use in agriculture and 
horticulture. These textiles can be woven, nonwoven, or 
knitted:
•Characteristics: Interlaced
yarns, strong and durable
•Typical Use in Agriculture:
Nets, shade cloths, crop covers
Woven
•Characteristics: Bonded fibers
without weaving/knitting,
lightweight and breathable
•Typical Use in Agriculture:
Crop protection covers, mulch
mats, root bags
Nonwoven
•Characteristics: Protective
nets, shading screens
•Typical Use in Agriculture:
Protective nets, shading
screens
Knitted
Historically, the concept of using textiles in agriculture 
traces back centuries, with simple techniques such as 
using cloth sheets to protect delicate plants from frost. 
However, the modern term “agrotextiles” emerged 
alongside the development of synthetic fibers and 
industrial textile production methods in the mid-20th 
century. The green revolution and increasing food 
demand spurred significant interest in methods that 
could shield crops from environmental adversities and 
extend growing seasons. Consequently, agrotextiles 
evolved from basic protective coverings to highly 
engineered fabrics, specially designed for agriculture’s 
unique demands.
Fiber selection is crucial in the design and manufacture 
of agrotextiles. While natural fibers like jute, cotton, and 
coir have historical relevance, contemporary agrotextiles 
predominantly use synthetic fibers. Polypropylene, 
AGROTEXTILES: AGROTEXTILES:
THE INNOVATIVE SHIELD THE INNOVATIVE SHIELD
FOR AGRICULTUREFOR AGRICULTURE

5
Market Analysis
strength, air permeability, and uniformity all essential for 
agricultural applications. Meltblown nonwovens, on the 
other hand, produce ultra-fine fibers and are ideal for 
creating lightweight fabrics for crop protection against 
insects and 
fine dust. 
Needle-
punched 
nonwovens, 
where 
fibers are 
mechanically 
entangled 
using barbed 
needles, 
are employed for manufacturing mulch mats and 
ground covers, providing excellent durability and water 
permeability.
Performance requirements for agrotextiles differ based 
on their application. For example, crop covers and row 
covers need to balance breathability with protection 
from external elements. They must allow sufficient light 
transmission for photosynthesis while offering barriers 
against frost, insects, and heavy rainfall. Mulch mats 
require robustness against soil erosion, the ability to 
polyester, polyethylene, and polyamide are the most 
commonly utilized materials. These fibers offer essential 
characteristics such as UV resistance, mechanical 
strength, moisture resistance, and chemical stability, 
which are necessary to endure prolonged exposure 
to sunlight, moisture fluctuations, pesticides, and soil 
chemistry. Among these, polypropylene has become 
particularly popular for nonwoven agrotextiles due to its 
low cost, lightweight nature, and ease of fabrication.
Among these, nonwoven agrotextiles are gaining 
major importance due to their versatile properties 
like lightweight structure, air and water permeability, 
cost-effectiveness, and ability to create a favorable 
microclimate for crops. Nonwoven Agricultural Textiles:
Manufacturing techniques for agrotextiles vary based on 
the desired end-use properties. Nonwoven technologies, 
including spunbonding, meltblowing, needle-punching, 
and thermal bonding, have been instrumental in the 
proliferation of agricultural fabrics. In spunbonded 
nonwovens, polymer granules are melted and extruded 
through fine spinnerets to form continuous filaments, 
which are laid onto a conveyor belt and bonded thermally. 
This method produces fabrics with excellent tensile 
Feature Description

Structure
Web of fibers bonded together mechanically, thermally
or chemically

Properties
Lightweight, porous, UV-resistant, biodegradable
(in some types), cost-effective
Primary Uses
in Agriculture
Crop protection, Weed control, Soil erosion prevention,
Moisture retention, Seed germination

6
Market Analysis
suppress weed growth, and the capacity to regulate 
soil temperature and moisture levels. Protective nets, 
commonly used in orchards and vineyards, must 
offer resistance to UV degradation and mechanical 
impacts such as hailstorms. Thus, agrotextiles are not 
merely passive barriers; they actively interact with their 
environment, creating microclimates that significantly 
influence plant physiology.
Among the many applications of nonwoven agrotextiles, 
crop protection covers are the most widespread. These 
lightweight, breathable fabrics are draped directly over 
crops, forming a semi-permeable barrier that fosters 
early germination by maintaining warmer temperatures 
and reducing desiccation. In regions susceptible to late 
spring frosts or sudden temperature drops, these covers 
act as a crucial buffer, safeguarding tender seedlings 
and ensuring uninterrupted growth cycles. 
The innovation behind nonwoven fabrics lies not just in 
their structure, but in their tailor-made functionalities. 
Some are spun-bonded for strength, others needle-
punched for flexibility. Some disintegrate naturally, 
while others last season after season. With growing 
research and development, we now have UV-stabilized 
nonwovens, biodegradable films, and even smart 
textiles embedded with sensors.
Application Area Roles Benefits
Crop Covers / Floating
Row Covers
Covering crops during
germination and growth
Frost protection, pest barrier,
microclimate control
Mulch Mats Placed around plants and roots Weed suppression, moisture
conservation
Root Bags / Seed
Blankets
Biodegradable pots or blankets
embedded with seeds
Promotes germination, easy
transplanting
Soil Stabilization Mats Erosion control on slopes and
embankments
Prevents topsoil loss,
encourages plant rooting
Greenhouse Shading /
Thermal Screens
Light-diffusing or heat-retaining
covers
Temperature and humidity
control

Applications of Nonwoven Textiles in Agriculture

7
Market Analysis
06 - 07- 08
NOVEMBER 2025
YASHOBHOOMI
Sector 25, Dwarka, New Delhi, India
Convention Center (IICC)
HYGIENE TECHNOLOGY
NEXT-GENERATION
for Modern Needs
RESERVE
YOUR
SPACE
[email protected] | www.hygienexasia.com
+91 91734 40725
Concurrent Event
Strategic Alliance
Partner

8
Market Analysis EXPLORING TEXTILE APPLICATIONS EXPLORING TEXTILE APPLICATIONS
IN AGROTECHIN AGROTECH
Mulch Mat:
Mulch mats, crafted from non-woven textiles, act as a 
protective layer over the soil, helping farmers manage 
weeds without the need for harsh chemicals. By 
blocking sunlight from reaching the ground, these mats 
prevent the growth of unwanted grasses and weeds, 
keeping the soil clean and crop-friendly. They are made 
from a variety of durable fibers such as HDPE, LDPE, 
polypropylene, and even eco-friendly wool. Beyond 
weed control, mulch mats help retain soil moisture, 
regulate temperature, and reduce erosion caused by 
wind or rain. 
They also promote healthier root development and 
minimize the need for frequent irrigation. Widely used 
in nurseries, gardens, and large-scale agriculture, 
mulch mats are a sustainable solution for boosting 
productivity. As environmental concerns grow, these 
mats are proving to be an essential tool for modern, 
eco-conscious farming.
Fruit Covers:
Fruit covers, often referred to as fruit bags or crop 
covers, are an essential innovation in agrotech aimed 
at safeguarding fruits from pests, diseases, sunburn, 
and physical damage. Made from breathable, water-
resistant non-woven materials like polypropylene, these 

9
Market Analysis
covers create a microenvironment around the fruit 
that allows air and moisture to circulate while keeping 
harmful elements out. By reducing the need for chemical 
pesticides, they support cleaner, more organic fruit 
production. 
Fruit covers also enhance the visual appeal and uniform 
ripening of the produce, which is crucial for market 
value. Their lightweight and flexible design make them 
easy to apply and remove, saving labor time. Widely 
used for fruits like mangoes, apples, and pomegranates, 
these covers are helping farmers boost yield quality 
while reducing crop loss. As demand for sustainable 
farming grows, fruit covers are emerging as a smart, 
eco-friendly solution for modern horticulture.
Sunscreen in Agrotextile:
This innovative fabric comes in the form of a finely 
perforated, mesh-like woven material. It functions as a 
smart shield, offering selective shading that regulates 
the amount of sunlight reaching plants. The level of 
shade can be customized by adjusting the net’s mesh 
size, ensuring the perfect balance between light and 
protection. This technology plays a crucial role in 
safeguarding crops from harsh sunlight, reducing heat 
stress, and promoting healthy growth. 
It is especially useful in greenhouses and open-field 
farming, where climate control is essential. Moreover, 
it helps in conserving water by reducing evaporation 
and shielding tender plants from strong winds and 
hail. As climate conditions grow more unpredictable, 
agri-sunscreen is becoming an indispensable tool for 
modern farming.
Harvesting Net: Harvesting nets are a vital part of 
modern agriculture, designed to protect delicate fruits 
and vegetables from insects, birds, and other external 
threats. Made from strong yet lightweight materials like 
HDPE, nylon, polypropylene, or cotton, these nets act 
as a breathable barrier while allowing sunlight and air 
to pass through. They help ensure that crops mature 
naturally without damage, reducing the need for 
chemical pesticides. 
Harvesting nets are especially useful for fruits like 
grapes, guavas, and pomegranates that are prone to 
bird pecking. These nets also make it easier to collect 
fallen produce, minimizing waste. By using such nets, 
farmers can improve the quality and yield of their 
harvest. In a time when sustainable and chemical-free 
farming is gaining importance, harvesting nets offer a 
smart and eco-friendly solution to crop protection.
Anti-Insect Fabric:
Anti-insect fabric is a high-performance, UV-stabilized 
monofilament polypropylene woven mesh, specifically 
designed to shield crops from harmful insect invasions. 
With a tightly woven structure of 32 strands per square 
inch, it effectively blocks insects as small as 0.5 
mm, acting as a physical barrier without the need for 
pesticides. Commonly used in nurseries, polyhouses, 
and agricultural fields, this fabric plays a crucial role 
in maintaining plant health during the early stages of 
growth. 
It ensures better crop quality by reducing disease 
transmission caused by insect pests. Its UV-resistant 
nature adds to its durability, making it suitable for long-
term outdoor use. Additionally, it promotes natural air 
circulation and sunlight penetration, creating an ideal 
microclimate for plant development. As farmers move 
towards more organic and eco-friendly practices, 

10
Market Analysis
anti-insect fabric is becoming an essential tool for 
sustainable crop protection.
Cold & Frost Control Fabric: Cold and frost control 
fabric is a specially woven protective layer designed 
to shield crops from harsh winter conditions, including 
freezing temperatures and frost. Made from lightweight 
yet durable polypropylene, this fabric acts like a thermal 
blanket, insulating plants against sudden cold snaps 
and icy winds. It is particularly useful in frost-prone 
regions and during early planting seasons when young 
seedlings are most vulnerable. By maintaining a slightly 
warmer microclimate around the plants, it helps prevent 
frostbite and cold-related damage. 
The fabric is breathable, allowing moisture and air to 
pass through while keeping the chill out. It also reduces 
the risk of crop loss and enhances yield consistency. 
Ideal for use in open fields, gardens, and nurseries, 
cold and frost control fabric is an essential tool for 
farmers aiming to extend growing seasons and protect 
their crops naturally.
Root Ball Net:
Root Ball Netting is a modern innovation in agrotech that 
simplifies and enhances the process of transplanting 
trees and shrubs. Made from durable, eco-friendly 
mesh, it securely holds the soil around the roots, 
maintaining the integrity of the root system during lifting, 
transport, and storage. Unlike traditional hand-tying 
methods using burlap and twine, this netting offers a 
faster, cleaner, and more professional-looking solution. 
It eliminates the need for bulky containers, reducing 
costs and waste while improving efficiency. 
Root ball netting not only speeds up packaging but 
also ensures minimal root disturbance, helping plants 
establish more quickly after transplanting. Ideal for 
nurseries, landscapers, and horticulturists, it supports 
healthier plant growth and gives a neat, uniform 
appearance to root packages. As sustainable and time-
saving practices gain momentum, root ball netting is 
becoming a valuable tool in modern horticulture.

11
Market Analysis

12
Market Analysis
Agrotextiles are specially designed textile products 
used in agriculture and horticulture. They are crafted to 
improve productivity, conserve resources, and optimize 
the use of agricultural inputs. Today’s farmer is not just 
a cultivator but a technician, a decision-maker, and 
a problem solver and Agrotextiles are increasingly 
becoming a crucial tool in this transformative journey.
The relevance of Agrotextiles in a farmer’s life today 
cannot be overstated. With increasing climatic 
unpredictability, degraded land quality, and shrinking 
profits, farmers need adaptable and cost-effective 
solutions. Here’s why Agrotextiles are becoming vital:
AGROTEXTILESAGROTEXTILES
The Fabric Revolution Reshaping The Fabric Revolution Reshaping
Modern FarmingModern Farming
In the silent corners of lush fields, beyond the hum of 
tractors and the rhythm of monsoons, lies a revolution 
that’s rarely noticed Agrotextiles. While seeds and 
soil have long been the iconic symbols of agriculture, 
modern farming is being reimagined by the soft yet 
powerful touch of textile technology. Agrotextiles are 
not about clothing farmers but clothing their crops, 
protecting their harvests, and helping them grow 
better, faster, and stronger.

13
Market Analysis
Boosting Productivity:Byofferingprotection and creating
optimizedgrowthenvironments,Agrotextilesincreaseyieldper
acre.Cropsareless likelytobe damaged bypests,weather,or
weeds, leadingtohealthier,moreabundant harvests.
Enhancing Sustainability:Agrotextiles encourage non-
chemical approachestopest control and weed management.
They reduceexcessiveirrigation,conserve natural resources,
and are instrumentalin climate-smartagriculture.
Enabling Year-Round Farming:Withgreenhouses and
controlled environments created throughtextilestructures,
farmerscan grow crops even during off-seasons.
ImprovingQualityand Marketability:Protected crops not only
yieldmorebut arevisuallybetter free from pestmarks,weather
scarring,or disease patches.Thisincreasestheiracceptabilityin
high-end markets and exports.
EmpoweringSmallFarmers:Thoughinitiallyseen asa
technology forcommercialfarms,Agrotextiles are now being
embraced bysmalland marginal farmers,especiallywith
government schemesandsubsidiesinplace.Local production and
customsizinghave made themmoreaffordable.
Despite the evident benefits and growing relevance 
of agrotextiles in modern agriculture, their widespread 
adoption remains limited due to several persistent 
challenges. One of the primary barriers is the lack of 
awareness among farmers, particularly those in remote 
and rural areas. Many small and marginal farmers 
are still unfamiliar with agrotextile applications and 
are unaware of the potential these materials hold in 
improving crop productivity, reducing input costs, and 
ensuring sustainable farming practices.
Another significant hurdle is the high initial investment 
required for agrotextile products such as shade nets, 
greenhouse covers, and mulching films. Although these 
materials promise long-term returns through increased 
yields and reduced losses, the upfront capital required 
for procurement and installation often deters small-
scale farmers from embracing these technologies.
In addition, the requirement of technical knowledge 
and training for effective utilization poses a substantial 

14
Market Analysis
challenge. The successful deployment of agrotextiles 
demands an understanding of crop-specific needs, 
climatic factors, and installation techniques. Without 
access to proper training or extension support, farmers 
may struggle to derive optimal benefits from these 
products.
Durability concerns also impact adoption rates. 
Agrotextiles, particularly those made from synthetic 
polymers, may degrade under extreme climatic 
conditions such as intense ultraviolet (UV) radiation, 
heavy rainfall, or strong winds. This limits their lifespan 
and effectiveness, especially in regions experiencing 
harsh agro-climatic stress.
Furthermore, disposal and environmental management 
of agrotextiles pose additional complications. Most 
synthetic agrotextiles are not biodegradable, leading to 
concerns about post-use disposal and environmental 
pollution. Without proper recycling mechanisms or 
eco-friendly alternatives, these materials contribute to 
agricultural waste, undermining the sustainability they 
are designed to promote.
To overcome these challenges, governments, non-
governmental organizations (NGOs), and agri-tech 
companies have begun playing an increasingly active 
role in promoting the adoption of agrotextiles. Policy 
interventions and financial support mechanisms are 
being implemented in various countries to make these 
technologies more accessible. For instance, in India, 
the National Horticulture Mission offers subsidies on the 
purchase and installation of shade nets and mulching 
films, thereby reducing the financial burden on farmers.
Internationally, countries such as Israel, the Netherlands, 
and several Southeast Asian nations have demonstrated 
the successful integration of agrotextiles through the 
promotion of protected cultivation techniques. These 
countries have adopted advanced agrotextile systems 
to mitigate climatic risks, enhance productivity, and 
meet export standards.
Simultaneously, research institutions and universities 
are investing in the development of bio-based 
agrotextiles, which aim to replace synthetic variants with 
biodegradable and environmentally friendly alternatives. 
These innovations address the environmental concerns 
associated with disposal while maintaining the functional 
benefits required in modern agriculture.
Moreover, agricultural extension services and 
educational institutions are conducting training 
programs, awareness campaigns, and on-field 
demonstrations to familiarize farmers with agrotextile 
applications. Through workshops, field visits, and pilot 

15
Market Analysis
The synergy between Agrotextiles and digital agriculture 
holds the promise of further transforming farming from 
a gamble into a science. Agrotextiles might not sing, 
but they surely whisper stories of progress in every field 
they touch. They are threads of hope, woven quietly into 
the very soil of farming life. In a world where farmers are 
under pressure to produce more with less, Agrotextiles 
offer a gentle yet firm support.
They symbolize a bridge between tradition and 
innovation, between nature and technology. For the 
farmer who rises before dawn and battles uncertain 
skies, Agrotextiles are a silent partner shielding, 
nourishing, and supporting. As we move into an era 
where sustainability and productivity must go hand 
in hand, Agrotextiles are no longer optional. They are 
essential. They are the new-age plough, the fabric 
of tomorrow’s farms, and the soft revolution that is 
redefining agriculture one field, one thread at a time.
projects, these initiatives aim to bridge the knowledge 
gap, build confidence, and foster a more informed and 
prepared farming community.
While agrotextiles hold immense potential in transforming 
agricultural practices and improving farmer livelihoods, 
their adoption is currently limited by a range of socio-
economic and technical challenges. Overcoming these 
obstacles requires a coordinated effort involving policy 
support, financial incentives, technological innovation, 
and grassroots-level awareness. Only through such 
integrated efforts can the full promise of agrotextiles be 
realized in the daily lives of farmers around the world. 
The next chapter in Agrotextile innovation is being 
shaped by technology. As agriculture evolves into a 
precision-driven, tech-integrated system, Agrotextiles 
too are becoming smarter. Some emerging trends 
include:
 Smart textiles with embedded sensors to monitor temperature, humidity, and pest
activity.
 Biodegradable polymers for eco-friendly alternatives to plastic-based fabrics.
 Integration with solar energy: Shade nets doubling as solar panels to generate
electricity for irrigation.
 AI-based growth modeling: Using data to recommend the best textile configuration for
a specific crop or location.

16
Market Analysis
Biodegradability in agrotextiles represents a pivotal 
advancement in sustainable agriculture, addressing the 
pressing need to reduce environmental impact while 
maintaining crop productivity. Traditional agrotextiles, 
often composed of synthetic polymers like polypropylene 
(PP), polyethylene (PE), and polyethylene terephthalate 
(PET), have been instrumental in enhancing agricultural 
efficiency through applications such as mulching, crop 
protection, and soil stabilization. 
However, their persistence in the environment post-use 
has led to significant ecological concerns, including 
soil contamination and microplastic pollution. The 
shift towards biodegradable agrotextiles aims to 
mitigate these issues by introducing materials that 
can decompose naturally, thereby aligning agricultural 
practices with environmental sustainability goals.
Biodegradable agrotextiles are designed to break down 
through natural processes involving microorganisms, 
moisture, and temperature variations, ultimately 
converting into harmless end-products like water, 
carbon dioxide, and biomass. This decomposition 
process is influenced by several factors, including 
the chemical structure of the material, environmental 
conditions, and the presence of microbial communities 
capable of degrading the polymers. The adoption of 
biodegradable materials in agrotextiles not only reduces 
the environmental footprint of agricultural practices but 
also eliminates the need for labor-intensive removal 
and disposal of synthetic materials after their functional 
lifespan.
The development of biodegradable agrotextiles 
encompasses a range of materials, primarily 
categorized into natural fibers and bio-based polymers. 
Natural fibers such as jute, flax, hemp, cotton, and 
wool have been traditionally used in textile applications 
due to their inherent biodegradability, renewability, and 
favorable mechanical properties. These fibers are often 
BIODEGRADABLE AGROTEXTILES BIODEGRADABLE AGROTEXTILES
For Future GrowthFor Future Growth

17
Market Analysis
processed into nonwoven fabrics through mechanical 
methods like carding and needle punching, resulting 
in mulches that are completely biodegradable over 
a period of 3–6 months, making them suitable for 
crops with shorter growing periods. The widespread 
availability and ease of production of these natural 
fiber-based nonwovens make them an environmentally 
friendly choice for agricultural applications.
In addition to natural fibers, bio-based polymers such 
as polylactic acid (PLA), polyhydroxyalkanoates (PHA), 
and polybutylene succinate (PBS) have emerged 
as promising alternatives to conventional plastics in 
agrotextile applications. PLA, derived from renewable 
resources like corn starch and sugarcane, offers 
properties similar to non-biodegradable synthetic 
fibers, including controlled crimp, smooth surface, and 
low moisture absorption. Moreover, PLA exhibits better 
weather resistance and flame retardancy relative to PET 
fibers, as well as rapid degradation in activated sludge. 
The incorporation of these biopolymers into nonwoven 
mulches provides a balance between functional 
performance and environmental compatibility.
The biodegradation of agrotextiles is governed by a 
complex interplay of abiotic and biotic factors. Abiotic 
factors include environmental conditions such as 
temperature, humidity, and exposure to sunlight, which 
can influence the rate of polymer degradation through 
processes like hydrolysis and photodegradation. Biotic 
factors involve the activity of microorganisms, including 
bacteria and fungi, that secrete enzymes capable of 
breaking down polymer chains into smaller molecules 
that can be assimilated as nutrients. The efficiency 
of biodegradation is also affected by the physical 
properties of the agrotextile, such as its thickness, 
density, and surface area, which can impact microbial 
colonization and enzymatic activity.
Standards and certifications play a crucial role in 
defining and verifying the biodegradability of agrotextile 
materials. Compliance with such standards ensures that 
the materials used in agrotextiles meet the necessary 
criteria for environmental safety and performance. 
Additionally, certifications from recognized organizations 
provide assurance to consumers and stakeholders 
regarding the ecological credentials of biodegradable 
agrotextile products.

18
Market Analysis
The integration of biodegradable agrotextiles into 
agricultural practices offers several benefits beyond 
environmental sustainability. These materials can 
improve soil health by enhancing moisture retention, 
regulating temperature, and suppressing weed growth, 
thereby reducing the reliance on chemical herbicides. 
Furthermore, the decomposition of biodegradable 
mulches contributes organic matter to the soil, enriching 
its nutrient content and promoting microbial diversity. 
The use of biodegradable agrotextiles also aligns with 
the principles of organic farming and can support the 
production of high-quality, chemical-free crops.
Despite the advantages, the adoption of biodegradable 
agrotextiles faces certain challenges. One of the primary 
concerns is the cost associated with the production 
of bio-based polymers and natural fiber processing, 
which can be higher than that of conventional synthetic 
materials. Additionally, the performance characteristics 
of biodegradable agrotextiles, such as durability 
and mechanical strength, need to be optimized to 
match those of traditional counterparts. Research 
and development efforts are focused on enhancing 
the properties of biodegradable materials through 
the modification of polymer structures, blending with 
other biopolymers, and the incorporation of functional 
additives.
Field studies have demonstrated the practical viability 
of biodegradable agrotextiles in various agricultural 
settings. For example, nonwoven mulches made 
from viscose, jute, hemp, and PLA fibers have shown 
effectiveness in weed control, soil temperature 
regulation, and moisture conservation during 
the cultivation of vegetables with longer growing 
seasons. These findings underscore the potential of 
biodegradable agrotextiles to replace traditional plastic 
mulches, thereby reducing environmental pollution and 
enhancing agricultural sustainability.
The future of biodegradable agrotextiles lies in the 
continued advancement of material science and 
manufacturing technologies. Innovations in the 
development of new biopolymers, the utilization 
of agricultural waste as raw materials, and the 
implementation of scalable production processes are 
expected to drive the growth of this sector. Collaborative 
efforts among researchers, industry stakeholders, 
policymakers, and farmers are essential to overcome 
existing barriers and to promote the widespread adoption 
of biodegradable agrotextiles. By embracing these 
sustainable alternatives, the agricultural industry can 
contribute significantly to environmental conservation 
and the achievement of global sustainability goals.

19
Market Analysis
06 - 07- 08
NOVEMBER 2025
YASHOBHOOMI
Sector 25, Dwarka, New Delhi, India
Convention Center (IICC)
for Modern Industries:
NONWOVEN TECHNOLOGY
THE SMART CHOICE
RESERVE
YOUR
SPACE
Supported ByStrategic Alliance
Partner
Concurrent Event
[email protected]
www.nonwoventechasia.com
+91 91734 40725

20
Market Analysis GLOBAL AGRO GLOBAL AGRO
TEXTILE MARKETTEXTILE MARKET
2016-19 (USD MILLION)
(Source: Data from Technical Textile Market Analysis by Grand View Research, provided by EMIS/CEIC and Analysis by TBD)
Agrotech 2016 2017 2018 2019
(USD Million) 4,098.6 4,222.7 4,356.6 4,498.3

4,098.6
4,222.7
4,356.6
4,498.3
3,800.0
3,900.0
4,000.0
4,100.0
4,200.0
4,300.0
4,400.0
4,500.0
4,600.0
2016 2017 2018 2019
The Global agro-textile market moved on a path of 
steady expansion between 2016 and 2019, showing 
resilience and growing relevance in modern agriculture. 
Each year added strength to the sector, signaling rising 
confidence among producers and users worldwide. The 
growth reflects increasing awareness about sustainable 
farming and the role of textiles in boosting productivity. 
Agro-textiles gained traction as essential tools for crop 
protection, soil management, and resource efficiency. 
The gradual upward momentum points to a market that is 
not only expanding but also maturing in its applications. 
This period marked the groundwork for agro-textiles to 
become a vital part of global agricultural innovation.

21
Market Analysis
GLOBAL GLOBAL AGRO TEXTILE AGRO TEXTILE
MARKET FORECASTMARKET FORECAST
2020-27 (USD MILLION)
Agrotech 2020 2021 2022 2023 2024 2025 2026 2027 CAGR (%)
(USD Million) 4,405.80 4,535.20 4686.2 4843.1 5005.9 5175.2 5351.1 5533.8 2.6%

4,405.8
4,535.2
4,686.2
4,843.1
5,005.9
5,175.2
5,351.1
5,533.8
-
1,000.0
2,000.0
3,000.0
4,000.0
5,000.0
6,000.0
2020 2021 2022 2023 2024 2025 2026 2027
Agro textiles play a vital role in the agriculture sector 
due to their multifunctional benefits, making them an 
essential component of modern farming practices. 
These textiles provide superior weather resistance, 
shielding crops from harmful micro-organisms, solar 
radiation, and ultraviolet rays, while also aiding in water 
conservation. By offering enhanced crop protection, 
agrotextiles contribute to increased yields and improved 
crop quality. 
They are manufactured from both synthetic fibers, such 
as polypropylene and polyethylene, known for their 
cost-effectiveness, and natural fibers like jute and wool. 
Natural fibers hold significant promise in the agrotextile 
market because they not only deliver functional 
advantages but also are biodegradable, breaking down 
after use to enrich the soil as a natural fertilizer. The 
growing agriculture textile market is driven by the rising 
demand for sustainable and efficient farming solutions, 
where agrotextiles improve productivity and reduce 
environmental impact, highlighting their importance in 
the future of agriculture.

22
Market Analysis
AGRO TEXTILE AGRO TEXTILE
MARKET MARKET
2016-19 (USD MILLION) ININDIDIANAN
Agrotech 2016 2017 2018 2019
(USD Million) 181.6 188.1 195 202.2

181.6
188.1
195
202.2
170
175
180
185
190
195
200
205
2016 2017 2018 2019
The Indian agro-textile market demonstrated steady 
growth from 2016 to 2019, reflecting increasing adoption 
of technical textiles in agriculture. Agrotech recorded a 
consistent upward trend, highlighting rising demand for 
crop protection and yield-enhancing solutions. Market 
expansion was driven by both government initiatives and 
awareness among farmers about modern agricultural 
practices. The gradual growth indicates a stable yet 
promising sector, with incremental investments boosting 
production capacity. Technological innovations and 
durable product offerings further strengthened market 
confidence. Despite modest year-on-year increases, 
the overall trajectory points toward long-term potential 
in the agro-textile space. This period laid a strong 
foundation for India’s emergence as a key player in the 
global agro-textile market.

23
Market Analysis
AGROAGRO TEXTILE TEXTILE
MARKET FORECASTMARKET FORECAST
2020-27 (USD MILLION) ININDIDIANAN
Agrotech 2020 2021 2022 2023 2024 2025 2026 2027 CAGR (%)
(USD Million) 187.70 190.9 197.9 205.2 212.7 220.5 228.6 236.9 2%

187.70 190.9
197.9
205.2
212.7
220.5
228.6
236.9
0.00
50.00
100.00
150.00
200.00
250.00
2020 2021 2022 2023 2024 2025 2026 2027
The Indian agriculture textile market is steadily 
blossoming into a vibrant sector, driven by the country’s 
deep-rooted agrarian economy and the growing need 
for sustainable farming solutions. Agrotextiles in India 
have emerged as silent enablers of modern agriculture, 
offering innovative ways to protect and enhance crop 
yields. From shading nets that guard against the harsh 
summer sun to mulching fabrics that retain precious soil 
moisture, these specialized textiles are transforming 
traditional farming into a more scientific, efficient, and 
eco-friendly practice.
What makes the Indian agrotextile market unique is its 
harmonious blend of tradition and technology. Natural 
fibers like jute and coir, which are abundantly available 
and culturally familiar to Indian farmers, are finding 
renewed purpose in biodegradable agrotextiles serving 
not just as protective covers but as natural fertilizers 
once their role is fulfilled. At the same time, synthetic 
fibers like polypropylene and polyethylene continue 
to dominate due to their affordability and durability, 
making agrotextiles accessible across diverse regions 
and scales of farming.

24
Market Analysis
Market Share of Agrotech Textiles by Product (2023)
Analysis of Agrotech Textiles by Application
Source: FAO Case Study/Textile Today
50%
35%
15%
Woven
Nonwoven
Knitted
Source: FAO Case Study
Analysis of Agrotech Textiles by Product

Type

Manufacturing Process

Key Properties
Market Share
(2023)

Woven

Warp-weft interlacing
UV resistance,
durability

50%

Nonwoven
Spunbond/meltblown
bonding
Lightweight,
moisture retention

35%

Knitted

Weft/warp knitting
Elasticity, tear
resistance

15%


Application

Function
Market Demand
(2023)
Crop Protection Pest control, frost protection $1200 million
Soil Management Weed suppression $800 million
Livestock Farming Shade structures, fencing $500 million
Post-Harvest Storage Grain packaging $300 million

25
Market Analysis
Analysis of Agrotech Textiles by Material
Market Share of Agrotech Textiles by Geography (2023)
Market Share of Agrotech Textiles by Geography (2023)
Market Demand of Agrotech Textiles by Application (2023)
Source: Green Chemistry Journal
Source: Mordor Intelligence/Statista /FAO
$1200mn
$800mn
$500mn
$300 mn
Crop Protection
Soil Management
Livestock Farming
Post-Harvest Storage
25%
30%
35%
10%
North America
Europe
Asia-Pacific
Africa
Material Advantages Limitations
Polypropylene Water-resistant Non- biodegradable
Polyester UV resistance High cost
Jute Biodegradable Short lifespan
PLA Blends Compostable Limited durability

Region Type Market Share 2023
North America Woven 25%
Europe Nonwoven 30%
Asia-Pacific Knitted 35%
Africa Woven/Nonwoven 10%

26
Market Analysis

27
Market Analysis

28
Market Analysis
India’s AgroTech story is rooted in the symbiosis 
between agriculture and textiles. With over 50% of its 
population engaged in farming, India has consistently 
sought innovative ways to improve yields while protecting 
crops from erratic weather and pest attacks. The textile 
industry, already a global leader in production, naturally 
extended its scope into AgroTech, creating affordable 
and scalable solutions. Among the many participants, 
five companies have stood out due to their scale, 
innovation, and influence: Garware Technical Fibres, 
Sidwin Fabric Pvt. Ltd, Supreme Nonwovens & SRF 
Limited.
Garware Technical Fibres: Garware Technical Fibres 
is often considered a pioneer in India’s AgroTech 
landscape. Initially focused on fishing nets, the 
company gradually diversified into agriculture-specific 
textiles. Its shade nets, crop covers, and protective 
farming solutions are now widely used across India and 
in export markets. 
The company’s strategy revolves around innovation 
for Indian conditions. Unlike MNCs that often design 
products for global usage, Garware tailors its offerings 
to withstand the intense sunlight, monsoon rains, and 
pest challenges unique to Indian farmers. By doing so, 
it has carved a niche market, offering affordable yet 
highly durable AgroTech textiles.
Sidwin Fabric Pvt. Ltd: Sidwin Fabric Pvt. Ltd., based in 
Gujarat, has emerged as a key player in India’s AgroTech 
textile sector. The company specializes in spunbond 
nonwoven fabrics used for crop protection, mulching 
and other agricultural applications. Its fabrics shield 
crops from pests, animals, and harsh weather, helping 
farmers improve yield and crop quality. The company 
combines innovation with affordability, catering to both 
domestic and international markets. Sidwin exports to 
North America, Europe, Japan, and the Middle East, 
reflecting its global reach. Sustainability is central to 
its operations, with over 60% of its energy needs met 
through renewable sources. The company’s advanced 
COMPETITIVE ANALYSIS
Indian and Global Leaders
in AgroTech Textiles

29
Market Analysis
production lines allow for high-quality fabrics at scale, 
meeting diverse agricultural needs. 
Supreme Nonwovens: Supreme Nonwovens is a 
specialist in nonwoven AgroTech fabrics. Its shade 
nets, nonwoven crop covers, and root-zone protection 
textiles have been recognized for their balance of 
affordability and innovation. The company’s products 
are often targeted at small and medium-scale farmers, 
who form the backbone of India’s agriculture.
Its strength lies in economies of scale. Supreme 
Nonwovens has developed mass-production 
capabilities that allow it to supply vast quantities of 
protective textiles at lower costs. This makes AgroTech 
solutions more accessible to marginal farmers who may 
not afford premium international products.
SRF Limited: SRF Limited is a diversified conglomerate, 
but its contribution to AgroTech textiles cannot be 
overlooked. The company produces specialized 
technical textiles for crop protection and water 
management. It is particularly strong in producing 
coated fabrics and laminated solutions that extend 
beyond agriculture to industrial applications.
What sets SRF apart is its focus on sustainability. The 
company has embraced global trends in eco-friendly 
AgroTech, developing recyclable and biodegradable 
crop covers and geotextiles. Its R&D divisions are 
increasingly aligned with global sustainability targets, 
giving it an edge over domestic competitors. Market 
positioning for SRF is more corporate and export-driven, 
targeting agribusiness firms rather than individual 
farmers. This positions it differently in the competitive 
landscape, catering to a higher-value segment of the 
AgroTech market.
Multinational corporations bring to the AgroTech textile 
industry a combination of advanced technology, global 
distribution, and premium branding. Their strength 
lies in years of R&D, robust patents, and the ability to 
scale innovations across continents. The five most 
prominent MNCs competing in this space are TenCate 
Geosynthetics, Low & Bonar, Berry Global, Johns 
Manville and Ahlstrom-Munksjö.
TenCate Geosynthetics: Netherlands-based TenCate 
Geosynthetics is a global leader in technical textiles with 
a strong foothold in AgroTech solutions. Its geotextiles 
for irrigation, water conservation and soil protection are 
widely used in advanced farming systems.
What makes TenCate formidable is its innovation-driven 
approach. The company invests heavily in R&D, creating 
fabrics that not only protect crops but also improve water 
efficiency critical in drought-prone regions. Its products 
are premium, but their long-term durability attracts 
agribusinesses willing to invest in sustainable farming. 
TenCate’s market positioning is clear: it serves large-
scale commercial farming enterprises, governments, 
and infrastructure projects. While this makes it less 
accessible to small farmers, it dominates the high-value 
AgroTech textile market globally.

30
Market Analysis
Low & Bonar: Low & Bonar, headquartered in the UK, 
specializes in performance materials with significant 
applications in agriculture. Its nonwoven crop protection 
textiles, root-control fabrics, and climate-resistant nets 
are widely recognized. The company’s strength lies 
in designing for diverse climates. By serving markets 
from Europe to Asia, Low & Bonar ensures its AgroTech 
products adapt to varying weather extremes. This 
flexibility positions it as a reliable global partner.
Low & Bonar’s strategy has been to collaborate with 
governments and NGOs in promoting sustainable 
farming solutions, particularly in developing nations. 
This positions it not only as a commercial player but also 
as a contributor to global food security.
Berry Global: Berry Global, based in the United States, 
is one of the world’s largest producers of engineered 
materials and nonwovens. In AgroTech, its innovations 
are particularly visible in mulching films, crop covers, 
greenhouse films, and water-conservation textiles. What 
distinguishes Berry Global is its integration of polymers 
and sustainability practices, allowing it to produce 
advanced, lightweight, and recyclable AgroTech 
solutions.
The company has focused heavily on precision 
agriculture designing fabrics that not only protect crops 
but also optimize soil temperature, moisture retention, 
and weed suppression. For instance, its biodegradable 
mulch films are an innovation aimed at reducing plastic 
pollution while supporting farming efficiency.
Berry’s market positioning is highly strategic. By building 
partnerships with agribusiness firms, cooperatives, and 
global food producers, it positions itself not merely as a 
textile supplier but as a holistic farming partner. Its reach 
extends into Asia, including India, though its products 
are often priced higher than domestic alternatives. For 
commercial-scale farming operations that prioritize 
efficiency and sustainability, Berry Global is considered 
a trusted name.
Johns Manville: Johns Manville, headquartered in 
the United States and part of Berkshire Hathaway, 
is a global leader in engineered products, including 
nonwoven fabrics. Its contribution to AgroTech textiles is 
rooted in protective fabrics, insulation-based solutions, 
and water-management textiles. Unlike companies that 
directly manufacture agricultural fabrics, Johns Manville 
integrates its core strengths in fiberglass and nonwovens 
to design AgroTech solutions for specialized use. Its 
textiles are often incorporated into advanced irrigation 
systems, protective crop structures, and climate-control 
facilities.
The company’s competitive edge lies in its synergy 
across industries. Because it serves construction, 
energy, and agriculture, Johns Manville brings cross-
industry expertise, creating AgroTech fabrics that are 
durable, multipurpose, and adaptable. Its positioning 
in the AgroTech space is more corporate and project-
based, supplying governments, agribusinesses, and 
international development programs. For small farmers, 
Johns Manville is less visible, but in the high-tech 
farming ecosystem, its role is critical.

31
Market Analysis
Ahlstrom-Munksjö: Ahlstrom-Munksjö, a Finland-
based company, specializes in fiber-based materials 
and sustainable solutions. Its AgroTech presence is most 
evident in crop-protection nonwovens, seed blankets, 
and biodegradable mulching fabrics. What makes 
Ahlstrom-Munksjö remarkable is its deep commitment 
Company Product Strategy Market Positioning
Garware Technical
Fibres (India)
UV-resistant nets, crop covers,
farmer-centric innovation
Trusted domestic partner for
small and mid-scale farmers
Supreme Nonwovens
(India)
Affordable nonwoven crop covers
and protection textiles
Mass-market, cost-sensitive small
and medium farmers
SRF Limited (India)
Sustainable coated fabrics,
water-management textiles
Export-driven, agribusiness, and
eco-conscious markets
Sidwin Fabric Pvt.
Ltd. (India)

Spunbond nonwoven fabrics for
crop protection, mulching and
sustainable agricultural applications

Small to medium-scale farmers,
domestic agribusinesses and
international export markets

TenCate
Geosynthetics (MNC)
High-performance geotextiles for soil
& water management
Premium global projects,
infrastructure, commercial farms
Low & Bonar (MNC)
Climate-adaptable crop textiles,
root-control fabrics
Global development programs,
governments, and NGOs
Berry Global (MNC)
Precision agriculture fabrics,
biodegradable mulch films
High-tech agribusiness and
sustainability-driven markets
Johns Manville
(MNC)
Multipurpose nonwovens for
irrigation and protection
Project-based, government and
corporate agribusiness
Ahlstrom-Munksjö
(MNC)
Biodegradable, fiber-based crop
textiles
Premium sustainability-focused
segment, eco-conscious farms

to sustainability a trait that resonates strongly with global 
shifts toward eco-friendly farming.
The company’s AgroTech textiles are often designed 
with biodegradability at their core, ensuring that after 
serving their farming purpose, the fabrics decompose 
naturally without leaving harmful residues. This 
approach not only appeals to eco-conscious markets 
in Europe and North America but also holds promise 
for developing nations struggling with plastic waste in 
agriculture. In terms of positioning, Ahlstrom-Munksjö 
occupies the premium sustainability segment. Its 
products may not always be affordable to small farmers, 
but its brand is synonymous with responsible farming 
solutions. By aligning with global sustainability goals 
such as the UN’s SDGs, Ahlstrom-Munksjö ensures 
long-term relevance in AgroTech textiles.
Comparative Analysis: Product Strategy vs Market Positioning

32
Market Analysis
NONWOVEN AGROTECHNONWOVEN AGROTECH
Enablers and Restraints
A quiet revolution is taking root in the fertile plains
and diverse farmlands of India. It’s not a new seed
variety or a revolutionary piece of machinery, but
a silent, unassuming ally to the farmer: nonwoven
agrotech textiles. These innovative fabrics, often
overlooked, are emerging as powerful catalysts for
change, promising to enhance crop yields, conserve
precious resources and shield farmers from the
increasingly unpredictable whims of nature. However,
the path to widespread adoption is not without its
hurdles. A complex interplay of market enablers and
restraints is shaping the destiny of these remarkable
materials in the Indian agricultural landscape.
The story of nonwoven agritech textiles in India is one 
of immense potential. At its core, it’s a narrative of 
empowerment for the Indian farmer. For generations, 
farmers have battled the elements – scorching sun, 
torrential rains and devastating pest attacks. Traditional 
methods of crop protection, while time-tested, often 
fall short in the face of escalating climate change and 
the persistent need to increase productivity to feed a 
growing nation. This is where nonwoven textiles are 
making a tangible difference.
The Enablers
A confluence of factors is driving the burgeoning 
demand for nonwoven agritech textiles in India. 
These enablers, ranging from government support to 
grassroots-level innovation, are creating a fertile ground 
for the adoption of this transformative technology.
A Helping Hand from the Government: The Indian 
government, recognizing the critical role of technology 
in modernizing agriculture, has introduced several 
schemes that indirectly and directly support the 
adoption of nonwoven textiles. Initiatives like the 
Amended Technology Upgradation Fund Scheme 
(ATUFS) and the Production Linked Incentive (PLI) 
scheme for technical textiles are encouraging domestic 
manufacturing and making these products more 
accessible and affordable. While not always directly 
targeted at the farmer, these policies foster a domestic 
manufacturing ecosystem that brings down costs and 
spurs innovation.

33
Market Analysis
The Undeniable Economics of Higher Yields and
Incomes: The most compelling argument for any new 
agricultural technology is its impact on the farmer’s 
bottom line. Here, the evidence in favor of nonwoven 
textiles is becoming increasingly clear. A compelling 
case study from Sidwin Fabrics, a prominent Indian 
manufacturer, reveals that the use of their crop covers 
has led to a remarkable increase in farmer incomes 
by an average of 20-25%. This is a direct result of a 
significant jump in harvestable produce, from a typical 
80% to an astounding 99%. By protecting crops from 
pests, adverse weather and physical damage, these 
fabrics ensure that more of what is grown reaches the 
market, translating into tangible financial gains for the 
farmer.
Water Conservation and Reduced Pesticide Reliance: 
Beyond the immediate economic benefits, nonwoven 
agritech textiles are champions of sustainable farming 
practices. In a country where water scarcity is a 
looming threat, the ability of these materials to reduce 
evaporation and retain soil moisture is a game-changer. 
Mulch films, a type of nonwoven textile, can significantly 
cut down on the need for irrigation, a boon for farmers in 
arid and semi-arid regions.
Furthermore, the protective barrier provided by crop 
covers drastically reduces the need for chemical 
pesticides. By physically shielding plants from insects 
and other pests, farmers can cultivate healthier, residue-
free produce. This not only benefits the environment by 
preventing soil and water contamination but also opens 
up new avenues for farmers to tap into the growing 
market for organic and chemical-free agricultural 
products.
FPOs and Agrotech Startups as Catalysts:  The 
journey of a new technology from the lab to the land 
is often fraught with challenges. This is where Farmer 
Producer Organizations (FPOs) and a burgeoning 
ecosystem of agritech startups are playing a pivotal 
role. FPOs, by aggregating small and marginal farmers, 
create a platform for knowledge sharing and collective 
procurement, making advanced technologies like 
nonwoven textiles more accessible.
Simultaneously, agritech startups are bridging the gap 
between manufacturers and the end-users. They are 
not only creating efficient supply chains to deliver these 
products to remote corners of the country but are also 
leveraging technology to provide farmers with crucial 
information and advisory services on their optimal 
usage. This dynamic partnership between collective 
action and entrepreneurial innovation is accelerating the 
adoption of nonwoven agritech textiles at the grassroots 
level.
A Shield Against a Changing Climate: In the era of 
climate change, Indian agriculture is on the front lines, 

34
Market Analysis
facing erratic monsoons, extreme temperatures and 
an increase in the frequency of freak weather events. 
Nonwoven textiles are emerging as a crucial tool for 
climate change adaptation. Frost covers can protect 
horticultural crops from sudden temperature drops, 
while shade nets can mitigate the impact of intense 
heatwaves. By creating a controlled micro-climate 
around the plants, these textiles provide a buffer against 
environmental stresses, ensuring crop survival and 
productivity in an increasingly uncertain world.
The Restraints
Despite the compelling advantages, the path to 
widespread adoption of nonwoven agritech textiles in 
India is not without its obstacles. A set of significant 
market restraints needs to be addressed to unlock the 
full potential of this technology.
Cost and the Small Farmer’s Dilemma: For the small 
and marginal farmers who constitute the backbone of 
Indian agriculture, the initial investment in nonwoven 
textiles can be a significant deterrent. While the long-
term return on investment is often favorable, the upfront 
cost of crop covers, mulch films and other products 
can be prohibitive. A more detailed and region-specific 
cost-benefit analysis, communicated effectively to 
farmers, is crucial to overcoming this financial barrier. 
The availability of targeted subsidies and credit facilities 
for the purchase of these materials could also play a 
transformative role.
The Awareness Gap:  From Innovation to 
Implementation: The adage “seeing is believing” holds 
particularly true in the agricultural sector. A significant 
portion of the farming community, especially in remote 
and less-developed regions, remains unaware of the 
existence and benefits of nonwoven agritech textiles. A 
concerted effort is needed from government extension 
services, FPOs and private players to conduct on-farm 
demonstrations and training programs and disseminate 
information in local languages. Bridging this awareness 
gap is fundamental to driving demand from the ground 
up.
Supply Chain and Distribution Bottlenecks: India’s 
vast and diverse agricultural landscape presents 
significant logistical challenges. Ensuring the timely 
and affordable availability of nonwoven textiles in 
remote rural areas is a major hurdle. Inadequate rural 
infrastructure, a fragmented distribution network and the 
high cost of transportation can limit the reach of these 
products. Strengthening the rural supply chain through 
a network of local dealers and leveraging the digital 
platforms of agritech startups will be key to ensuring 
that these innovative materials reach every farmer who 
needs them.
The Raw Material Conundrum:  Availability and 
Price Volatility: The production of nonwoven textiles is 
dependent on the availability and cost of raw materials, 
primarily polymers like polypropylene and polyester. 
Fluctuations in global oil prices can impact the cost 
of these raw materials, leading to price volatility for 
the end product. While India has a growing domestic 
manufacturing base, ensuring a stable and cost-
effective supply of high-quality raw materials is essential 
for the long-term sustainability of the industry.
Disposal and the Rise of Biodegradable Alternatives: 
As the use of nonwoven textiles increases, so 
do concerns about their disposal and potential 
environmental impact. While these materials can often 
be reused for multiple seasons, their eventual disposal 
can contribute to plastic waste if not managed properly. 
This has spurred research and development into 
biodegradable nonwoven agrotextiles. The market for 
these eco-friendly alternatives is still nascent in India 
and their higher cost can be a deterrent. Promoting 
the use of biodegradable options and establishing 
effective waste management and recycling systems 
for conventional nonwovens will be crucial for the 
environmentally sustainable growth of this market.

35
Market Analysis
The Way Forward
The nonwoven agritech textiles market in India 
stands at a crossroads of immense opportunity and 
significant challenges. The enablers are powerful – a 
supportive government, demonstrable economic and 
environmental benefits and a dynamic ecosystem of 
FPOs and startups. However, the restraints, particularly 
the initial cost, lack of awareness and supply chain 
inefficiencies, are equally real.
To weave a future where every Indian farmer can 
benefit from this transformative technology, a multi-
pronged approach is essential. This includes targeted 
government interventions to make these materials 
more affordable, large-scale awareness campaigns 
to showcase their benefits and strategic investments 
in strengthening the rural supply chain. Fostering 
innovation in biodegradable materials will also be critical 
to ensuring the long-term environmental sustainability of 
this revolution.

36
Technology Junction
Building Block For Nonwoven AgrotextilesBuilding Block For Nonwoven AgrotextilesPOLYPROPYLENEPOLYPROPYLENE
In the evolving landscape of modern agriculture, 
nonwoven agrotech textiles have become an 
indispensable solution for enhancing crop yield, 
protecting plants, conserving resources, and promoting 
sustainable farming practices. Among the various raw 
materials utilized in the production of these textiles, 
polypropylene (PP) stands out as the most commonly 
used synthetic polymer due to its unique blend of 
cost-effectiveness, versatility, and performance 
characteristics.
Polypropylene is a thermoplastic polymer derived from 
the polymerization of propylene monomers, widely 
known for its lightweight nature, high tensile strength, 
resistance to moisture and 
chemicals, and excellent 
processability. These 
features make it ideally 
suited for agricultural 
applications such as crop 
protection covers, mulch 
mats, shade nets, root 
bags, and various other 
horticultural and agro-
textile products.
Manufacturing Process of Polypropylene-Based
Nonwoven agrotech textiles
The production of agrotech textiles nonwoven textiles 
using polypropylene as a raw material involves a 
technically intricate and scientifically grounded 
process that integrates principles from polymer 
science, thermomechanical engineering, and textile 

37
Technology Junction
technology. The journey commences with the selection 
and preparation of polypropylene granules, which are 
derived from petroleum-based resources. 
Polypropylene is preferred in the manufacturing of 
agrotextiles due to its lightweight nature, resistance to 
chemicals, hydrophobicity, high tensile strength, and 
cost-efficiency. 
To tailor the polymer for specific agricultural 
applications, the granules are often compounded with 
functional additives such as ultraviolet (UV) stabilizers 
to enhance durability under sunlight, antioxidants to 
inhibit oxidative degradation, flame retardants for safety, 
and masterbatches containing color pigments. These 
additives are uniformly blended with the base polymer 
using high-speed mixers to ensure a homogeneous 
feedstock for extrusion.
Once prepared, 
the compounded 
polypropylene 
granules are conveyed 
into an extruder, 
where thermal energy 
is applied to melt 
the polymer. The 
extrusion temperatures 
typically range from 
160°C to 280°C, and 
are carefully regulated across the extruder’s zones 
to ensure optimal viscosity and flow behavior of the 
molten polymer. The molten polymer is passed through 
a filtration system to remove any contaminants and 
then conveyed using a metering pump, which delivers 
a consistent and precise flow rate to the spinning 
assembly. 
The polymer melt then 
enters the spinneret a 
precision-engineered 
metal plate with 
hundreds of tiny 
holes through which 
it is extruded to form 
continuous filaments 
or fibers. Upon exiting 
the spinneret, these 
fibers are subjected 
to a cooling process 
using quenching air, 
which solidifies them rapidly and ensures controlled 
crystallization of the polymer chains.
Following solidification, the fibers undergo a high-
speed drawing process, also known as attenuation. 
This step utilizes aspirators or air jets to elongate the 
filaments, aligning the molecular chains and significantly 
enhancing the mechanical properties of the fibers, such 
as their tensile strength and elasticity. These drawn 
fibers are then deposited randomly on a 
moving conveyor belt to form a web. This web formation 
process is governed by aerodynamic laydown 
principles, where the orientation and distribution of 
fibers are controlled by air currents to create a uniform 
mat. The random orientation of the fibers results in an 
isotropic structure, meaning the fabric exhibits similar 
strength and performance in all directions, which is 
advantageous for many agricultural applications.
The web formed in this way is still in a loose, unbonded 
state, which necessitates consolidation through a 
bonding mechanism. In the case of spunbond nonwoven 
manufacturing, 
thermal bonding is 
the most commonly 
adopted 
technique. The 
web is passed 
between heated 
calender rollers, 
which apply heat 
and pressure to 
thermally fuse the 

38
Technology Junction
fibers at their 
contact points. 
The rollers may 
have smooth 
or patterned 
surfaces, 
depending on the 
desired bonding 
characteristics. 
Point bonding, 
created using 
patterned rollers, 
results in fabrics 
that retain higher 
flexibility and 
breathability, whereas flat or area bonding increases the 
strength and stiffness of the fabric. This bonding process 
is critical not only to provide mechanical integrity to the 
nonwoven fabric but also to define its texture, porosity, 
and tensile behavior.
After bonding, the nonwoven material may undergo 
finishing treatments to enhance its functional properties. 
For agricultural applications, UV stabilization is a 
particularly important finishing process because these 
fabrics are often exposed to prolonged sunlight in open 
fields. This is achieved 
either by incorporating 
UV stabilizers into the 
polymer melt or by 
applying chemical 
coatings on the 
surface. In addition, 
hydrophilic or 
hydrophobic treatments may be applied to adjust the 
fabric’s water permeability depending on whether water 
absorption or repellency is desired. For example, mulch 
fabrics may need to be hydrophobic to prevent water 
loss, whereas crop covers may require hydrophilicity 
to allow water 
penetration. 
These 
functional 
finishes are 
applied using 
processes such 
as chemical 
dipping, spray 
coating, or 
plasma treatment, which alter the surface characteristics 
of the fibers without affecting the bulk properties.
The treated nonwoven fabric is then subjected to slitting 
and winding operations. Large fabric webs are slit into 
rolls of desired widths using precision cutting systems. 
These rolls are then tightly wound and packaged to 
prevent contamination and mechanical damage during 
transportation and storage. Quality assurance checks 
are carried out at this stage to assess fabric weight 
(GSM), tensile strength, elongation at break, pore size 
distribution, UV resistance, and dimensional stability. 
These quality parameters are essential to ensure the 
fabric’s suitability for its end use in agriculture.
In practical applications, these polypropylene spunbond 
nonwoven fabrics serve various agrotextile functions. 
They are used as crop covers to protect plants from 
pests, UV radiation, and frost while allowing air and 
moisture exchange, which helps maintain a favorable 
microclimate. In weed management, spunbond fabrics 
act as mulch films that block sunlight to suppress weed 
growth, reduce the need for herbicides, and retain soil 
moisture. 
Additionally, these fabrics are employed in soil 
stabilization, erosion control, greenhouse shading, 
seedbed liners, and root control bags in nurseries. Their 
light weight, durability, flexibility, and eco-efficiency 
make them ideal for temporary agricultural usage, 
especially when designed with biodegradability or 
recyclability in mind.
From a theoretical perspective, the success of this 
manufacturing process hinges on optimizing numerous 
parameters, including polymer melt flow index (MFI), 
spinneret design, filament draw ratio, web formation 
speed, bonding temperature and pressure, and 
finishing treatment 
chemistry. Each variable must be controlled precisely 
to produce a consistent, high-performance textile that 
meets the demanding requirements of agricultural 
usage. 
Moreover, as the global demand for sustainable 
agricultural practices rises, research in the field is 
increasingly focusing on integrating environmentally 
friendly practices, such as using recycled PP, 

39
Technology Junction
UVStabilization:Advanced additives are incorporatedinto
polypropylene during extrusiontoimproveitsresistanceto
degradation caused by prolonged exposuretosunlight
Hydrophilic&Hydrophobic Treatments:Surface
modifications enablethetextilestoeither absorborrepel
water based on the application requirement
Biodegradable Additives:Innovationsareintroducingoxo-
degradable andbio-based additivestoaccelerate the
breakdownofPPfabricsunder specific environmental
conditions
SmartTextiles Integration:Researchisongoingto
integrate sensors or nanomaterialsintopolypropylene-based
nonwovens for real-timemonitoring of crop conditions.
biodegradable polymer blends, and more efficient 
energy consumption during production. Furthermore, 
the inclusion of smart textile technologies such as 
embedded sensors for monitoring soil humidity or plant 
health is an emerging frontier in agricultural nonwovens, 
promising to revolutionize the role of technical textiles in 
farming.
Thus, the theoretical foundation and practical 
implementation of polypropylene spunbond nonwoven 
production for agricultural textiles represent a highly 
interdisciplinary field, merging polymer science, textile 
engineering, environmental science, and agronomy. By 
understanding the detailed mechanisms at each stage 
of the process, manufacturers can design agrotextiles 
that are not only cost-effective and functionally robust 
but also aligned with the growing need for sustainability 
and technological innovation in agriculture.

40
Technology Junction
Technological developments have significantly 
enhanced the functionality and performance of 
polypropylene-based nonwoven agricultural textiles:
The future of polypropylene-based nonwoven textiles 
in agriculture looks bright, especially as the industry 
moves towards more sustainable and efficient farming 
methods. With growing interest in precision farming, 
water conservation, and adapting to changing climate 
conditions, these textiles are becoming essential tools 
for modern agriculture. 
Farmers and agri-businesses are increasingly turning 
to solutions that support automation and reduce 
environmental impact, and polypropylene nonwovens fit 
right into that shift. They’re already being used in a variety 
of ways from creating controlled environments for crops 
and smart mulching systems to designing shade nets 
tailored for different plants and setting up temporary 
crop shelters and protective tunnels. As the global push 
for smart agriculture and food security continues, we 
can expect the use of these high-performance materials 
to grow rapidly across both developed and developing 
countries.
That said, sustainability remains a critical consideration. 
While polypropylene isn’t biodegradable, its long-lasting 
nature and versatility can actually contribute to more 
sustainable farming when used wisely. For starters, 
these nonwovens can be recycled and repurposed for 
secondary uses, helping to cut down on waste. They’re 
also lightweight and require fewer raw materials to 
produce compared to traditional woven fabrics, making 
them more resource-efficient. Products like mulch mats 
not only help conserve water by reducing evaporation 
but also protect the soil and improve crop yields by 
acting as barriers against weeds and pests cutting 
down the need for chemical pesticides. Plus, with UV-
stabilized options, these textiles are made to withstand 
harsh field conditions for longer periods, reducing how 
often they need to be replaced.
The industry isn’t stopping there. There’s an active push 
to improve the environmental footprint of polypropylene 
through circular economy approaches, biodegradable 
blends, and better waste management practices. All 
in all, polypropylene nonwoven textiles are proving 
to be a smart, forward-thinking choice for agriculture 
supporting both productivity and sustainability in the 
fields of tomorrow.
Polypropylene remains at the forefront of raw materials 
for nonwoven agricultural textiles due to its excellent 
balance of performance, affordability, and adaptability. 
While sustainability challenges exist, innovations in 
materials science and recycling practices are steadily 
transforming PP nonwovens into more eco-friendly 
solutions. As agriculture embraces modern methods for 
improved productivity and sustainability, polypropylene-
based nonwoven textiles will continue to serve as 
a backbone for efficient, protective, and intelligent 
farming systems.

41
Technology Junction
Innovations in Textile MachineryInnovations in Textile Machinery
FOR AGROTEXTILES
Spunbond Nonwoven Technology: Spunbond 
technology refers to the direct conversion of polymers 
into nonwoven fabric using an integrated process of 
extrusion, spinning, and web formation. It starts with 
melting a thermoplastic polymer, usually polypropylene 
(PP), polyester (PET), or polylactic acid (PLA), and 
extruding it through spinnerets to form continuous 
filaments. These filaments are then laid into a web 
and bonded using thermal or mechanical means. The 
following table summarizes the steps involved in the 
spunbond process and how it translates to agrotextile 
applications:
Stage Process Description
Polymer Feeding Feeding PP or PET pellets into the extruder.
Extrusion Polymer is melted and extruded through spinnerets.
Filament Drawing High-speed drawing of filaments using air jets.
Web Formation Filaments are deposited onto a moving conveyor belt.
Bonding Web is thermally bonded via calender rollers.
Finishing & Winding Fabric is treated and wound into rolls.

42
Technology Junction
Recent technological improvements have made spunbond lines more versatile and suitable for agrotextiles. Twin-
beam or multi-beam spunbond machines allow the production of multilayer fabrics with varied properties. Some of 
the Major Advancements Include:
Spunbond Nonwoven Technology Applications in Agrotextiles
•This enables the creation of composite fibres with
tailored properties such as hydrophilicity,
breathability, and UV resistance
Bicomponent
Spinning
•Integrated cameras and AI algorithms monitor web
uniformity, ensuring consistency crucial for high
quality agrotextiles
Online Monitoring
Systems
•Implementation of PLA and recycled PP as
feedstocks reduce environmental footprints
Eco-Friendly
Systems
•Lightweight yet strong fabrics to shield plants from
frost, insects, and UV rays
Crop Covers
•Used to suppress weeds while allowing air and
water permeability
Mulch Mats
•Prevent root penetration in unwanted zonesRoot Barrier Sheets
•Controls light intensity and helps in temperature
regulation
Greenhouse Shading

43
Technology Junction
Properties of Spunbond Agrotextiles
A large-scale agrotextile plant based in India 
utilizes a double-beam spunbond line to 
produce biodegradable mulch mats. These 
mats are embedded with natural additives for 
pest resistance and have a service life of 6–8 
months. The incorporation of meltblown layers 
in between the spunbond layers enhances 
filtration and thermal insulation, ideal for soil 
conditioning.
Needle Punching Technology: Needle 
punching involves mechanically interlocking 
fibres using barbed needles that repeatedly 
punch through the loose fibre web. This 
process results in a strong, flexible, and 
breathable fabric. It can process both synthetic 
and natural fibres, making it ideal for a wide 
range of agrotextile applications. Process 
Flow from Needle Punching to Agrotextile:
Property Description Benefit in Agrotech
Tensile Strength High strength due to drawn filaments. Can resist wind and
physical stress in the field.
UV Resistance Stabilized polymers prevent degradation. Longer life span of
textiles outdoors.
Porosity Adjustable during web formation. Maintains soil aeration
and water flow.
Lightweight Specific gravity control. Easier deployment
and cost-effective transport.


Stage Process Description
Fibre Preparation Natural or synthetic staple fibres are opened and blended.
Carding Aligns fibres into a uniform web.
Web Laying Webs are layered in cross or parallel orientations.
Needle Punching Barbed needles entangle fibres through repeated punching.
Heat Setting (Optional) Heat bonding for added dimensional stability.
Finishing Surface treatment, calendaring, and roll winding.

44
Technology Junction
Technological Advancements in Needle Punching Machines
Modern needle punching lines are capable of high-speed, high-volume production with advanced features such as:
Needle-punched nonwovens are widely used in the following agricultural functions:
Elliptical Needle Motion
Reduces needle
wear and increases
fabric uniformity
Modular Design
Allows integration
with thermal
bonding, lamination,
or chemical coating
units.
Custom Patterning
Using
programmable
needling zones for
aesthetic or
functional surface
features
•Stabilize slopes, prevent soil washouts.Erosion Control Mats
•Placed around plants to block light and prevent
weed growth
Weed Control Sheets
•Breathable covers that protect compost piles from
excessive rain
Compost Covers
•Assist in water management in nurseries and
plantations.
Drainage Mats

45
Technology Junction
Properties of Needle-Punched Agrotextiles
A European textile company employs needle 
punching lines with high-density needle boards to 
produce erosion control mats. These mats are made 
using a blend of jute and PP fibres. The company 
integrates post-needling calendaring and surface 
treatments to enhance resistance against microbial 
degradation and UV exposure. The final product is 
used extensively along riverbanks and in terraced 
agriculture.
The use of advanced nonwoven machinery like 
Spunbond and Needle Punching technologies 
has revolutionized agrotextile production. These 
machines not only ensure high-speed, large-scale 
production but also deliver fabrics tailored to the 
complex needs of modern agriculture. With 
ongoing innovation and the increasing 
integration of eco-friendly materials and 
AI-based quality monitoring, the future of 
agrotextile manufacturing is promising, 
sustainable, and technologically robust.
From soil protection to crop enhancement, 
nonwoven agrotextiles are becoming 
indispensable to sustainable farming, thanks 
largely to the innovations in textile machinery. 
As the global agricultural sector moves 
toward climate resilience and sustainability, 
these technologies will form the backbone of 
agricultural fabric solutions.
Property Description Benefit in Agriculture
Mechanical Strength High tear and puncture resistance.
Withstands heavy load and
soil pressure.
Water Permeability Customizable porosity.
Enables water drainage and
soil aeration.
Dimensional Stability Maintains shape after installation.
Durable in outdoor
landscapes.
Eco-compatibility Compatible with biodegradable fibres.
Sustainable farming
practices.

46
Technology Junction
In the grand narrative of agricultural advancement, the 
integration of technical textiles into the fabric of modern 
farming stands as one of the most transformative 
developments of the 21st century. Among these, agro-
textiles and greenhouse technologies have emerged as 
pivotal players in shaping the future of sustainable and 
productive agriculture. 
A greenhouse is more than a shelter for plants; it is 
a carefully engineered microclimatic chamber that 
manipulates environmental conditions to favor plant 
growth. Theoretical foundations of greenhouses lie in 
thermodynamics, light physics, material science, and 
plant physiology.
At its core, a greenhouse works on the principle of the 
greenhouse effect. Solar radiation enters through the 
transparent covering, typically glass or plastic, and 
is absorbed by the surfaces inside, including plants 
and soil. These surfaces re-emit energy in the infrared 
spectrum, which cannot easily pass back through 
the covering material, thus trapping heat within the 
structure. This phenomenon creates a warmer internal 
environment compared to the outside, particularly 
beneficial for plant growth during colder seasons.
The design of a greenhouse also involves consideration 
of factors such as orientation, ventilation, structural 
material, and insulation. Orientation ensures maximum 
solar gain, while controlled ventilation balances 
temperature, humidity, and gas exchange. Structurally, 
greenhouses must be resilient to environmental forces 
AGROTEXTILES AGROTEXTILES
FOR SUSTAINABLE FOR SUSTAINABLE
AGRICULTUREAGRICULTURE

47
Technology Junction
such as wind, snow, and hail, necessitating a nuanced 
understanding of mechanical load distribution and 
material durability.
Agro-textiles refer to the specialized subset of 
technical textiles used in agriculture and horticulture 
to enhance productivity, quality, and sustainability. 
The theory behind agro-textiles is an intersection of 
textile engineering, polymer chemistry, agronomy, and 
environmental science.
The primary function of agro-textiles is to modify 
the immediate environment of crops. This includes 
controlling radiation, moisture, temperature, and 
exposure to wind and pests. Textiles such as shade 
nets, insect nets, mulch mats, and ground covers are 
engineered with specific properties tailored to these 
functions.
From a theoretical standpoint, the efficacy of agro-
textiles depends on their porosity, tensile strength, UV 
stability, permeability, and durability. The choice of fiber 
natural or synthetic along with weave patterns and 
coating technologies plays a crucial role in determining 
these properties.
The marriage between greenhouses and agro-textiles 
represents a convergence of microclimatic management 
and protective textile engineering. In theoretical terms, 
this relationship can be understood through systems 
theory and ecological modeling.
In systems theory, a greenhouse equipped with agro-
textiles can be seen as a closed-loop system where 
inputs (light, water, nutrients) and outputs (plant 
biomass, oxygen, heat) are regulated for optimal 
efficiency. Agro-textiles act as control elements, 
fine-tuning the environmental parameters within the 
greenhouse. For example, thermal screens reduce heat 
loss, while shading cloths prevent excessive solar gain, 
contributing to a more stable and controlled system.
Ecological modeling helps in predicting plant responses 
under varying conditions modulated by textiles within 
greenhouses. This predictive capability is crucial 
for designing smarter, more responsive agricultural 
environments that mimic natural ecosystems while 
amplifying productivity.
Material selection is foundational to both greenhouses 
and agro-textiles. The theoretical basis for material 
choice lies in polymer physics, degradation kinetics, 
and mechanical engineering. Polymers such as 

48
Technology Junction
polyethylene, polypropylene, and polyester dominate 
due to their lightweight nature, mechanical strength, 
and resistance to environmental degradation. Additives 
such as UV stabilizers, anti-fog agents, and flame 
retardants enhance the functional lifespan and safety of 
these materials.
The theoretical understanding of light transmission 
and diffusion is particularly critical. For greenhouses, 
covers must allow maximum Photosynthetically Active 
Radiation (PAR) while diffusing light to reduce shadows 
and improve uniformity. This requires precise control 
over the refractive index, surface texture, and thickness 
of the covering materials.
In agro-textiles, the weave density, fiber orientation, and 
surface finish influence not just physical properties but 
also ecological interactions such as pest deterrence 
and water conservation. The scientific principles behind 
fiber interactions with environmental agents form a key 
area of theoretical exploration.
Controlling the thermal and optical environment is a 
central theme in greenhouse and agro-textile design. 
Theories from thermodynamics and optics inform 
strategies to manage heat and light efficiently.
Heat transfer within greenhouses involves conduction 
through structural elements, convection via air 
movement, and radiation from surfaces. Understanding 
the principles of energy balance helps in designing 
covers and textiles that reduce undesirable heat 
exchange. For instance, aluminized thermal screens 
reflect infrared radiation back into the growing space, 
conserving energy during the night.
Optical management, on the other hand, involves 
selecting materials that optimize light quality and 
quantity. The theory of selective light filtering allows for 
materials that promote specific wavelengths beneficial 
for plant growth, while blocking others that may trigger 
stress responses or promote weed growth.
The rise of greenhouses and agro-textiles must be 
theoretically examined in the context of sustainability 
and environmental stewardship. Life Cycle Assessment 
provides a theoretical framework for evaluating the 
environmental footprint of materials and processes 
used.
Sustainability theories emphasize resource efficiency, 
recyclability, and minimal ecological disruption. In this 
light, biodegradable textiles and recyclable polymers 
represent a theoretical shift towards circular agriculture. 
Environmental ethics further add a philosophical 
dimension, urging innovations that align with ecological 
harmony and intergenerational responsibility.
The concept of ecosystem services also becomes 
relevant, where agro-textiles and greenhouses are 
seen not just as production tools but as contributors to 

49
Technology Junction
water conservation, soil preservation, and biodiversity 
enhancement.
Understanding how plants respond to their modified 
environments under the influence of greenhouses and 
agro-textiles requires a theoretical model of plant-
environment interactions.
Photosynthesis models help quantify the impact of 
light modulation, while transpiration and stomatal 
conductance theories inform the design of humidity and 
temperature control systems. Plant stress physiology 
offers insights into how textiles that mitigate wind or UV 
exposure reduce abiotic stress and enhance growth.
Crop simulation models, integrating factors such as 
radiation use efficiency, canopy temperature, and soil 
moisture dynamics, allow for a theoretical assessment 
of productivity gains under textile-modified conditions.
Agro-textiles are rooted in the rich theoretical landscape 
of textile engineering. Yarn mechanics, fabric 
construction, and finishing processes all contribute to 
the performance characteristics of these textiles.
Weaving and knitting theories explain how different fabric 
structures can influence tensile behavior, elongation, 
and porosity. Coating and lamination theories delve into 
how surface treatments can enhance properties such 
as hydrophobicity, UV resistance, and antimicrobial 
action.
Fiber science 
adds another 
layer, exploring the 
molecular structure 
of polymers and 
their transformation 
under environmental 
stresses. This 
theoretical 
knowledge underpins innovations in smart textiles 
materials that respond dynamically to changes in 
temperature, humidity, or light.
The future of greenhouses and agro-textiles is intricately 
tied to ongoing theoretical research. Emerging areas 
such as nanotechnology, biotechnology, and AI-
driven climate modeling are expected to redefine the 
boundaries of what is possible.
Nanofibers and nanocoatings promise superior control 
over environmental parameters, offering ultra-lightweight 
and high-strength materials. Theoretical models in 
biotechnology are paving the way for bioactive textiles 
that can interact with plant biochemistry to promote 
growth or resist pathogens.

50
Technology Junction

51
Technology Junction
BETA VERSION

52
State at a Glance HARYANA
Textile Policy
Haryana has vibrant textile sector and exhibits
strength across the entire value chain from �bre to
fabric. Textile sector has signi�cant importance for
the state’s economy as this is the largest employer in
the state after agriculture. Haryana is fourth largest
producer of cotton in India and contributes around
6 per cent of country’s total cotton production. The
main cotton producing districts in Haryana are Sirsa,
Fatehabad, Bhiwani, Hisar and Jind. The abundant
availability of raw material coupled with conducive
business environment provides Haryana a competitive
advantage in the textile sector.
Sirsa, Fatehabad, Hisar, Jind
Major Cotton producing districts
As per HEEP 2020, State Govt.
shall encourage the development
of textile clusters for
manufacturing of hosiery in Sirsa
and an Integrated Textile Park in
Hisar
Mewat
As per HEEP 2020, State
Govt. shall encourage the
development of Apparel Park
exclusively for apparel
manufacturing units in Mewat
Bhiwani
Hub of Non-woven Textiles
and major cotton producing
district
Panipat
Hub of Home
furnishing fabrics,
Terry-towels &
Blankets
Sonipat
Hub of Technical
Textiles
Gurugram
Hub of
Readymade
garments
Faridabad
Hub of Technical Textiles and
fabric suppliers
As per HEEP 2020, State
Govt. shall encourage the
development of Textile Park
exclusively for Dyers &
Processors in Faridabad

53
State at a Glance
Block Fixed Capital Investment Employment
Block- B More than INR 400 Crore 1200 Persons
Block- C More than INR 300 Crore 900 Persons
Block- D More than INR 250 Crore 750 Persons

Maximum Cap
Quantum of
Incentives
Category of
Industry
Type of
Industry
Type of
Incentives
2.5 Cr35%B
General
Fiscal
Incentives (as
% of FCI)
3.5 Cr40%C/D
3.5 Cr35%BTechnical
Textile/ Import
Substitution
5.0 Cr40%C/D
4.0 Cr40%B/C/D
Open End
Spinning/ Waste
to Fibres
2.0 Cr30%B/C/D
Tex Machine
Manufacturing
80%B
General
Stamp Duty
Reimbursemen
t
100%C/D
20 Lakh/yr6%B
General
Interest
Subsidy on
Term Loan
30 Lakh/yr7%C
50 Lakh/yr7%D
100% of FCI
for 8 yrs
25%B
General
Investment
Subsidy in lieu
of Net SGST
125% of FCI
for 10 yrs
50%C/D
B/C/D
INR 48,000/-per
year for SC/
Women
Employment
Generation
Subsidy
INR 36,000/-per
year for general
category
10 Lakh1% of FOB
value or actual
freight
(whichever
lower)
B
General
Freight
Assistance
(Exports)
15 LakhC
20 LakhD
2 Crore
50% of total
project cost
BGeneral
Skill Training 5 CroreC
10 CroreD
10 years100%B
General
Electricity Duty
Exemption
15 years100%C
20 years100%D
70% of project
t

54
State at a Glance
10 CroreD
10 years100%B
General
Electricity Duty
Exemption
15 years100%C
20 years100%D
1 Crore
70% of project
cost
CETP
Green
Initiatives
1 Crore
75% of project
cost
D
10 Crore
40% of project
cost
AZLD
50% of project
cost
B
60% of project
cost
C
75% of project
cost
D
Max 2 Lacs
75% of Energy
Audit Cost
A/B/C/D
Energy
Conservation
20 Lakh on
cost of capital
equipment
20%A
30%B
40%C
50%D
Rs 1 Lac
75% of Water
Audit Cost
A/B/C/D
Water
Conversion
20 lakh on cost
of capital
equipment
required
30%A/B
Support for
Solar Rooftop
40 lakh on cost
of capital
equipment
required
50%C
50 lakh on cost
of capital
equipment
required
D
50 Crore20%B
General
Capital
Investment
Subsidy (for
Anchor units
only)
100 Crore20%C
150 Crore20%D
100%
Reimbursement
A/B/C/D
Stamp Duty
Reimbursement
Textile Parks
100%

55
State at a Glance
ReimbursementReimbursement
100%
exemption of
applicable
charges.
A/B/C/D
Internal
Development
Charges (IDC)
10 Crore50%A/B/C/D
Support for
Sustainable
Infrastructure
(Common ZLD)
in Textile Park
A/B/C/D
External
Development
Charges (EDC)
10 Crore
90% of grant-
in-aid from
Government of
Haryana & 10%
contribution
from SPV
A/B/C/DGeneral
Development
of CFCs for
Textile Cluster
For upgradation
of QMC,
Panipat, an
additional
budget of INR
30 crore shall
be provisioned
Upgradation of
QMC at Panipat
For setting of
two new
QMCs, an
additional
budget of INR
30 Crore for
Gurugram and
INR 50 Crore
for Integrated
Manufacturing
Cluster, Hisar
shall be
provisioned.
Setting of new
QMCs at
Gurugram
and Hisar

56
State at a Glance

T B DEXTILE USINESS IGEST
OTHER
EDITIONS
OUR
REACH YOUR NICHE TARGET MARKET
To know more please write at
[email protected]
5%
26%
4%
31%
3%
18%
5%
3%
1%
1%
1%2%
READERSHIP DISTRIBUTION SPREAD
Brands/Buying Houses/Merchant
Exporters
Home Textile Manufacturers
Accessories Manufacturers
Fabric Manufacturers
Process Houses
Raw Material Manufacturers
Utility Suppliers
Service Providers
Textile Institutions
Textile Associations
Machine Suppliers
Month Focus Product of the Month
UPCOMING EDITIONS
3%
35%
2%
25%
22%
6%
4%
1%
1%1%
Readership > 1,25,000
Brands/Buying Houses
Garment Manufacturer
Accessories Manufacturers
Fabric Manufacturers
Yarn Manufacturers
Utility Suppliers
Service Providers
Textile Institutions
Textile Associations
Machine Suppliers
Month Focus Product of the Month
Tactical Textiles
Spandex based Fabrics
Oct-25
Nov-25
Dec-25 Warp Knitted Fabric
UPCOMING EDITIONS
PVC Coated Products
Kitchen Linen
Cushion & Cushion Covers
Oct-25
Nov-25
Dec-25
www.getmytbd.com
SEPTEMBER 2025
T B DEXTILEUSINESSIGEST