Supervised Machine Learning, Regression and Classification

NithyasriA2 38 views 147 slides Aug 31, 2025
Slide 1
Slide 1 of 147
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147

About This Presentation

Supervised Machine Learning, Regression and Classification


Slide Content

Subject: Machine Learning Module I I : Supervised Learning 1

Unit- I Supervised Learning (Regression/Classification): Basic methods: Distance- based methods, Nearest- Neighbors, Decision Trees, Naive Bayes, Linear models: Linear Regression, Logistic Regression, Support Vector Machines, Nonlinearity and Kernel Methods, Beyond Binary Classification: Multi- class Unit- II Unsupervised Learning: Clustering: K- means, Dimensionality Reduction: PCA and kernel PCA, Generative Models (Gaussian Mixture Models and Hidden Markov Models) Unit-III Evaluating Machine Learning algorithms, Model Selection, Ensemble Methods (Boosting, Bagging, Random Forests)

Unit-IV Modeling Sequence/Time- Series Data, Deep Learning (Deep generative models, Deep Boltzmann Machines, Deep auto- encoders, Applications of Deep Networks) and Feature Representation Learning Unit- V Scalable Machine Learning (Online and Distributed Learning) Semi-supervised Learning, Active Learning, Reinforcement Learning, Inference in Graphical Models, Introduction to Bayesian Learning and Inference

Text Book(s): Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer, 2017. Jiawei Han, Micheline Kamber, Jian Pei , Data Mining: Concepts and Techniques, 3/e, Morgan Kaufmann, 2016. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016. 19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

A(AI) Making machine to think, analyze and make decision

A(AI) Making machine to think, analyze and make decision

19EEC334A: MACHINE 9 January 2023

Machine Learning (ML)

9 January 2023 Department of EECE, GIT 19EEC334A: MACHINE LEARNING 21

22

23

24

25

A Typical Supervised Learning Workflow (for Classification)

A Typical Supervised Learning Workflow (for Classification)

A Typical Supervised Learning Workflow (for Classification)

A Typical Unsupervised Learning Workflow (for Clustering) 19EEC334A: MACHINE 9 January 2023

A Typical Unsupervised Learning Workflow (for Clustering)

A Typical Reinforcement Learning Workflow

19EEC334A: MACHINE

47

48

49

50

51

Department of EECE, GIT 19EEC334A: MACHINE 52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

19EEC334A: MACHINE 9 January 2023 80

19EEC334A: MACHINE 9 January 2023 81

19EEC334A: MACHINE 9 January 2023 82

19EEC334A: MACHINE 9 January 2023 83

19EEC334A: MACHINE 9 January 2023 84

19EEC334A: MACHINE 9 January 2023 85

19EEC334A: MACHINE 9 January 2023 86

19EEC334A: MACHINE 9 January 2023 87

19EEC334A: MACHINE 9 January 2023 88

19EEC334A: MACHINE 9 January 2023 89

19EEC334A: MACHINE 9 January 2023 90

19EEC334A: MACHINE 9 January 2023 91

19EEC334A: MACHINE 9 January 2023 92

Linear Regression Line using least square method Goodness of Fit (Performance metric) R Square value MSE  ( yp  y ) 2  ( y  y ) 2  R 2 n 19EEC334A: MACHINE 9 January 2023  ( yp  y ) 2 MSE  On Board: Solve Example On Board: Solve R square Give assignment of MSE

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

9 January 2023 INE 98 Y^= Predicted 19EEC334A: MACH Y= Actual Y^= Predicted Y= Actual

19EEC334A: MACHINE 9 January 2023 99

19EEC334A: MACHINE 9 January 2023 100

19EEC334A: MACHINE 9 January 2023 101

19EEC334A: MACHINE 9 January 2023 102

19EEC334A: MACHINE 9 January 2023 103

19EEC334A: MACHINE 9 January 2023 104

19EEC334A: MACHINE 9 January 2023 106

9 January 2023 Department of EECE, GIT 19EEC334A: MACHINE LEARNING 107 Y^= Predicted Y= Actual

Y^= Predicted 19EEC334A: MACHINE 9 January 2023 Y= Actual

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

9 J anuary 2023 Department of EECE, GIT 19EEC334A: MACHINE LEARNING 115 Y^= Predicted Y= Actual

9 January 2023 Department of EECE, GIT 19EEC334A: MACHINE 116

9 January 2023 Department of EECE, GIT 19EEC334A: MACHINE 117

19EEC334A: MACHINE 9 January 2023 118

19EEC334A: MACHINE 9 January 2023 119

19EEC334A: MACHINE 9 January 2023

Applications of Linear Regression 19EEC334A: MACHINE 9 January 2023 Some popular applications of linear regression are: Analyzing trends and sales estimates Salary forecasting Real estate prediction Arriving at ETAs in traffic.

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

9 January 2023 Department of EECE, GIT 19EEC334A: MA LEARNING Dividing data set into two subsets: Training set— a subset to train a model. Test set— a subset to test the trained model. CHINE

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

9 January 2023 Department of EECE, GIT 19EEC334A: MACHINE LEARNING 132 The sigmoid function is a mathematical function used to map the predicted values to probabilities. It maps any real value into another value within a range of and 1. The value of the logistic regression must be between and 1, which cannot go beyond this limit, so it forms a curve like the "S" form. The S- form curve is called the Sigmoid function or the logistic function. In logistic regression, we use the concept of the threshold value, which defines the probability of either or 1. Such as values above the threshold value tends to 1, and a value below the threshold values tends to 0.

9 January 2023 Department of EECE, GIT 19EEC334A: MACHINE 133

19EEC334A: MACHINE 9 January 2023

The math behind Logistic regression 19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

Type of Logistic Regression: On the basis of the categories, Logistic Regression can be classified into three types: Binomial: In binomial Logistic regression, there can be only two possible types of dependent variables, such as or 1, Pass or Fail, etc. Multinomial: In multinomial Logistic regression, there can be three or more possible unordered types of the dependent variable, such as "cat", "dogs", or "sheep“ Ordinal: In ordinal Logistic regression, there can be three or more possible ordered types of dependent variables, such as "low", "Medium", or "High". 19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

19EEC334A: MACHINE 9 January 2023

Y^= Predicted Y= Actual 19EEC334A: MACHINE 9 January 2023 Y^= Predicted Y= Actual

19EEC334A: MACHINE 9 January 2023
Tags