References Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. Bottou , L., & Lin, C.-J. (2007). Support Vector Machines: Theory and Applications. Springer. Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2), 121-167. Cortes, C., & Vapnik , V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. Cristianini , N., & Shawe -Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press. Hastie, T., Tibshirani , R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer. Joachims , T. (1998). Text categorization with support vector machines: Learning with many relevant features. European Conference on Machine Learning. Springer. Schölkopf , B., & Smola , A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press. Shawe -Taylor, J., & Cristianini , N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press. Smola , A. J., & Schölkopf , B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222. Vapnik , V. N. (1998). Statistical Learning Theory. Wiley .