The fourier series signals and systems by R ismail

Rumaisa35 83 views 110 slides Sep 18, 2024
Slide 1
Slide 1 of 110
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110

About This Presentation

Fourier series and signals and systems


Slide Content

The Fourier Series
BEE2113 – Signals & Systems
R. M. Taufika R. Ismail
FKEE, UMP

A Fourier series is an expansion of a
periodic function f (t) in terms of an infinite sum
of cosines and sines
Introduction




1
0
)sincos()(
n
nn
tnbtnaatf 

In other words, any periodic function can be
resolved as a summation of
constant value and cosine and sine functions:




1
0 )sincos()(
n
nn tnbtnaatf 
)sincos(
11
tbta 
0a
)2sin2cos(
22
tbta 
)3sin3cos(
33
tbta  
dc ac

The computation and study of Fourier series is
known as harmonic analysis and is extremely
useful as a way to break up an arbitrary
periodic function into a set of simple terms that
can be plugged in, solved individually, and
then recombined to obtain the solution to the
original problem or an approximation to it to
whatever accuracy is desired or practical.

=
+ +
+ + + …
Periodic Function
0a
tacos
1
ta2cos
2
tbsin
1
tb2sin
2
f(t)
t





1
000 )sincos()(
n
nn tnbtnaatf 
where frequency lFundementa
2
0

T





Tt
t
n dttntf
T
a
0
0
0cos)(
2




Tt
t
dttf
T
a
0
0
)(
1
0



Tt
t
n
dttntf
T
b
0
0
0
sin)(
2

Notice that
component dc
valueAverage
period aover graph below Area
)(
1 0
0
0





T
dttf
T
a
Tt
t
[*The right sign of the area below graph must be
obeyed. +ve sign for area above x-axis & −ve sign
for area below x-axis]

Symmetry Considerations
Symmetry functions:
(i)even symmetry
(ii)odd symmetry

Even symmetry
Any function f (t) is even if its plot is
symmetrical about the vertical axis, i.e.
)()( tftf

Even symmetry (cont.)
The examples of even functions are:
2
)(ttf
t t
t
||)(ttf
ttf cos)(

Even symmetry (cont.)
The integral of an even function from −A to
+A is twice the integral from 0 to +A
t 



AA
A
dttfdttf
0
eveneven
)(2)(
−A +A
)(
even
tf

Odd symmetry
Any function f (t) is odd if its plot is
antisymmetrical about the vertical axis, i.e.
)()( tftf 

Odd symmetry (cont.)
The examples of odd functions are:
3
)(ttf
t
t
t
ttf)(
ttf sin)(

Odd symmetry (cont.)
The integral of an odd function from −A to
+A is zero
t 0)(
odd 


A
A
dttf
−A +A
)(
odd
tf

Even and odd functions
(even) × (even) = (even)
(odd) × (odd) = (even)
(even) × (odd) = (odd)
(odd) × (even) = (odd)
The product properties of even and odd
functions are:

Symmetry consideration
From the properties of even and odd
functions, we can show that:
for even periodic function;


2/
0
cos)(
4
T
n tdtntf
T
a  0
nb
for odd periodic function;


2/
0
sin)(
4
T
n tdtntf
T
b 0
0 
naa

How?? [Even function]
2
T

2
T



2/
0
2/
2/
cos)(
4
cos)(
2
TT
T
n tdtntf
T
tdtntf
T
a 
(even) × (even)
| |
(even)
0sin)(
2
2/
2/


T
T
n tdtntf
T
b 
(even) × (odd)
| |
(odd)
)(tf
t

How?? [Odd function]
2
T

2
T



2/
0
2/
2/
sin)(
4
sin)(
2
TT
T
n tdtntf
T
tdtntf
T
b 
(odd) × (odd)
| |
(even)
0cos)(
2
2/
2/


T
T
n
tdtntf
T
a 
(odd) × (even)
| |
(odd)
)(tf
t
0)(
2
2/
2/
0


T
T
dttf
T
a
(odd)

The amplitude-phase form

is known as the sine-cosine form
We can also express the Fourier series in the
cosine form only, that is
This form is called as the amplitude-phase form




1
000
)sincos()(
n
nn
tnbtnaatf 




1
00 )cos()(
n
nn tnAatf 

From this form, we can plot the amplitude spectrum,
vs. n and the phase spectrum, vs. n.
It can be shown that the combination of cosine and
sine function can be expressed as a cosine function
only:
Comparing both sides of eqn:
n
A
n

xAxA
xxA
xAxbxa
sin)sin(cos)cos(
)sinsincos(cos
)cos(sincos






.....(1) cosaA  .....(2) sinbA 

22222
22222
222222
)sin(cos
sincos
baAbaA
baA
baAA

















a
b
a
b
a
b
A
A
1
tantan
cos
sin



:)2()1(
22

:
)1(
)2(

Hence
)cos(sincos
000 nnnn tnAtnbtna  
where
22
amplitude,
nnn baA 










n
n
n
a
b
1
tan phase,
Or in phasor/complex form:










n
n
nnnnnn
a
b
bajbaA
122
tan
00aA

Example 1
Determine the Fourier series of the following
waveform. Obtain the amplitude and phase
spectra.

Solution
First, determine the period & describe the one period
of the function:
T = 2






21,0
10,1
)(
t
t
tf )()2( tftf 


 
T
2
0We find that

Then, obtain the coefficients a
0
, a
n
and b
n
:
2
1
)01(
2
1
01
2
1
)(
2
1
)(
1
2
1
1
0
2
0
0
0










dtdtdttf
dttf
T
a
T
Or
2
1
2
11graph below Area
0



T
a







n
n
n
tn
dttdtn
tdtntf
T
a
n
sinsin
0cos1
cos)(
2
1
0
2
1
1
0
2
0
0











Notice that n is integer which leads ,
since
0sinn
03sin2sinsin  
Therefore, .0
na







n
n
n
tn
dttdtn
tdtntf
T
b
n
cos1cos
0sin1
sin)(
2
1
0
2
1
1
0
2
0
0












15cos3coscos  
16cos4cos2cos  
Notice that
Therefore,






even ,0
odd ,/2)1(1
n
nn
n
b
n
n


or
n
n )1(cos 


























ttt
tn
n
tn
n
tnbtnaatf
n
n
n
n
n
nn











5sin
5
2
3sin
3
2
sin
2
2
1
sin
2
2
1
sin
)1(1
2
1
)sincos()(
odd
1
1
1
000
Finally,























)905cos(
5
2
)903cos(
3
2
)90cos(
2
2
1
)90cos(
2
2
1
sin
2
2
1
)(
odd
1
odd
1
t
tt
tn
n
tn
n
tf
n
n
n
n










In amplitude-phase form,

Amplitude spectrum: Phase spectrum:

Some helpful identities
For n integers,
n
n )1(cos 0sinn
02sinn 12cosn
xxsin)sin(
xxcos)cos(
)90cos(sin xx
)90cos(sin  xx
)180cos(cos  xx

The sum of the Fourier series terms can
evolve (progress) into the original
waveform
From Example 1, we obtain
 ttttf 





5sin
5
2
3sin
3
2
sin
2
2
1
)(
It can be demonstrated that the sum will
lead to the square wave:
Notes:

tttt 







7sin
7
2
5sin
5
2
3sin
3
2
sin
2
ttt 





5sin
5
2
3sin
3
2
sin
2

tt 



3sin
3
2
sin
2
t

sin
2
(a) (b)
(c) (d)

ttttt 









9sin
9
2
7sin
7
2
5sin
5
2
3sin
3
2
sin
2

ttt 





23sin
23
2
3sin
3
2
sin
2
2
1
 
(e)
(f)

Example 2
Given ,)(ttf 11t
)()2( tftf 
Sketch the graph of f (t) such that .33t
Then compute the Fourier series expansion of f (t).
Plot the amplitude and phase spectra until the forth
harmonic.

Solution
The function is described by the following graph:
T = 2


 
T
2
0We find that














nnn
n
n
n
n
tn
n
n
dt
n
tn
n
tnt
tdtnttdtntf
T
b
nn
n
1
22
1
0
22
1
0
1
0
1
0
1
0
0
)1(2
0
)1(2sin2cos2
sin
2
cos2
cos
2
cos
2
sin
2
4
sin)(
4

























Then we compute the coefficients:
0
0

n
aa since f(t) is an odd function.
















)904cos(
2
1
)903cos(
3
2
)902cos(
1
)90cos(
2
4sin
2
1
3sin
3
2
2sin
1
sin
2
sin
)1(2
)sincos()(
1
1
1
000
tt
tt
tttt
tn
n
tnbtnaatf
n
n
n
nn



















Hence,

Amplitude spectrum: Phase spectrum:
0.64
0.32
0.21
0.16

Example 3
Given






42,0
20,2
)(
t
tt
tv
)()4( tvtv 
(i) Sketch the graph of v (t) such that .120t
(ii) Compute the trigonometric Fourier series of v (t).
(iii) Express the Fourier series of v (t) in the
amplitude-phase form. Then plot the amplitude
and phase spectra until the forth harmonic.

Solution
(i) The function is described by the following graph:
T = 4
2
2
0

 
T
We find that
0 2 4 6 810 12
t
v (t)
2

(ii) Then we compute the coefficients:
2
1
2
2
4
1
)2(
4
1
0)2(
4
1
)(
1
2
0
22
0
4
2
2
0
4
0
0

















t
tdtt
dtdttdttv
T
a
Or
2
1
4
22
2
1
0


a





























odd ,/4
even ,0])1(1[2)cos1(2
2
2cos1cos
2
1
0
sin
2
1sin)2(
2
1
0cos)2(
2
1
cos)(
2
222222
2
0
2
0
2
0
2
0
2
0
2
0 0
0
2
00
0
4
2
2
0
0
4
0
0
nn
n
nn
n
n
n
n
tn
dt
n
tn
n
tnt
tdtnttdtntv
T
a
n
n























nnn
n
n
n
tn
n
dt
n
tn
n
tnt
tdtnttdtntv
T
b
n
21
2
2sin1
sin
2
11
cos
2
1cos)2(
2
1
0sin)2(
2
1
sin)(
2
0
2
0
2
0
0
2
0
2
0
2
0
0
2
0 0
0
2
00
0
4
2
2
0
0
4
0
0



















since 0sin2sin
0
 nn































1
00
1
22
1
000
)cos(
2
sin
2
2
cos
])1(1[2
2
1
)sincos()(
n
nn
n
n
n
nn
tnAa
tn
n
tn
n
tnbtnaatv






Hence,












































odd ,
2
tan1
42
even ,90
2
odd ,
22
even ,
2
1
22
n
n
nn
n
n
nj
nn
n
n
j
jbaA
nnnn






(iii) Where

 5.5775.0
11
A
 0.7822.0
33
A
 9032.0
22
A
 9016.0
44
A
5.0
00
aA
We obtained that
 
 
















902cos16.00.78
2
3
cos22.0
90cos32.05.57
2
cos75.05.0
)cos()(
1
00
t
t
t
t
tnAatv
n
nn






Amplitude spectrum: Phase spectrum:
0.5
0.75
0.32
0.22
0.16
0π/2π3π/22π
π/2π3π/22π
−57.5°
−78.0°
−90° −90°

Example 4
Given









21,1
11,
12,1
)(
t
tt
t
tf
)()4( tftf 
Sketch the graph of f (t) such that .66t
Then compute the Fourier series expansion of f (t).

Solution
The function is described by the following graph:
T = 4
2
2
 
T
We find that
0−4−6 2 46
t
f (t)
−2
1
−1

Then we compute the coefficients. Since f (t) is
an odd function, then
0)(
2
2
2
0


dttf
T
a
0cos)(
2
2
2


tdtntf
T
a
n

and

2222
1
0
22
2
1
1
0
1
0
2
1
1
0
2
0
2
2
)2/sin(4cos2sin2cos
cos2cossincos
coscoscos
sin1sin
4
4
sin)(
4
sin)(
2






















n
n
n
n
n
n
n
n
n
nn
n
tn
n
n
n
tn
dt
n
tn
n
tnt
tdtntdtnt
tdtntf
T
tdtntf
T
b
n




































since 0sin2sin  nn





















1
1
1
1
0
2
sin
)1(
2
2
sin
cos2
)sincos(
2
)(
n
n
n
n
nn
tn
n
tn
n
n
tnbtna
a
tf






Finally,

Example 5
Compute the Fourier series expansion of f (t).

Solution
The function is described by
T = 3
3
22
0

 
T
and









32,1
21,2
10,1
)(
t
t
t
tf
)()3( tftf 
T = 3

Then we compute the coefficients.
3
8
1
2
3
2)01(
3
4
21
3
4
)(
4
)(
2
2/3
1
1
0
2/3
0
3
0
0 


















 
dtdtdttf
T
dttf
T
a
 
3
8
)23()12(2)01(
3
2
121
3
2
)(
2
3
2
2
1
1
0
3
0
0 





 
dtdtdtdttf
T
a
Or, since f (t) is an even function, then
Or, simply
3
8
4
3
2
period ain
graph below area Total2
)(
2
3
0
0










T
dttf
T
a

3
2
sin
2
3
2
sinsin2
2
sin
2
3
sin2
3
4
sin
2
3
sin2sin
3
4
sin2
3
4sin
3
4
cos2cos1
3
4
cos)(
4
cos)(
2
2/3
1
1
0
2/3
1
1
0
2/3
0
3
0


















n
n
n
n
n
n
n
n
n
n
n
n
n
tn
n
tn
tdtntdtn
tdtntf
T
tdtntf
T
a
n



















































;
3
2


























1
1
1
0
3
2
cos
3
2
sin
12
3
4
3
2
cos
3
2
sin
2
3
4
)sincos(
2
)(
n
n
n
nn
tnn
n
tnn
n
tnbtna
a
tf





Finally,

and 0
n
b since f (t) is an even function.

Parseval’s Theorem
Parserval’s theorem states that the
average power in a periodic signal is equal
to the sum of the average power in its DC
component and the average powers in its
harmonics

=
+ +
+ + + …
tacos
1
ta2cos
2
tbsin
1
tb2sin
2
f(t)
t
P
avg
P
dc
P
a1 P
b1
P
a2
P
b2
0a

For sinusoidal (cosine or sine) signal,
R
V
R
V
R
V
P
2
peak
2
peak
2
rms
2
12








For simplicity, we often assume R = 1Ω,
which yields
2
peak
2
rms
2
1
VVP 

And since ,
Therefore, the total power of all harmonics is




2
2
2
2
2
1
2
1
2
0
dcavg
2
1
2
1
2
1
2
1
2211
babaa
PPPPPP
baba






1
22
0
1
222
0avg
2
1
)(
2
1
n
n
n
nn
AabaaP
2
rms
VP






1
22
0
1
222
0rms
2
1
)(
2
1
n
n
n
nn
AabaaV

Circuit applications
Steps for applying Fourier series:
1.Express the excitation as a Fourier series
2.Transform the circuit from the time domain to
the frequency domain
3.Find the response of the dc and ac
components in the Fourier series
4.Add the individual dc and ac responses using
the superposition principle

The signal in Figure 6.1 is applied to the circuit in
Figure 6.2.
(i)Find the Fourier series of i
s
(t).
(ii)Plot the amplitude spectrum for the dc
component and the first three non-zero harmonics
of i
s
(t).
(iii)Find the load current i
L
(t).
(iv)Find the average power dissipated in the
resistor R
L.
Example 6

)(ti
s
)(ti
s
H 1
 1
 1
LR
)(ti
L
Figure 6.2
Figure 6.1

Solution
(i)The current source is described by
and







0,
0,
,||)(
tt
tt
ttti
s



1,2
0
 T

Compute the Fourier series. Since i
s
(t) is an even
function,
or
22
1
2
2
)(
2
0
2
0
2/
0
0











 
t
tdtdtti
T
a
T
s
22
11
0over
graph below Area1
0




















t
a



























even ,0
odd ,/4]1)1[(2
)1(cos2
cos2sin2
sin2sin2
cos
2
4
cos)(
4
2
2
2
0
2
000
2/
0
0
n
nn
n
n
n
n
nt
n
n
dt
n
nt
n
ntt
ntdtt
tdtnti
T
a
n
T
sn












Therefore, the Fourier series of i
s
(t) is
0
nb






















)1805cos(
25
4
)1803cos(
9
4
)180cos(
4
2
)180cos(
4
2
cos
4
2
)(
odd
1
2
odd
1
2
t
tt
nt
n
nt
n
ti
n
n
n
n
s






nsI
n
sI
n n
1.571
1.273
0.141
0.051
(ii)Hence,
,5,3,1,180
4
2
 n
n
I
n
s
2
0


s
I

(iii)To compute i
L(t), separate to dc and ac analysis:
dc analysis (n = 0)
S/c the inductor, hence
0sI
 1
 1
42
2/
2
0
0


s
L
I
I


































180
2
tantan
4
14
180
4
2
1
,
)(
11
2
2
2
2
0
n
n
n
n
n
njn
jn
nnI
LjRR
LjR
I
ns
nL
n
L
nn





s
L
L I
LjRR
LjR
I
)(




ac analysis (n ≥ 1)
or




)49.1905cos(048.0)26.1953cos(124.0
)43.198cos(805.0785.0)(
tt
tti
L
Hence,



49.190048.0
,26.195124.0,43.198805.0
,785.0
5
31
0
L
LL
L
I
II
I

W949.0)048.0124.0805.0(
2
1
785.0
2
1
2222
1
22
2
)(
0












L
n
LL
LrmsL
RII
RIP
n
(iv)Average power absorbed by R
l is

The signal in Figure 7.1 is applied to the circuit in
Figure 7.2.
(i)Find the Fourier series of v
s
(t).
(ii)Find the output voltage v
o
(t).
(iii)Plot the amplitude spectrum for the dc
component and the first three non-zero harmonics
of the output voltage v
o(t).
(iv)Find the r.m.s value of v
o
(t) .
Example 7

)(tv
s
F 1
 1
)(tv
o
Figure 7.2
Figure 7.1
 1
)(tv
s

Solution
(i)The voltage source is described by
and






01,1
10,1
)(
t
t
tv
s

0
,2T
Compute the Fourier series. Since v
s(t) is an odd
function,
0
0

n
aa



















even ,0
odd ,/4])1(1[2
)cos1(2
cos
2sin
2
4
sin)(
4
1
0
1
0
2/
0
0
n
nn
n
n
n
n
tn
tdtn
tdtntv
T
b
n
T
sn







Therefore, the Fourier series of v
s(t) is














 




)905cos(
5
4
)903cos(
3
4
)90cos(
4
)90cos(
4
sin
4
)(
odd
1
odd
1
t
tt
tn
n
tn
n
tv
n
n
n
n
s









Hence,
,5,3,1,90
4
 n
n
V
n
s

0
0

sV

(ii)To compute v
o(t), separate to dc and ac analysis:
dc analysis (n = 0)
O/c the capacitor, hence
0
0

sV
 1
0
0

oV
 1


0I

 


























902tantan
41
14
90
4
21
1
,
21
1
11
22
22
0









nn
n
n
n
nnj
jn
nnV
RCj
RCj
V
ns
n
n
o
nn
sso
V
RCj
RCj
V
CjRR
CjR
V




21
1
)]/1([
)/1(






ac analysis (n ≥ 1)
or



)82.915cos(128.0
)02.933cos(213.0)61.98cos(660.0)(
t
tttv
o
Hence,



82.91128.0
,02.93213.0,61.98660.0
,0
5
31
0
o
oo
o
V
VV
V

noV
n
oV
n
n
0.660
0.213
0.128
−98.61°
(iii)
−93.02°
−91.82°
(iv)
V 705.0)128.0213.0660.0(
2
1
2
1
222
1
22
)rms(
0

 

n
ooo
n
VVV

Exponential Fourier series
Recall that, from the Euler’s identity,
xjxe
jx
sincos

yields
2
cos
jxjx
ee
x



2
sin
j
ee
x
jxjx 

and

Then the Fourier series representation becomes






































































































11
0
1
0
1
0
1
0
1
0
222
222
222
222
)sincos(
2
)(
n
tjnnn
n
tjnnn
n
tjnnntjnnn
n
tjntjn
n
tjntjn
n
n
tjntjn
n
tjntjn
n
n
nn
e
jba
e
jbaa
e
jba
e
jbaa
ee
jb
ee
a
a
j
ee
b
ee
a
a
tnbtna
a
tf






Here, let we name



















11
0
222
)(
n
tjnnn
n
tjnnn
e
jba
e
jbaa
tf

2
nn
n
jba
c

 ,
2
nn
n
jba
c



Hence,






















n
tjn
n
n
tjn
n
n
tjn
n
n
tjn
n
n
tjn
n
n
tjn
n
n
tjn
n
ececcec
ececc
ececc



1
0
1
11
0
11
0
and .
2
0
0
a
c
c
0
c
−nc
n

Then, the coefficient c
n can be derived from

















T
tjn
T
TT
TT
nn
n
dtetf
T
dttnjtntf
T
tdtntfjtdtntf
T
tdtntf
T
j
tdtntf
T
jba
c
0
0
00
00
)(
1
]sin)[cos(
1
sin)(cos)(
1
sin)(
2
2
cos)(
2
2
1
2





In fact, in many cases, the complex
Fourier series is easier to obtain rather
than the trigonometrical Fourier series
In summary, the relationship between the
complex and trigonometrical Fourier series
are:
nn
nn
n A
jba
c 


2
1
2 2
nn
n
jba
c





T
dttf
T
ac
0
00 )(
1



T
tjn
n dtetf
T
c
0
)(
1



nncc
or
22
22
nnn
n
Aba
c 

The average power and the rms value in
the term of Fourier complex coefficient are







1
2
2
0
2
1
2
n
n
n
n
cccP






1
2
2
0
2
rms 2
n
n
n
n cccF

Example 8
For the given function,
(i)Obtain the complex Fourier series
(ii)Plot the amplitude and the phase spectra
of the complex Fourier series for −5 ≤ n ≤ 5
(iii)Calculate the average power and the rms value
of the signal
2 44 2 0
f (t) =
e

t
2
e
1
)(tv
t

(i)Since , . Hence
Solution






2
1
2
1
2
1
)(
1
2
2
0
2
0
0
0






e
e
dte
dttv
T
c
t
t
T
1
0
2T

)1(2
1
)1(2
1
)1(2
1
12
1
2
1
2
1
)(
1
222)1(2
2
0
)1(
2
0
)1(
2
0
0
0
jn
e
jn
ee
jn
e
jn
e
dtedtee
dtetv
T
c
njjn
tjn
tjnjntt
T
tjn
n
































since 1012sin2cos
2




njne
nj

jnt
nn
tjn
n e
jn
e
ectv 



 


)1(2
1
)(
2
0



Therefore, the complex Fourier series of v(t) is
0
2
0
2
0
2
1
)1(2
1
c
e
jn
e
c
n
n
n 









*Notes: Even though c
0 can be found by substituting
c
n with n = 0, sometimes it doesn’t works (as shown
in the next example). Therefore, it is always better to
calculate c
0
alone.

n
n
n
n
e
c
nn
1
2
1
2
2
tan
1
85
1
tan0
12
1
























(ii)
The complex frequency spectra are

kW 19.20
)7.166.209.26381.60(285
222222
2
1






n
ncP
(ii)The average power is (assume R = 1 Ω)
and since
2
rms 1VP

V 09.142k19.20
rms
V

Example 9
Obtain the complex Fourier series of the function in
Example 1. Then plot the complex frequency spectra
for −4 ≤ n ≤4 and calculate the rms value of the signal.

Solution
2
1
1
2
1
)(
1
1
00
0  
dtdttf
T
c
T

0
)1(
22
1
01
2
1
)(
1
1
0
2
1
1
00


















jn
tjn
tjn
T
tjn
n
e
n
j
jn
e
dtedtetf
T
c

)1(
2



jn
n e
n
j
c
But
njn
nnjne )1(cossincos 



Thus,




even ,0
odd ,/
]1)1[(
2 n
nnj
n
j
n


Therefore, 












odd
0
2
1
)(
0
n
n
n
tjn
n
tjn
n e
n
j
ectf


*Here notice that .0
0
cc
n
n

2
1
0
c
 0,0
nn
cFor n even,
For n odd,






0,90
0,90
,
1
n
n
n
c
nn


0.5

692.0)11.032.0(25.0
222
2
rms



n
n
cF
The average rms value is

Summary
Sine-cosine form
Amplitude-phase form
Exponential (or complex) form




1
000 )sincos()(
n
nn tnbtnaatf 
,cos)(
2
0
0

T
n
tdtntf
T
a  

T
n
tdtntf
T
b
0
0
sin)(
2
,)(
1
0
0

T
dttf
T
a,
2
0
T






1
00 )cos()(
n
nn tnAatf 




n
tjn
nectf
0
)(

nnnn
jbaA 
,
00
ac ,
2
nn
n
jba
c


*
nn
cc

Prob.17.37, pg.803
If the sawtooth waveform in Fig.17.9 is the
voltage source v
s(t) in the circuit of
Fig.17.22, find the response v
o(t).

Prob.17.37, pg.803
If the periodic current waveform in
Fig.17.73(a) is applied to the circuit in
Fig.17.73(b), find v
o.


3
)(ti
s
0 1 2 3
−1
3
t
(a) (b)

Problem


1 2 30 4
1
5
2

3
6
 1
o
R
 1
s
R F 1C


)(tv
o
)(tv
s
)(tv
s
t
(i) Compute the output voltage v
o
(t).
(ii) Plot the amplitude and phase spectra of v
o (t)
for the first three nonzero harmonics.
(ii) Calculate the average power dissipated in
the resistor R
o
.

QUIZ 1
)(tv
s


)(tv
o
H1
H1
1
1
Given the Fourier series expansion of the
voltage signal v
s(t) is
Find v
o
(t) in the amplitude-phase form.










1
sin
10
5)(
n
s nt
n
tv

Quiz1
Determine the Fourier series of the following
waveform.
)(tv
4

QUIZ 2
Find i(t) if v(t) is the signal as given in QUIZ 1.


















odd
1
odd
1
)90cos(
2
2
1
sin
2
2
1
)(
n
n
n
n
tn
n
tn
n
tv 


QUIZ 3
Find the output voltage v
o(t) if the current
source i
s(t) is given by










1
)90cos(
2
1)(
n
s nt
n
ti

)(ti
s


)(tv
o5 F5.0
3

QUIZ 4
Using time differentiation technique, find the
Fourier transform of f(t).
Tags