26 Haar Measure on the Classical Compact Matrix Groups
top-left corner
1
, withλ 1boxes in the top row,λ 2boxes in the next row, and
so on. Theconjugate partitionλ
ofλis then the one corresponding to the
reflection of the Young diagram ofλacross the diagonal. Here are the Young
diagrams of the partitionsλ=(5, 4, 1)andλ
=(3, 2, 2, 2, 1):
Now, for a multi-indexα=(α 1,...,α n), define the anti-symmetric polyno-
mial
a
α(x1,...,x n)=
σ
π∈Sn
sgn(π)x
α1
π(1)
···x
αn
π(n)
.
Note that ifσ∈S
n,then
a
α(xσ(1),...,x σ(n))=sgn(σ )a α(x1,...,x n).
In particular, this shows thata
α(x1,...,x n)=0ifx i=xjfor anyi =jand that
if anyα
i=αjwithi =j,thena α≡0.
Assume, then, thatα
1>α2>···>α n≥0; in particular,α 1≥n−1,
α
2≥n−2, and so on. Writeα=λ+δ,whereδ=(n−1,n−2,...,0)and
λis a partition of length at mostn.Then
a
α(x1,...,x n)=
σ
π∈Sn
sgn(π)
n
v
j=1
x
λj−n+j
π(j)
=det
α
x
λj+n−j
i
1≤i,j≤n
β
.
Since we have already observed thata
α(x1,...,x n)vanishes ifx i=xj,
a
α(x1,...,x n)is divisible byx i−xjfor eachi<j, and therefore by their
product, which is the Vandermonde determinant
v
1≤i<j≤n
(xi−xj)=det
α
x
n−j
i
1≤i,j≤n
β
=a
δ(x1,...,x n).
The quotient
s
λ(x1,...,x n)=
a
λ+δ(x1,...,x n)
aδ(x1,...,x n)
1
Some authors start from the bottom-right instead.