Some Modern Theodolites
•Geodeticandastronomicalsurveysrequireahighdegreeof
precision.Inordertomeetthisneeds,high–precession
theodolitesaremanufacturednowadays.Thecharacteristics
ofmoderntheodolitesareasfollows:
•Theyaremorecompactandlight
•Thegraduationsaremadeonaglasscircleandarefiner.
•Improvedmicrometerusingwhichtheobservercantake
readingsaccuratelytoonesecond,areprovidedalongwith
them.
•Theinstrumentismadewaterproofanddustproof
•Itiselectricallyilluminatedtofacilitateworkatnightorina
tunnel.
•Adjustmentsforthemicrometrearenotnecessary
•Magnificationishigher.
Some Modern Theodolites
WattMicro-OpticTheodolite
•Therearethreemodelsofthistype.Thefirstand
thethirdmodelarecapableofreadingupto5”,
andthesecondcanreadupto1”.Thehorizontal
andverticalcirclesofthistheodolitesaremadeup
ofglass.Micrometersformeasuringhorizontaland
verticalanglesareprovided.Theotheraccessories
arethesameasinthetransittheodolite.Butthe
arrangementareverycompact,andwellprotected
fromatmosphericaction.
Watt Micro-Optic Theodolite
Some Modern Theodolites
WildT-2Theodolite
•Thehorizontalandverticalcirclesofthis
instrumentaremadeofglass.Thediameterofthe
horizontalcircleis90mmandthatofthevertical
circle70mm.Thecirclesareelectrically
illuminatedthroughanadjustablemirror.
•Theinstrumentisautomaticallycenteredbyits
ownweight.Thereadingsaretakenthrougha
micrometrebythecoincidencesystem
Wild T-2 Theodolite
Some Modern Theodolites
WildT-3PrecessionTheodolite
•Thehorizontalandverticalcirclesaremadeof
glassandfinallygraduated.Theminimumreading
ofthehorizontalcircleis4‟andthatofvertical
circleis8‟.Theangleismeasuredbmeansofan
opticalmicrometerwhichisaccurateupto0.2”.
Theverticalaxisconsistsofanaxisbushandball
bearings.
•Theinstrumentisautomaticallycenteredbyits
ownweight.Itconsistsofonesetofclampand
tangentscrewsforthemotionoftheverticalaxis.
Wild T-3 Precession Theodolite
Some Modern Theodolites
WildT-4UniversalTheodolite
•Thisinstrumentiswidelyusedinthe
determinationofgeographicalpositions,andfor
takingastronomicalobservationswiththeutmost
precision.Itconsistofahorizontalcircleofdia250
mmandaregraduatedtoaminimumreadingof
2‟.Withtheopticalmicrometre,onecantake
readingaslowas0.1”.Theverticalandhorizontal
circlesoftwodiametricallyoppositereadings
automaticallywhichgivesthearithmeticmeanof
twodiametricallyoppositereadingsautomatically.
Wild T-4 Universal Theodolite
Some Modern Theodolites
TheTailstockTheodolite
•Thehorizontalandverticalcirclesaremadeof
graduatedthatareadingaslowas1”canbe
taken,anoneof0.25”canbeestimated.A
singleopticalmicrometerisprovidedforboth
thescalesbothcirclesareilluminatedbya
singlemirrorisprovidedwithscaleplummet
forcenteringoverthestation
The Tailstock Theodolite
Sources of Error in Theodolite
InstrumentErrors
Non-adjustmentofplatebubble
•Theaxisoftheplatebubblemaynotbe
perpendiculartoverticalaxis.So.Whentheplate
levelarecentered,theverticalaxismaynotbetruly
vertical.Insuchacase,thehorizontalcirclewould
beinclinedandtheanglewillbemeasuredinan
inclinedplane.Thiswouldcauseanerrorinangle
measured.
•Thiserrormaybeeliminatedbylevelingthe
instrumentwithreferencetothealtitudebubble.
Sources of Error in Theodolite
Lineofcollimationnotbeingperpendicularto
horizontalaxis
•Inthiscase,aconeisformedwhenthe
telescopeisrevolvedintheverticalplane,and
thiscausesanerrorintheobservation.
•Thiserroriseliminatedbyreadingtheangle
fromboththefaces(leftandright)andtakethe
averageofthereading.
Sources of Error in Theodolite
Horizontalaxisnotbeingperpendicularto
verticalaxis
•Ifthehorizontalaxisisnotperpendiculartothe
verticalaxis,thereisanangularerror.Thisis
eliminatedbyreadingtheanglefromboththe
faces.
Sources of Error in Theodolite
Lineofcollimationnotbeingparalleltoaxisof
telescope.
•Ifthelineofcollimationisnotparalleltothe
axisoftelescope,thereisanerrorinthe
observedverticalangle.Thiserroriseliminated
bytakingreadingfrombothfaces.
Sources of Error in Theodolite
EccentricityofInnerandOuteraxes
•Thisconditioncausesanerrorinvernier
readings.Thiserroriseliminatedbytaking
readingfromboththevernierandconsidering
theaveragereadings.
Sources of Error in Theodolite
GraduationnotbeingUniform
•Theerrorduetothisconditioniseliminatedby
measuringtheanglesseveraltimesondifferent
partsofthecircle.
Sources of Error in Theodolite
VernierbeingEccentric
•Thezerosoftheverniershouldbe
diametricallyoppositetoeachother.When
vernierAissetat0
0
,VernierBshouldbeat
180
0
,Butinsomecases,thisconditionmay
notexist.
•Thiserroriseliminatedbyreadingboth
verniersandtakingtheaverage.
Sources of Error in Theodolite
PersonalError
•Thecenteringmaynotbedoneperfectly,dueto
carelessness.Thelevelingmaynotbedonecarefully
accordingtousualprocedure.Iftheclampscrewsare
notproperlyfixed,theinstrumentmayslip.Theproper
tangentscrewmaynotbeoperatedThefocusingin
ordertoavoidparallaxmaynotbeperfectlydone.
•Theobjectofrangingrodmaynotbebisectedaccurately
Theverniermaynotbesetinproperplace.
•Errorwouldalsoresultiftheverniersarenotread
becauseofoversight.
Sources of Error in Theodolite
NaturalErrors
•Hightemperaturecauseserrorduetoirregular
refraction.
•Highwindcausesvibrationintheinstrument,
andthismayleadtowrongreadingsonthe
verniers.
Direct Method of Measuring
Horizontal Angle
•SupposeanangleAOBistobemeasured.The
followingprocedureisadopted:
•TheinstrumentissetupoverO.Itiscenteredand
leveledperfectlyaccordingtotheproceduredescribed
fortemporaryadjustment.Supposetheinstrumentwas
initiallyinthefaceleftposition.
•Thelowerclampisfixed.Theupperclampisloosened
andbyturningthetelescopeclockwisevernierAissetto
0
0
andvernierBtoapproximately180
0
.Theupper
clampisthentightened.Nowbyturningtheupper
tangentscrew,vernierAandBaresettoexactly0
0
and
180
0
bylookingthroughmagnifyingglass.
Direct Method of Measuring
Horizontal Angle
Direct Method of Measuring
Horizontal Angle
•Theupperclampistightfixed.Theloweroneis
loosenedandthetelescopeisdirectedtothelefthand
objectA.TherangingrodatAisbisectedapproximately
byproperfocusingthetelescopeandeliminating
parallax.Thelowerclampistightened,andbyturning
thelowertangentscrewtherangingtodatAisaccurately
bisected.
•Thelowerclampiskeptfixed.Theupperclampis
loosenedandthetelescopeisturnedclockwiseto
approximatelybisecttherangingrodatBbyproper
focusingthetelescope.Theupperclampistightened,
andtherangingrodatBbisectedaccuratelybyturning
theupperplatescrew.
Direct Method of Measuring
Horizontal Angle
•ThereadingonvernierAandBarenoted.VernierAgives
theangledirectly.ButinthecaseofvernierB,theangleis
obtainedbysubtractingtheinitialreadingfromfinalreading.
•Thefaceoftheinstrumentischangedandtheprevious
procedureisfollowed.Thereadingoftheverniersarenoted
inthetable.
•Themeanoftheobservations(i.e.Faceleftandfaceright)is
theactualangleAOB.Thetwoobservationsaretakento
eliminateanypossibleerrorsduetoimperfectadjustmentof
theinstrument.
•Thetwomethodsofmeasuringhorizontalanglearethoseof
repetitionandreiteration.
Direct Method of Measuring
Horizontal Angle
RepetitionMethod
•Inthismethod,theangleisaddedanumberof
times.Thetotalisdividedbythenumberof
readingtogettheangle.Theangleshouldbe
measuredclockwiseinthefaceleftandface
rightpositions,withthreerepetitionateach
face.Thefinalreadingofthefirstobservation
willbetheinitialreadingofthesecond
observation,andsoon.
Direct Method of Measuring
Horizontal Angle
•SupposetheangleAOBistobemeasuredbytherepetition
process.ThetheodoliteissetupatO.Theinstrumentis
centeredandleveledproperly.VernierAissetto0
0
and
vernierBto180
0
.
•Theupperclampisfixed,andtheloweroneisloosened.By
turningthetelescope,therangingrodatAisperfectlybisected
withthehelpofthelowerclampscrewandthelowertangent
screw.HeretheinitialreadingofvernierAis0
0
.
•Theupperclampisloosenedandthetelescopeisturned
clockwisetoperfectlybisecttherangingrodatB.Theupper
clampisclamped.SupposethereadingonvernierAis30
0
.
•Thelowerclampisloosenedandthetelescopeturned
anticlockwisetoexactlybisecttherangingrodatA.Here,the
initialreadingis30
0
forthesecondobservation.
Computation of Latitude and Departure
•Thetheodoliteisnotplottedaccordingtointerior
anglesorbearings.Itisplottedbycomputingthe
latitudeanddepartureofthepointandthen
findingtheindependentcoordinatesofthepoint.
•Thelatitudeofalineisthedistancemeasured
paralleltotheNorth-Southlineandthedeparture
ofalinemeasuredparalleltotheEast-Westline.
•Thelatitudeanddepartureoflinesarealso
expressedinthefollowingways
Computation of Latitude and
Departure
•Northing=Latitudetowardsnorth=+L
•Southing=LatitudetowardsSouth=-L
•Easting=DeparturetowardsEast=+D
•Westing=DeparturetowardsWest=-D
•ConversionofWCBtoRB
WCB RB Quadrant
0 to 90
0
RB=WCB NE
90
0
and 180
0
RB= 180 –WCB SE
180
0
and 270
0
RB= WCB-180
0
SW
270
0
and 360
0
RB= 360
0
–WCB NW
Computation of Latitude and
Departure
Line Length (L) Reduced
Bearing (Ө)
Latitude
(LCOS Ө)
Departure
(L Sin Ө)
AB L NӨE + L cosӨ + L sin Ө
BC L SӨE -L cos Ө + Lsin Ө
CD L SӨW -L cos Ө -L sin Ө
DA L NӨW + Lcos Ө -L sin Ө
N
B
E
A
S
W
Departure= (L Sin Ө)
Latitude= (L Cos Ө)
Ө
Computation of Latitude and
Departure
Line Length Reduced
Bearing
Consecutive Coordinates
(L) (Ө) Northing
(+)
Southing
(-)
Easting
(+)
Westing
(-)
AB L NӨE L cosӨ L sin Ө
BC L SӨE Lcos Ө Lsin Ө
CD L SӨW Lcos Ө Lsin Ө
DA L NӨW L cosӨ Lsin Ө
Check for Closed Traverse
Sum of Northing= Sum of Southing
Sum of Easting= Sum of Westing
Computation of Latitude and
Departure
ConsecutiveCoordinates
•Thelatitudeanddepartureofapointcalculated
withreferencetotheprecedingpointforwhatare
calledconsecutivecoordinates.
IndependentCoordinates
•Thecoordinatesofanypointwithrespecttoa
commonoriginaresaidtobetheindependent
coordinatesofthatpoint.Theoriginmaybea
stationofthesurveyorapointentirelyoutsidethe
traverse.
Computation of Latitude and
Departure
BalancingofTraverse
•InCaseofClosedTraverse,thealgebraicsumoflatitude
mustbeequaltozeroandthatofdeparturemustalsobe
equaltozerointheidealcondition.Inotherwords,thesum
ofthenorthingmustequalthatofthesouthing,andthesum
oftheeastingmustbethesameasthatofthewesting.
•Butinactualpractice,someclosingerrorisalwaysfoundto
existwhilecomputingthelatitudeanddepartureofthe
traversestation.
•Thetotalerrorsinlatitudeanddeparturearedetermined.
Theseerrorsarethendistributedamongthetraversestations
proportionately,accordingtothefollowingrule.