Thermal Design and Optimization of Heat Sinks

ssuser7dcef0 73 views 42 slides Jun 01, 2024
Slide 1
Slide 1 of 42
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42

About This Presentation

• increased heat transfer coefficient
immersion cooling (boiling)
impingement cooling
forced air
natural convection
• increased surface area
spreaders
heat sinks


Slide Content

Thermal Design and
Optimization of Heat Sinks
J. Richard Culham

Outline
Background
Modelling Approach
Validation
Optimization
Future Work
Summary

40 Watts! What’s the big deal?
Light Bulb

➢ Power: 40 W
➢ Area: 120 cm
➢ Flux: 0.33 W/cm
Pentium III
Silicon Package
➢ Power: 40 W
➢ Area: 1.5 cm
➢ Flux: 26.7 W/cm
➢ Rj-c: 0.94 C/W
➢ Rj-a: 6.8 C/W
(no heat sink)
➢ Rj-a: 2.5 C/W
(heat sink)
2 2
❋ 0.25 micron CMOS technology
❋ 9.5 million transistors
❋ 450 - 550 MHz
2 2
80 x

75
100
125
150
10
0
10
1
10
2
10
3
Component Failure Rate
Junction Temperature ( C)
Normalized Failure Rate
o
FC: 58.2 C
NC: 96.1 C
(2 m/s)
o
o
o
Pentium 233 MHz
@ 7.9 W
no heat sink
FC: 99.5 C
NC: 136.4 C
o
Pentium 233 MHz
@ 7.9 W
with heat sink
(2 m/s)
Intel Design
Specification:
T = 75 C
j
o
GaN - SiC
Si - SiO
2

Moore’s Law (1965)
1975 1980 1985 1990 1995 2000
10M
1M
100K
10K
(transistors)
500
25
1.0
0.1
0.01
(mips)
4004
8080
8086
80286
80386
80486
Pentium
Pentium III
Micro 2000
➣ each new chip contains roughly twice as much
capacity as its predecessor


➣ a new generation of chips is released every
18 - 24 months

From: www.intel.com

in 26 years, the
population of
transistors per
chip has increased
by 3,200 times

IC Trends: Past, Present & Future
1980
1999

2003

2006
2012
Comp. Per Chip
0.2 M
6.2 M
18 M
39 M
100 M
Frequency (MHz)
5
1250
1500
3500
10000
Chip Area (sq. cm)
0.4
4.45
5.60
7.90
15.80
Max. Power (W)
5
90
130
160
175
Junction Temp. (C)
125
125
125
125
125
From: David L. Blackburn, NIST

Why Use Natural Convection?
simplicity:
➥ low maintenance
➥ lower power consumption
➥ less space (notebook computers)
less noise
fail safe heat transfer condition

Thermal Resistance
Heat source

(junction)
Heat sink

(air)
contact
resistance
material
resistance
spreading
resistance
film
resistance
R
hA
film


1

increased heat transfer coefficient

immersion cooling (boiling)
impingement cooling
forced air
natural convection

increased surface area

spreaders
heat sinks

Plate Fin H.S.
Pin Fin H.S.
Radial Fin H.S.
Specialty H.S.

Plate Fin
Pin Fin
Turned Fin
Spiral Fin

Plate Fin
Pin Fin
Turned Fin
Spiral Fin

Plate Fin
Pin Fin
Turned Fin
Spiral Fin

Plate Fin
Pin Fin
Turned Fin
Spiral Fin

Heat Sink Model
Plate fin heat sink
Natural convection
Isothermal
Steady state
Working fluid is air i.e. Pr = 0.71

Modelling Procedure
Exterior surfaces Interior surfaces
t fins : top, bottom,
ends & tip
t base plate: top,
bottom, ends
and back
t fins : side walls
t channel base
g
LL
H
t
b
bp
t
f
N
Given:
Find:
dimensions & temperatureNu vs. Ra
b b
=•
gTbb
L
β
αν

3
=
hb
k
f

Exterior Surfaces
Boundary layer
Diffusion
t lower Rayleigh
numbers
t thick boundary
layers
t higher Rayleigh
numbers
t thin boundary
layers

Diffusion ModelNu S S
LD
LD
AA
plate
GM
GM
0
3
076
3
1 08688
12
==
[]
+
()
+






**
.
.
S
LL
LL
A
plate
*
[]
=
+
()
21
12
2
12
π
S
LL
LL
A
plate
*
ln
[]
=
()
22
4
12
12
π
10 50
12
..≤≤LL
50
12
.<<∞LL
L
L L
D
12
3
GM

Exterior Boundary Layer Model
Nu G F Ra
AA A
=• •(Pr)
/14
F(Pr)
.
( . /Pr)
/
/
=
+
[]
0670
105
916
49
(in terms of the surface area)
Where:
G
HWLHW
LW LHHW
A
=
++
•+•+•





2
0625
18
43 43
76
34
/
//
/
/
.()
)
Ra
gTA
A
=
()
β
αν

3
W
L
H
g

Interior Surfaces
Control surfaces
Channel flow
t Elenbaas model
with adjustment
for end wall
t combined flow :
developing +
fully developed
t open surfaces
with energy
migration

Parallel Plates Model
Nu Ra Ra
bb b
=−−
()
{}
1
24
135
34
exp /
/
Nu Nu Nu
b fd
m
dev
m
m
=+
{}
−−
−1/
Elenbaas, 1941Churchill, 1977
fd
- fully developed
dev
- developing flow
Nu Ra
fd b
=
1
24
Nu G F Ra
dev A b
=• •(Pr)
/14
b
L
g
- body gravity function
G
A
F(Pr)
- Prandtl number function

Comprehensive Model
Nu Nu
Nu Nu Nu
Nu=+
+
+
+
0
234
1
1
11
{
124443444
{
diffusion channel
flow
external
boundary
layer flow

Model Validation
cuboids
plate - Karagiozis (1991), Saunders (1936)
cube - Chamberlain (1983), Stretton (1988)
rectangular prism - Clemes (1990)

parallel plates

Elenbaas (1942), Aihara (1973), Kennard (1941)

Karagiozis (1991)

Van de Pol & Tierny (1978)
Limiting Cases
Heat Sinks

Modelling Domain
10
-4
10
-2
10
0
10
2
10
4
10
6
10
8
10
10
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
Plate spacing
Aspect ratio
fully-developed
limit
Boundar y layer
limit
b
Ra
b
Nu
b

CUBE
PRISM
FLAT PLATE
‰ ‰ PLATES
HEAT SINK
+
Nu
=
Nu
0
+
Nu
1
2
Nu
+
43
Nu Nu
+
-2
-2
-1/2
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
-1
10
0
10
1
L x W x H (mm)
Chamberlain (1983) 43.2 x 43.2 x 43.2
Stretton (1984) 38.1 x 38.1 38.1
Model

43.2
W
L
H
g
Ra
b
Nu
b

CUBE
PRISM
FLAT PLATE
‰ ‰ PLATES
HEAT SINK
+
Nu
=
Nu
0
+
Nu
1
2
Nu
+
43
Nu Nu
+
-2
-2
-1/2
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
-1
10
0
10
1
Clemes (1990)
Model

g
units in
mm
50.43 x 50.43
X 510.6
Ra
b
Nu
b

CUBE
PRISM
FLAT PLATE
‰ ‰ PLATES
HEAT SINK
+
Nu
=
Nu
0
+
Nu
1
2
Nu
+
43
Nu Nu
+
-2
-2
-1/2
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
-1
10
0
10
1
10
2
43.2
W
L
H
g
Ra
b
Nu
b
L x W x H (mm)
Karagiozis (1991) 150x170x9.54
Model
Saunders (1936) 76x230x.00254
Model

CUBE
PRISM
FLAT PLATE
‰ ‰ PLATES
HEAT SINK
+
Nu
=
Nu
0
+
Nu
1
2
Nu
+
43
Nu Nu
+
-2
-2
-1/2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
-2
10
-1
10
0
10
1
Ra
b
Nu
b

g
b
Elenbaas (1942)
Aihara (1973)
Kennard (1941)
Model

CUBE
PRISM
FLAT PLATE
‰ ‰ PLATES
HEAT SINK
+
Nu
=
Nu
0
+
Nu
1
2
Nu
+
43
Nu Nu
+
-2
-2
-1/2
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
-2
10
-1
10
0
10
1
10
2
H/b Karagiozis Model Van de Pol
& Tierney
0.75
1.19
2.98
Nu
b
Ra
b
H
b
L
t t
bp

Which is the Right Tool?
➥ design is known a priori
➥ used to calculate the
performance of a given
design, i.e. Nu vs. Ra
➥ cannot guarantee an
optimized design
Analysis Tool
Design Tool
vs.
➥ used to obtain an
optimized design for a
set of known constraints
i.e. given: • heat input
• max. temp.
• max. outside
dimensions
find: the most efficient
design

Optimization Using EGM

entropy production amount of energy degraded
to a form unavailable for work

lost work is an additional amount of heat that could
have been extracted

degradation process is a function of thermodynamic
irreversibilities e.g. friction, heat transfer etc.

minimizing the production of entropy, provides a
concurrent optimization of all design variables
Why use Entropy Generation Minimization?

Entropy Balance (local)
′′′=∇• ′′− ′′•∇ +S
T
Q
T
QT
Ds
Dtgen
11
0 0
2
ρ
′′′=∇
()
+S
T
kT
T
gen
110
2
2
0
µφ
1st law of
thermodynamics
Gibb’s
Equation
heat transfer viscous dissipation
′′′=+






−+






+
••
SdV ms
Q
T
ms
Q
T
dS
dt
gen
out in
cv
00conservation
of mass
+ +
Qsm
xx x
,,
Qsm
zz z
,,
Qsm
yy y
,,





Entropy Balance (external & internal)
S
Q
T
d
Q
T
gen
wA
B
B
=
′′

∫∫
σ

Extended surface
Passage geometr y
dx

m`
A
T
w

′=

+−




S
QT
T
m
T
dP
dxgen
w
∆0
2
0
ρ
irreversibilities
due to: wall-fluid ˘T fluid friction

AQ

B
T

B
T
w
Q
irreversibilities due to
base-wall ˘T

Total Entropy Generation
SS
gen gen
=∑ ∑ ∑


differential
level
elemental
level
component
level
dx
dy
dz
differential
control
volume
Extended surface
• fin
• channel flow
System
• fins
• base plate
=+
QR
T
FU
T
Btotal d
2
0
2
0
=+
Q
T
FU
T
BB d
ϑ
0
2
0
where:
Q
B

ϑ
B

T
0

F
D

R
total

base heat flow rate
base - stream temp. difference
ambient temperature
drag force
total fin resistance
U
- specified
- fan curve
- buoyancy induced

Example: Heat Sink Optimization
Board spacing ” H
L
W
Step 1: Determine problem constraints
i) power input, Q
ii) maximum chip temperature, Tmax
iii) geometry , H, L, W

Example: Heat Sink OptimizationBoard spacing ” H
L
W
H
Step 2: Set maximum heat sink volume
i) package foot print = L x W
ii) maximum height - board spacing minus
package height

Example: Heat Sink OptimizationBoard spacing ” H
L
W
H
Step 3: Optimize heat sink
i) number of fins
ii) fin thickness
iii) fin spacing
iv) base plate thickness

Single Parameter EGM
0
10
20
0
0.05
0.1
0.15
0.2
0.25
Number of Fins
Entropy Generation (W/K)
14
H = L = W = 50 mm
Fin thickness = 1 mm
Base plate thickness = 1.25 mm
Q = 50 W
Find: number of fins

Multi-Parameter Minimization Procedure

Sfxxxx
gen N
=
()
123
,,,,K



S
x
gi N
gen
i
i
== =0123(), , , , ,K

∂∂ ∂∂ ∂∂
∂∂∂∂ ∂∂
∂∂ ∂∂ ∂∂
δ
δ
δ
gx gx gx
gx gx gx
gx gx gx
x
x
x
g
g
g
11 12 13
21 22 23
31 32 33
1
2
3
1
2
3




















=










where:
g guess g actual g guess x
ii i i
()()≈+ ′
()

δ

iterate until ∂
x
i
→0
Newton-Raphson Method with Multiple Equations and Unknowns

Future Work
Goal: Develop a comprehensive model to
find the best heat sink design given
a limited set of design constraints
Physical Design Thermal Cost
Standards
¥ heat sink type
¥ material
¥ weight
¥ dimensions
¥ surface finish
¥ maximum volume
¥ boundary conditions
¥ max. allowable temp.
¥ orientation
¥ flow mechanism

¥ labour
¥ manufacturing
¥ material

¥ noise
¥ exposure to
touch

Summary
Heat sink design requires both a
selection tool & an analysis tool
Selection is based on:

➥ physical constraints - geometry, material, etc.
➥ thermal-fluid conditions - bc’s, properties, etc.
➥ miscellaneous conditions - cost, standards etc.

Analysis is based on simulating a
prescribed design

The End

Karagiozis Heat Sink Model
Nu Nu A Nu A C Ra
C
Ra
cub f ch
fd
f
n
l b
b
m
n
n
cub ch m
=•+•
()
++













































1
1
1
1
1
14
1
*
*
/
/
where:
C
H
b
l
m
=+






0509 00135 06.(.),.
min
C
Hb
Hb Hb
Hb
Hb
=
()
()

=
()
<
125
1
1
141
1
1
317
317
.
/
/,/
/
,/
.
.
m
H
b
1
12 064 056=+






.,. .
min
nattmm
at t mm
at t mm
1
120 195 496
157 30 967
144 223 1496
=→ =
=→ =
=→ =
.. .
.. .
.. .
Modified flat plate model ➛ correction term at low Ra