These slides show sewage characteristics and its design

mabdullahmakmal 38 views 149 slides Jun 11, 2024
Slide 1
Slide 1 of 149
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149

About This Presentation

These slides show sewage characteristics and its design. Look at it , if you need hope this help you.


Slide Content

ENVIRONMENTAL ENGINEERING
-
II
SEWAGE CHARACTERISTICS

ENVIRONMENTAL ENGINEERING
-
II SEWAGE CHARACTERISTICS
Composition
>99.0% Water
Solids
70% Organic 30% Inorganic
Sewerage characteristics can be divided into three broad
categories:-
1.Physical
2.Chemical
3.Bacteriological

ENVIRONMENTAL ENGINEERING
-
II DEFINITIONS OF SOME TERMS IN SEWAGE
CHARACTERIZATION
SOLIDS
TOTALSOLIDS:
Includebothsuspendedanddissolvedsolids.Itismeasured
byevaporatingaknownvolumeofsampleandthe
weightingtheresidue.Resultsareexpressedinmg/l
SUSPENDEDSOLIDS:
Thesearesolidswhicharepertainedonapre-weighedglass
fiberfilterof0.45µ,103-105
0
C

ENVIRONMENTAL ENGINEERING
-
II
DISSOLVEDSOLID:
Filtratewhichhaspassedthought0.45µfilteris
evaporatedinchinedish.Theresiduegivesthedissolved
solids.
SETTLEABLESOLIDS:
Itisthefractionofthesolidsthatwillsettleinanimhoff
conein30-60minutes.Theseareexpressedasmg/l.or
ml/l(asperformedinthelab.)

ENVIRONMENTAL ENGINEERING
-
II
Theygivearoughmeasureoftheorganiccontentorinsome
instancesoftheconcentrationofBIOLOGICALSOLIDS
suchasbacteria.Thedeterminationismadebyignitionof
residueson0.45µfilterinaMufflefurnaceat550
0
C.The
residuesfollowingtheignitioniscallednon-volatilesolids
orashandisroughmeasureofthemineralcontentofthe
wastewater.
(Note:-Mostoftheinorganicandmineralcontentdonot
volatilizeat550
0
Candarequietresistant)
VOLATILE SUSPENDED SOLIDS

ENVIRONMENTAL ENGINEERING
-
II
Bacteriaplacedincontactwithorganicmatterwillutilize
itasfoodsource.Intheutilizationoftheorganicmaterial
itwilleventuallybeoxidizedtostableandproductssuch
asCO
2
andH
2
O.
“Theamountofoxygenrequiredbythebacteriato
oxidizetheorganicmatterpresentinsewagetostableend
productsisknownasbiochemicaloxygendemand.”
BOD

ENVIRONMENTAL ENGINEERING
-
II
Itistheamountofoxygenrequiredtooxidizeorganicmatter
chemically(biodegradableandnon-biodegradable)byusing
astrongchemicaloxidizingagent.(K
2
Cr
2
O
7
)inanacidic
medium.ForasinglewastewatersamplethevalueofCOD
willalwaysbegreaterthenBOD.
Theoxidant(K
2
Cr
2
O
7
)remainingisfoundouttofind
K
2
C
r2
O
7
consideredCODandBODcanbeinterrelated.
CHEMICAL OXYGEN DEMAND

ENVIRONMENTAL ENGINEERING
-
II DOMESTIC SEWAGE
CHARACTERISTICS
Parameter Range (mg/l)
Total Solids
Dissolved Solids
Suspended Solids
Setteleable Solids
BOD
COD
Total Nitrogen
Alkalinity (as CaCO
3)
350 –1200
250 –850
100 –350
5 –20 (ml / l)
100 –300
250 –1000
20 –85
50 –200

ENVIRONMENTAL ENGINEERING
-
II
1personexcrete80gmBOD/day.Populationequivalentof
anindustryisthenumberofpersonswhichmayproducethe
sameamountofBODperday.
Let BOD of tannery is =500 mg/l
Q =10,000 m
3
/ day
Total BOD load by tannery =BOD x Q
=500 x 10000 / 1000
=5000 kg BOD/day
Population equivalent =(5000 / 80) x 1000
=62,500 persons
POPULATION EQUIVALENT

ENVIRONMENTAL ENGINEERING
-
II
SEWAGE
TREATMENT

ENVIRONMENTAL ENGINEERING
-
II
SEWAGE TREATMENT
Purpose:
1.HealthAspect:Morethan50%diseasesspreadthrough
untreatedsewagepathogens,helminths,wormsetc.
2.DisposalAspect:ifsewageisdisposeduntreatedinwater
bodies,itcanresultinfollowingproblems:-
-DepletionofO
2resourcesofstreams
-Causeturbidity,colourinwaterbodies
-Canbetoxictoaquaticlife
3.Reuseaspect:Sewageistreatedtobereusedfor
-Irrigationpurposes
-Groundwaterrecharge

ENVIRONMENTAL ENGINEERING
-
II
METHODS OF TREATMENT
1.PrimaryTreatment:
Purpose:
Removesuspended,settleableandfloatingmatters.
MethodUsed:
Screens,GritChambers,PrimarySedimentationtanks
(primaryClarifier)
BODremoval=30–45%
S.Sremoval=40–70%

ENVIRONMENTAL ENGINEERING
-
II
PRIMARY TREATMENT
1.Screens:
Purpose&Types:
Thepurposeofscreensistoremovelargeparticlesof
floatingorsuspendedmattersothatthepumpisnotclogged
ordamaged.
Screensconsistofparallelbars,rods,wiremeshor
perforatedplates.Theopeningmaybeofanyshape.
(generallyrectangular)

ENVIRONMENTAL ENGINEERING
-
II
BAR SCREENS
Mostly,BARSCREENSofRACKSareusedwhichare
eitherhandcleanedormechanicallycleaned.
Openingbetweenbars½”–1½”
Sewage
bars
30 –60
o
SECTION
To Gret
Chamber / P.S
Tank

ENVIRONMENTAL ENGINEERING
-
II
PRIMARY SEDIMENTATION TANK
3.PRIMARYSEDIMENTATION TANK
(PrimaryClarifier)
Function
1.TheyremovemostofthesettleablesolidsORabout
40–70%ofthesuspendedsolidsfromsewage.
2.ReduceBODonsecondarytreatmentunitsince80%
ofthetotalBODofmunicipalsewageis
contributedbysuspendedandcolloidalsolids,
between30and45%ofthetotalBODwillbe
removalduringthisprocess.

ENVIRONMENTAL ENGINEERING
-
II
Primary Clarifier Design Basis
1.DesignedonAVERAGEFLOWBASIS
2.Surfaceloadingrate:20–60m
3
/m
2
.Day
3.Depth:2–4m
4.DetentionTime:2–4hour
5.SludgeAccumulation:2.5kgofwetsolids/m
3
offlow
6.WeirLoading:≤120m
3
/m
2
.day(topreventhighapproach
velocityatoutlets)
7.Shapes
a.Rectangular: MaxL:W–4:1
Maxlength=30m,
Maxwidth=6–8m
b.Circular: Dia = 10 –30 m

ENVIRONMENTAL ENGINEERING
-
II
SECONDARY TREATMENT
Aerobic Process
Cell Mass
CHON
(Organic Matter)
CO
2, H
2O, SO
4
-2
, NO
3
Somoresludgeisformedinaerobicprocess.Bacteriathat
workinthepresenceofoxygenareAEROBICBACTERIA.
ThebulkofavailableenergyfindsitswayintoCELLMASS
yieldingastableeffluentwhichwillnotundergofurther
decomposition

ENVIRONMENTAL ENGINEERING
-
II
AnaerobicProcess
Thesetakeplaceintheabsenceofoxygen
CellMass
CHON
(OrganicMatter)
CO
2,H
2O,H
2S,CH
4,N
2
Lesssludgeisformedinanaerobicprocess.Theend
productsofananaerobicprocessareodorous.Bacteriathat
workintheabsenceofoxygenarecalledANAEROBIC
BACTERIA.

ENVIRONMENTAL ENGINEERING
-
II
Suspended Growth Process
Atreatmentprocessinwhichbacteriaarekeptinsuspension
byconstantlyaeratingthewastewatere.g.activatedsludge
process,AeratedLagoonsetc.

ENVIRONMENTAL ENGINEERING
-
II
Flocbodyofmicroorganismsgatheredinacrowdoutline.
Aquantityofmicroorganismandnutrientmaterial
supportingthegrowth.
PST
Aeration Tank
SST
Sludge
Digestion
Sludge
Waste
To Sludge
drying beds

ENVIRONMENTAL ENGINEERING
-
II
Where
Vs =Settleablesolids(measuredbyimhoffcone)
MLSS =Mixedliqueursuspendedsolids(mg/l)
(Ameasurementofmicroorganismsinsewage)SVIfrom
50to150indicategoodsettlingcharacteristics.
SVI =SludgeVolumeIndex

ENVIRONMENTAL ENGINEERING
-
II
Sludge Bulking
Excessivecarryoverofflocsintheeffluentresultingin
inefficientoperationtofindclarifierinreferredasSLUDGE
BULKING.ItisusuallyduetoFILAMENTOUSMICRO
ORGANISMS.
Reasonsforsludgebulkingmaybe
- insufficientaeration(D.O<1.5mg/l)
- Lackofnutrients(i.eN,P)
- Presenceoftoxicsubstances
- OVERLOADINGi.e.highF/Mratios

ENVIRONMENTAL ENGINEERING
-
II
F : M Ratio
F:MratiomeansFOODStoMICROORGANISMSratio.
F:MratioisexpressedintermsofkgBODappliedperday
kgofMLSS.
IfQisthesewageflowinm
3
/dandithasaBOD
expressedinmg/l.
Then FOOD=(QxBOD)/1000kgBOD/day
Also Q
r/Q=V
s/(1000–V
s)(Recirculationratio)
Where
V
s= Volumeofsettledsludge
Q
r= Flowofretainedsludge
Q = Flowofsewage

ENVIRONMENTAL ENGINEERING
-
II
If“V”isthevolumeofaerationtankincubicmeterand
hasaMLSSconcentrationexpressedinmg/lthen:
Microorganisms=(VxMLSS)/1000kg.MLSS
Where:MLSS=measureofmicroorganisms=mg/l
F:M=(QxBOD)/(VxMLSS)
=BOD/(txMLSS)
Where“t”isAERATIONTIMEindays.AnF:Mratio
between0.25to0.5perdayisusuallyemployedand
promisesgoodsettlingcharacteristicsofsludge.

ENVIRONMENTAL ENGINEERING
-
II
Design of the Facility (Design Criteria)
F:M ratio 0.25 to 0.5 per day
MLSS 1500 –3000 mg/l
Air Supply 3 -15 m
3
of air/m
3
of sewage
Return sludge 25 –100 % of sewage flow
Aeration time 4 –8 hours
Dissolve Oxygen (DO) At least 2 mg/l

ENVIRONMENTAL ENGINEERING
-
II
Nooftanks:Generallymorethenonetankbeprovided.
AerationTankDimensions:Depth3-5m,
L:Wnotbelessthan5:1
Aeration Tank
Diffuses
Plan
Diffuses
0.6 –1m

ENVIRONMENTAL ENGINEERING
-
II
Aeration Devices
(i)DIFFUSEDAERATION
Airispassedthroughporousdiffusesunderpressure.
Generallyrowsofdiffusesare0.6to1mapart.Thereare
placedatthebottomofaerationtank.
(ii)MECHANICAL AERATION
Inthistypemechanicalsurfaceaerationareemployedthey
agitatethesewagemachinerysoastopromotesolutionof
airfromtheatmosphere.
Impellersaregenerallyusedtoagitatethesewage.

ENVIRONMENTAL ENGINEERING
-
II
Problem
Anactivatedsludgeprocessistotreatadomesticsewage
flowof6000m
3
/daywithaBODof240mg/l.TheF:M
rationistobemaintainedat0.4kgBOD/kgMLSS.The
sludgerecirculation0.25anditisdesiredtoachieveanSVI
of100ml/gmcalculatetheMLSSconcentrationinaeration
tankandthesizeoftheaerationtank.

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Q
r/Q=Vs/(1000-Vs)
0.25= Vs/(1000–Vs)
Vs=200ml
SVI=(Vsx1000)/MLSS
MLSS =(Vsx1000)/SVI
=(200x1000)/100
=2000mg/l
F:M=(Q.BOD)/(V.MLSS)
or V =QxBOD/MLSSxF:M
V =6000x240/2000x0.4=1800m
3

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Usetwotankshavingvolume900m
3
each.
Let depth=4m
Area=900/4
=225m
2
Usetwoaerationtanks.
.:Areaofeachtank=225m
2
LetL:W=5:1
225=5WxW
W=6.7m
L= 33.5m
Tanksize6.7mx33.5mx4m
Lets(7mx34mx4m)

ENVIRONMENTAL ENGINEERING
-
II
Problem
Anactivatedsludgeprocessistobedesignedtotreatsewage
flowof8640m
3
/daywithaBODof200mg/lfromthe
primaryclarifier.UsingF:Mratioof0.4perdayandMLSS
concentrationof3000mg/l,calculatethevolumeofthe
aerationtankofSVIis100,howmuchsludgeshouldbe
returned

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Q =8640m
3
/day
F:M=QxBOD/VxMLSS
0.4=8640x200/Vx300
V=1440m
3
SVI=Vsx1000/MLSS
Vs=100x3000/1000
=300
Q
r/Q=Vs/1000–Vs
=300/1000–300
=0.42

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Q
r= 0.42x8640
= 3702m
3
/day

ENVIRONMENTAL ENGINEERING
-
II
Problem
Anactivatedsludgeprocesswithaerationtankvolumeof
900m
3
istreatingasewageflow4000m
3
/daywithaBOD
of250mg/l.ItisdesiredtoachieveanSVIof80by
adoptingarecirculationratioof0.25.CalculatetheF:M
rationatwhichtheaerationtankshouldbeoperated.

ENVIRONMENTAL ENGINEERING
-
II
Solution
Q
r/Q=Vs/1000–Vs
:.0.25=Vs/1000-Vs
Vs=200mg/l
SVI= Vsx1000/MLSS
MLSS= 200x1000/80
= 2500mg/l
F:M= QxBOD/vxMLSS
= 4000x250/900x2500
= 0.44perday

ENVIRONMENTAL ENGINEERING
-
II
Problem
Domesticsewageflowof8000m
3
/dwithaBODof260
mg/listobetreatedbyanactivatedsludgeprocess.Ifa
recirculationrationof0.25andSVIof100isdesired,
calculatethesizeoftheaerationtanktakeF:Mratioas
0.3.

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Q = 8000m
3
/d
Q
r/Q= 0.25
SVI= 100
Q
r/Q=Vs/1000–Vs
.:0.25=Vs/1000–Vs
Vs=200mg/l
SVI=Vsx1000/MLSS
MLSS=200x1000/100
=2000mg/l

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Let
F:Mration0.3perday
F:M= QxBOD/VxMLSS
V=3466.6mg/l
Letdepth= 4m
Area = 3466/4
= 866.6m
2

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Take2unitsofaerationtank:
Each = 433.3m
2
L:W = 5:1
A=LxW
A=5W
2
W=9.3m
L=46.5m
So
size9.3mx46.5mx4m

ENVIRONMENTAL ENGINEERING
-
II
TRICKLING FILTER
Tricklingfilterutilizearelativelyporousbacteriagrowth
mediumlikeROCKorFORMEDPLASTICSHAPES.
Bacterialgrowthoccuruponthesurfacewhileoxygenis
providedbyairdiffusionthroughvoidspaces.
Wastewaterisappliedtothesurfaceandpercolates
throughthefilter,flowingoverthebiologicalgrowthina
thinfilm.
Support
Medium
Anaerobic ZoneAerobic Zone
Oxidized
Organics
BOD O
2
CO
2
Fixed water
layer

ENVIRONMENTAL ENGINEERING
-
II
TRICKLING FILTER
Nutrients,oxygenandorganicmatteraretransferredtothe
fixedwaterlayerandfromtheretobacteriaandwaste
productsaretransferredtothemovingwaterlayer,primarily
bydiffusion.
Asthebacteriaonfiltermediummetabolizethewastethey
willreproduce,graduallyproducinganincreaseinthedepth
ofSLIMELAYERwiththickeningofbiologicallayer,the
innersidebecomeanaerobicandbacteriastartsdieing
breakingthecontactbetweenslimelayerandcontact
mediumandslimelayerwillsloughoffandbecarriedfrom
thefilterwithwasteflow.Thesesolidsarethenremovedina
secondaryclarifier.

ENVIRONMENTAL ENGINEERING
-
II
TRICKLING FILTER
To secondary
sedimentation tank
Under
drain
system
Stone
(60-90 mm dia)
Rotating
Distribution
drain
Dosing
Tank
Primary
Sedimentation
Tank

ENVIRONMENTAL ENGINEERING
-
II
TYPES OF TRICKLING FILTER
i.Lowrate
ii.Highrate(mostlyusedthesedays)
Factor LowRate HighRate
1.Medium Stone Plasticballs
2.Hydraulicloading1.9–3.8m
3
/m
2
.d9–27m
3
/m
2
.d
3.Depth 2–3m 1–2.5m
4.Recirculation Nil 1:1to4:1
5.operation Simple Skilled
6.Odour/FlyproblemMore Less
7.Organicloading 0.3–1.5kg/m
3
1.5–18.5
filtervol.day

ENVIRONMENTAL ENGINEERING
-
II
ROLE OF RECIRCULATION
Recirculationofeffluenteitherfromtricklingfilterorfinal
clarifierisdoneinmodernTricklingfiltertofollowing
advantages:
i.returnofviableorganismthusimprovingefficiency
ii.Reduceodourandflyproblem
iii.Diluteinfluentandhelpinhandlingshockloads

ENVIRONMENTAL ENGINEERING
-
II
Disadvantages
i.Highconstructioncost
ii.Largearearequired
iii.Odourandfly(Psychodafly)problem
Performance
Nationalresearchcouncil(NRC)empiricalformulaisused.
ItisbasedupondatacollectedinUSAduringWorldWar–II
E = (C
i-C
e)/C
i
= 1/(1+0.532(QC
i/VF)
0.5
)

ENVIRONMENTAL ENGINEERING
-
II
Problem
Asettledsewageflowof11355m
3
/daycontaining150mg/l
ofBODistobetreatedbyaTrickingfilterwithadepthof2
m.ItisdesiredthateffluentBODshouldbe20mg/l.
Calculatetherequireddiameterofthefilterandhydraulic
loadingonthefilter.Recirculationrationis4.

ENVIRONMENTAL ENGINEERING
-
II
Solution
Q = 11355m
3
/d
= 7.88m
3
/min
Q
r= 4x11355
= 45420m
3
/d
r = 4
.:F = 1+4/(1+0.4)
2
= 2.53

ENVIRONMENTAL ENGINEERING
-
II
(C
i-C
e)/C
i= (150–20)/150
= 0.8667
E=1/(1+0.532(QC
i/VF)
0.5
)
0.8667= 1/(1+0.532(7.88x150/Vx2.55)
0.5
)
SolvingthisequationwecangetthevalueofV:
V = 5540m
3

ENVIRONMENTAL ENGINEERING
-
II
Let
depth= 2m
.:Areaoffilter= 2770m
2
A = /4D
2
D = 59.4m
Totalflowoffilter= Q+Q
r
= 56775m
3
/d
HydraulicLoading= 56775/2770
= 20.4m
3
/m
2
.d

ENVIRONMENTAL ENGINEERING
-
II
PROBLEM
22700m3/dofsettledwastewatercontaining300mg/l
ofBODistobetreatedinaTricklingfilter.Itis2min
depthandhydraulicloadingis15m
3
/m
2
.dwitha
recirculationratioof2.calculatefiltersize,%ageBOD
removalandeffluentBOD.

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Trytosolvebyyourself.
Answer:
Area= 4540m
2
E = 78.97%,
C
e= 63mg/l

ENVIRONMENTAL ENGINEERING
-
II
WASTE WATER STABILIZATION PONDS (WSP)
Wastewaterstabilizationpondsprovideausefulmethodof
Wastewatertreatmentanddisposalforgrowingcommunities
wherebothFUNDSandTRAINEDPERSONNELarein
shortsupply.
Intheseponds,“beneficialorganisms”stabilizethe
Wastewaterintoaliquidthatcanbereleasedtothe
environmentadverselyandthatdoesnotplaceanundercost
burdenonadownstreamuser.
WSParebestsolutionwhere:
-Financialresourcesarelimited
-Technicalexpeditearelacking
-Sufficientlandareaisavailableatcheapcost.

ENVIRONMENTAL ENGINEERING
-
II
DEFINITION:
Astabilizationpondisarelativelyshallowbodyofwater
containedinaearthen/linedbasinofcontrolledshape
whichisdesignedforthepurposeoftreatingwastewater.

ENVIRONMENTAL ENGINEERING
-
II
DRAWBACKS
1. Requirelargearea
2. Anaerobicpondshaveodourproblem.
TYPES
1. Anaerobicponds
2. Facultativeponds
3. Maturationponds
Mostly,theseareusedincombination/series.Atypicalarrangementis
shownbelow:-
F M
An F
An F
M
M M

ENVIRONMENTAL ENGINEERING
-
II
ANAEROBIC PONDS
Sludge
CH
4
H
2SCO
2
NH
3
3-5 m
Influent
Effluent
Baffle
Scum

ENVIRONMENTAL ENGINEERING
-
II
PROBLEM
Designananaerobicpondtotreatasewageflowof5000
m
3
/dwithaBODof400mg/l.thepondsaretobeloadedat
200gBOD/m
3
.d

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
TotalBODload=5000x400
=2000000gmBOD/l
Volumeofpond= 2000000/200=10000m
3
Taketwoponds.:volumeofonepond=5000m
3
Letdepth=4m
.:Area(MeanDepth)=5000/4=1250m
2
LetL:W= 2.5:1
W = 22.3m~22
L = 55.9m~56
Surface=28x54
Bottom=16x50

ENVIRONMENTAL ENGINEERING
-
II
FACULTATIVE PONDS
Applicationmostlyusedfordomesticsewageofordinary
strength
1.5 -2 m
Influent
Effluent
Sunlight
O
2
Algal
Growth
Aerobic
Facultative
Anaerobic

ENVIRONMENTAL ENGINEERING
-
II
Threezonesexistinafacultativepond:
I-Thesurfacezonewhereaerobicbacteriaandalgae
exist
II-Anaerobiczonenearbottominwhichaccumulated
solidsaredecomposedbyanaerobicbacteria.
III.Anintermediatezonethatispartiallyaerobicand
partiallyanaerobicinwhichdecompositionisbought
aboutbyFACULTATIVEbacteria.

ENVIRONMENTAL ENGINEERING
-
II
DESIGN CRITERIA
TherearedesignonSURFACELOADINGRATES.i.ekgBOD
/ha/day.TheareathuscalculatedisMIDDEPTHSURFACE
AREA(M.D.S.A)
Surfaceloading: 100–400kgBOD/ha/day
Noofponds : Atleasttwo
Detentiontime : 7–20days
SideSlopes : 1V:3H
Depth : 1.5–2m
L:W : 3–2.5:1
De-sludging : 10–15years
Theeffluenthavenosmall,greenishincolourandhasaBODof
around50–75mg/l

ENVIRONMENTAL ENGINEERING
-
II
Formula for effluent Quality
Followingformulaisusedtofindouteffluentquality:-
L
e/L
i = 1/(1+Kt)
Where
L
e= effluentBOD,mg/l
L
i= InfluentBOD,mg/l
K= Reactionrateconstant,perday
(normally0.3d
-1
fordomesticsewageat20
0
C)
t= Detentiontime,days
Note:90%ofpondsinworldareFACULTATIVEPONDS.
TemperatureeffectonK
K
2
=K
1
(Ө)T
2
-T
1

ENVIRONMENTAL ENGINEERING
-
II
Mara formula far BOD loading
Mara(1988)gavethefollowingformulatofindthesurface
loadingforaspecificregion.Accordingtothisformula
surfaceloadingdependuponaveragetemperatureofthe
coldestmonth
S.L= I5T–50
Where
S.L= SurfaceloadinginkgBOD/ha.day
T = Averagetemperatureofcoldestmonth

ENVIRONMENTAL ENGINEERING
-
II Bacteria Algae Symbiosis
(mutually beneficial)
Inaerobiczoneofponds,bacteriaandalgaeexistina
MUTUALLY BENEFICIALorSYMBIOTICrelationship
algaeproduceO
2
duringphotosynthesiswhichisneededby
bacteriatometabolizematter.WhereasbacteriareleaseCO
2
andotherinorganicmatterlikeNandP,whichareneededby
algaetogrowandmeetitsfoodrequirement.Henceunder
normallightconditions,themetabolicactionofthesetwo
microbialgroupscomplementeachother.

ENVIRONMENTAL ENGINEERING
-
II
Problem(Facultative Pond)
Designtwofacultativepondstotreataflowof5444m
3
/d
withaBODof150mg/l.takeBODloadingas200kgBOD
/ha.dandassumethedepthofthepondas2m.Findthe
detectiontimeinthepondandefficiencyofthepond.
AssumeK=0.23perday.

ENVIRONMENTAL ENGINEERING
-
II
Solution
Qforeachpond= 5444/2
= 2722m
3
/d
Middeptharea= TotalBODload/S.L
= {(2722x150)/1000}/200
= 2.04ha
= 20415m
2

ENVIRONMENTAL ENGINEERING
-
II
Let
L:W= 3:1
A = 3W
2
W = 82m
.:L = 249m
SurfaceDimension = 85x252
BottomDimension = 79x246
Volume = 20415x2
= 40830m
3

ENVIRONMENTAL ENGINEERING
-
II
.:DetentionTime= V/Q
= 40830/2722
= 15days
L
e= L
i{1/(1+Kt)}
= 150{1/(1+0.23x15)}
= 33.7mg/l
.:E= (L
i–L
e)/L
i
= 150–337/150=77.5%

ENVIRONMENTAL ENGINEERING
-
II
MATURATION PONDS
Application:
PrimarilyusedforreductionofPATHOGENS
-Removaloforganicmatter(BOD)
ThesearefullyaerobicandusedafterFACULTATIVE
PONDSwiththepurposeof
i.PolishingofEffluent
ii.RemovalofPathogens
Pathogensdieduetosunlightandlongdetentiontime.
HELMINTHS alsosettleatthebottomwherethey
eventuallydie.

ENVIRONMENTAL ENGINEERING
-
II
MATURATION PONDS
1 –1.5 m
Influent
Sunlight
Fully
Aerobic

ENVIRONMENTAL ENGINEERING
-
II
DESIGN CRITERIA
Depth = 1–1.5m
DetentionTime = 4–14days
No.ofPonds = Atleasttwo
L:W = 2.5:1
De-sludging = 20years
DesignofmaturationpondsisbasedonCLOIFORM
REMOVALandnoBODreductionconsiderationismade.

ENVIRONMENTAL ENGINEERING
-
II
FORMULA
Todesignthematurationpondsonthebasisofcoliform
removal,followingrelationshipisused:-
N
e/N
i = 1/(1+Kt)
Where:
N
i= Noofcoliformininfluent/100ml
N
e= Noofcoliformineff/100ml
K = Bacterialdieawayconstant
(Usuallytakenas2.6perdayat20
0
C)
t = Detentiontimeinpond,days
Effluentfrommaturationpond(Generally)
BOD= 30mg/l
F.C< 1000/100ml

ENVIRONMENTAL ENGINEERING
-
II
Problem(Maturation Pond)
Designamaturationpondtotreataflowof2722m
3
/dof
20
0
Cwithcoliformintheinfluentas4x10
5
/100ml.
Assumeadetentiontimeof10days.Findoutthecoliformin
theeffluentofthepondandthepondefficiency.AssumeK=
2.6d
-1
at20
0
C.

ENVIRONMENTAL ENGINEERING
-
II
Solution
N
e/N
i=1/(1+Kt)
N
e = 4x10
5
{1/(1+2.5x10)}
= 14814/100ml
VolumeofPond= 2722x10
= 27220m
3
Letdepth= 1.5m
.:Middeptharea= 27220/1.5
= 18146m
2
= 18200m
2

ENVIRONMENTAL ENGINEERING
-
II
.:Middepthdimension= 213.3x85.3
SideslopeIV:3H
.:SurfaceDimension= 217.5x89.5
BottomDimension= 2085.5x80.5
PondEfficiency={(4x10
5
–14814)/4x10
5
}x100
=96.2%

ENVIRONMENTAL ENGINEERING
-
II
Waste Stabilization Ponds in Pakistan
10 YEARS RESEARCH AT I.E.E.R (UET LAHORE
EVALUATION OF DESIGN PARAMETERS
APPLICATION
Karachi Hyderabad
Lahore Okara
Faisalabad Peshawar
Effluentismostlyusedforirrigation.

ENVIRONMENTAL ENGINEERING
-
II
AERATED LAGOONS
AeratedlagoonsoccupyapositioninbetweenWSPand
activatedsludgeprocess.
AnAeratedLagoonisabasininwhichwastewateris
treatedonaFLOWTHROUGHBASIS.Oxygenissupplied
bymeansofsurfaceordiffusedaerations.AeratedLagoon
operateatlowMLSSconcentration.i.e.200–400mg/lbut
withlongretentiontimeascomparedtoactivatedsludge
process.InAeratedLagoonNOSLUDGERECYCLINGis
EMPLOYED.TheeffluentfromanAeratedLagoonis
settledinasedimentationtankbeforedischarge.

ENVIRONMENTAL ENGINEERING
-
II
AsamatteroffactAeratedLagoonwereoriginally
developedfromANAEROBICandFACULTATIVEponds.
Screens Aerated
Lagoon
Sludge Drying Beds
PST SST
AERATED LAGOONS
No Sludge recirculation

ENVIRONMENTAL ENGINEERING
-
II
DESIGNCRITERIA/CONSIDERATIONS:
Empiricalapproachisused
Detentiontime 4–9days
Depth 3–5m
Powerinput 20watt/m
3
oflagoonvolume
Effluentqualitycanbeestimatedbyusingfollowingformula
Le/Li =1/(1+Kt)
BODremovals 70–90%
F.Col 90%(Poor)
.:ProvideMATUARTIONPONDtofurtherupgradethe
effluentforfurtherREUSE.

ENVIRONMENTAL ENGINEERING
-
II
ADVANTAGES:
1.RequiredlessareaascomparedtoWSP
2.LowcapitalcostascomparedtoASP
3.Easytooperate/maintain
4.Highlyskilledplantoperatorsnotrequiredas
comparedtoASP
5.Agoodtreatmentoptionforawiderangeofinduction
e.g.textile,tannery,dairy,fruitsetc.

ENVIRONMENTAL ENGINEERING
-
II
LIMITATIONS:
1. Poorcoliformremoval
2. Sludgehandlingproblems
3. Cannotbeusedwherespaceisverylimited.

ENVIRONMENTAL ENGINEERING
-
II
TYPES:
1.PartiallyMixed(Facultative):
Limitedaerationdonetosatisfyoxygendemandonly.
SettledsludgeatbottomundergoANAEROBIC
DECOMPOSITION.
1.FullyMixed:
Moreaerationdonetokeepallsuspendedsolidsin
suspension.Morepowerisrequiredinthiscase.
Sludge
Aerator

ENVIRONMENTAL ENGINEERING
-
II
SLUDGE DIGESTION
INTRODUCTION
Allconventionalwastewatertreatmentprocessesproduce
largequantitiesofwastematerialintheformofDILUTE
SOLIDMIXTURESknowasSLUDGE.Thecomposition
andsolidcontentareafunctionofrawwastewater.Primarily
andsecondarysludgesaremainlycomposedofwaterwitha
solidcontentofonly0.5to5%.
Hugevolumesofsludgearegenerateddailyinatreatment
plantwhichneedtobetreatedanddisposed.

ENVIRONMENTAL ENGINEERING
-
II
PURPOSE OF SLUDGE DIGESTION
1.Toreducethesludgevolumefordisposal
2.Toreducethewatercontentofsludgeforeasy
handling
3.TorecovervaluableGAS
4.TouseitasFERTILIZER.

ENVIRONMENTAL ENGINEERING
-
II
PURPOSE OF SLUDGE DIGESTION
Sludgedigestionandsubsequentdisposalfallsamong
importantfunctionscarriedoutatatreatmentplant.
Followingstatisticsrevealthisfact:
Sludge handling
30 –40%Capital cost
50% Operational cost
90% Operational problems in a
treatment plant

ENVIRONMENTAL ENGINEERING
-
II AMOUNT AND CHARACTERISTICS OF
SLUDGE:
Sewagesludgeconsistoftheorganicandinorganicsolids
presentinrawsewageandremovalinprimaryclarifierplus
organicsolidsgeneratedinsecondarytreatmentandremoval
insecondaryclarifier.
Specificgravityoforganiccontentofsludgeislightly
greaterthanwaterandnormallylieinarangeof1.01to
1.06.TheSpecificgravityofinorganicfractionissludgecan
beassumedas2.5.

ENVIRONMENTAL ENGINEERING
-
II
PROBLEM (Sludge Digestion)
EstimatethesolidsproductionfromTricklingFilterplant
treating1000m
3
/dwithaBODof210mg/landS.Sof260
mg/l.Assumethatprimaryclarificationremove30%of
BODand60%ofinfluentsolids.

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Removal in primary clarifier = 0.6 x 260
= 156 mg/l
Production in secondary = 0.7(210)(0.5)
= 74 mg/l
Total solids production= 156 + 74
= 230 mg/l
= 230 gm / m
3
= 230/1000 x 1000
Solid production = 230 kg / day

ENVIRONMENTAL ENGINEERING
-
II
a.Solids generated in primary clarifier =60% of S.S
b.Solids generated in secondary clarifier
-T.F 0.4 to 0.5 kg/kg of BOD applied
-A.S.P 0.2 to 1.0 kg/kg of BOD applied

ENVIRONMENTAL ENGINEERING
-
II
Effect of moisture content upon sludge volume
Theeffectofmoisturecontentuponsludgevolumeis
tremendous.Sludgehandlingtechniquesaredirected
towardsreducing.Themoisturecontentandtherebythe
volumeofsludge.
Throughdigestion,thewatercontentofsludgereduce
significantlyascomparedtorawsludgeasshownbelow:

ENVIRONMENTAL ENGINEERING
-
II
Effect of moisture constant upon sludge volume
MoistureContent
Type RawSludgeDigestedSludge
-PrimarySedimentation94–96% 88–94%
TankSludge
-ActivatedSludge 98.5–99.5% 94–96%
-TricklingFilterSludge 96–97% 90–94%

ENVIRONMENTAL ENGINEERING
-
II
PROBLEM (Sludge Digestion)
Awastewaterplantproduces1000kgofdrysolidsperday
atamoisturecontentif96%.thesolidsare70%volatile
withaspecificgravityof1.05and30%non-volatilewitha
specificgravityof2.5.Determinethesludgevolume.
a.Asproduced
b.Digestionreducethevolatilesolidscontentby50%
anddecreasesthemoisturecontentto90%

ENVIRONMENTAL ENGINEERING
-
II
Solution
a.Mass of Sludge= 1000/0.05
= 20000 KG
95 % = 19000 litre
1000 kg is solid:
70 % volatile= 700 kg
specific gravity= 1.05
Volume = 700/1.05= 667 litre
30% non-volatile= 300 kg
specific gravity= 2.5
Volume = 300/2.5 = 120 litre
Volume of Solids= weight / specific gravity
Totalvolumeofsludge=19000+667+120
= 19787litre(Asproduced)

ENVIRONMENTAL ENGINEERING
-
II
b.After digestion Volatile Solids are reduced to 350 kg.
The total solid content is therefore 350 + 300 = 650 kg
Mass of sludge= 650/0.1
= 6500 kg
650 kg is solid:
Water = 5850 litre
Volume of V.S= 350 / 1.05= 333 litre
Volume of Non. V.S= 300/2.5= 120 litre
Total volume of sludge= 6303 litre
% reduction in volume = (19787 –6303 )/ 19787
= 68%

ENVIRONMENTAL ENGINEERING
-
II
Formulas
Volume of Solids for organic/inorganic:
Volume of solids = Weight of solids / Specific Gravity
Weight of sludge:
Mass (weight) of sludge = (Weight of solids in Kg)/
Kg (Fraction of solids)

ENVIRONMENTAL ENGINEERING
-
II
TYPES OF DIGESTION:
SludgedigestionmaybeANAEROBICofAEROBIC.Both
havetheirmeritsandde-merits.Traditionallyanaerobic
digestersareused.
Comparison
Parameter AerobicAnaerobic
1.VolatileSolidreduction SimilarSimilar
2.BODifsupernatant LOW High
3.CapitalCost LOW HIGH
4.OperatingCost HIGH LOW
5.UsefulbyProduct Nil Yes
6.Dewateringofdigestedsludge DifficultEasy
7.Systemupsets Less Moresusceptible
8.Designapproach EmpiricalEmpirical

ENVIRONMENTAL ENGINEERING
-
II
THEORY OF ANAEROBIC DIGESTION
Underanaerobicconditions,sludgedigestionoccurthrough
theactionoftwogroupsofbacteria.
1.AcidFormingBacteria:
Thesebacteriaconvertcomplexorganicsubstances
likefats,carbohydrates,proteinsetc.presentinthe
sludgeintosimpleorganiccompoundsandfattyacids.
CarbohydratesFattyacids(lowpH)
ProteinsAminoAcidsNH
3
+FattyAcids

ENVIRONMENTAL ENGINEERING
-
II
2.MethaneFormingBacteria
ThesebacteriaformCH
4
andCO
2
byusingacidandNH
3
andotherproductsofthefirstgroup.Theygetbestinthe
pHrangeof6.5to8andmoreprécisingwithinpHrage
of7.2–7.4.
NH
3
+FattyacidsCH
4
+CO
2
Methaneformingbacteriarequireaninorganicsourceof
nitrogenfortheirnutrition.Theyareinhibitedby
loweringpH.Whereasacidformingbacteriaareabit
resistanttolowpH.Sinceacidformingbacteriamaybe
adverselyaffected.Asaresulttheprocessmayfail.

ENVIRONMENTAL ENGINEERING
-
II
MaintenanceofproperpHcanbeobtainedwithlime.
However,thelimeshouldbethoroughlymixedupto
avoidlocalconcentrationbuildup.Usually2to5kgof
limeper1000personsisaddeddailytothedigester.

ENVIRONMENTAL ENGINEERING
-
II
MODERN DIGESTERS
Sludgedigestionisaccomplishedinairtightsteeltanks.
Moderndigestersarebothheatedandmixed.
Thefirstdigesterisheatedandmixed.Theseconddigester
isquiescentandservesprimarilyasathickenforthe
digestedsludge.
Digestertanksareusually6mto15mdeep.Hopperbottom
slopeiskeptas1Vertical:3Horizontal.Diameterofthe
digestermayvaryfrom6mto40mdependinguponthe
capacity.

ENVIRONMENTAL ENGINEERING
-
II
CoverofthedigestermaybeFLOATINGofFIXED.Fixed
coverarelowcostbutnorpreferable.Floatingcoversare
costlybuttheyminimizethedangerofmixingoxygenwith
thegastoformexplosivemixture.Alsowithfloatingcovers,
theremovalandadditionofsludgeremainsindependentof
eachother.
Themethaneproducedinanaerobicdigestionisnearly
universallyusedtoheatthedigesterandinsomeinstancesto
providemechanicalpowerforotherplantprocesses.
Thedigestedsolidsfromanaerobicprocessesmaybe
dewateredwithoutfurthertreatmentuponopendryingbeds.

ENVIRONMENTAL ENGINEERING
-
II
DESIGN CRITERIA
-Detentiontime 10–20days
-Volumeofm
3
/person0.1m
3
/personbiological
(offirstdigester) process,0.05m
3
/personfor
P.S.TSludge

ENVIRONMENTAL ENGINEERING
-
II
SLUDGE DRYING BEDS
PURPOSE:
Thepurposeofsludgedryingbedsistodewatereddigested
sludgeandtofurtherreduceitsvolume.Afterdrying,the
volumeofsludgegetsreducedtoaround60%.Drysludge
cakescanbeusedasfertilizer.

ENVIRONMENTAL ENGINEERING
-
II
PROBLEM
EstimatethequantityofsolidsproducedinanActivated
SludgeProcesswithflowof5500m
3
/daywithBODandS.S
of250mg/leachassumingthatPSTremove30%ofBOD
and50%ofSSandsludgeproductioninthesecondaryunit
is70%ofBODapplied.
Calculatevolumeofsludgeifitssolidcontentis5%.70%
VolatileSolidswithspecificGravity1.05and30%non-
volatilewithspecificgravity2.5.

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION:
Solids removed in P.S.T = 0.5 x 250
= 125 mg/l
BOD applied to secondary unit =0.7 x 250
= 175 mg/l
Solid production in secondary unit = 0.7 x 175
= 122.5 mg/l
Total Solids produced= Primary + Secondary
= 125 + 122.5
= 247.5 mg/l
= 247.5 x 5500/1000
= 1361 kg/day

ENVIRONMENTAL ENGINEERING
-
II
SOLUTION
Weight of sludge= Solids / Solid fraction
= 1361 / 0.05
= 27220 kg
Water= 27220 –1361
= 25859 kg
= 25859 litre
Volatile Substances (V.S) = 0.7 x 1361 = 952 . 7 kg
Volume of V.S= 952.7 / 1.05= 907
Volume of Non V.S= 0.3 x 1361 / 2.5 = 163.3 litre
.: Volume of sludge= 25859 + 907 + 163.3
= 26929.3 litre

ENVIRONMENTAL ENGINEERING
-
II
DETAILS
Themostcommonmethodofpreparingdigestedsludgefor
finaldisposalisairdryingonsandbeds.Asanddryingbed
isshownbelow:-
5m
300 mm
150 –300 mm
200 –300 mm
Sludge Layer
Coarse Sand
Graded Gravel
Under drain
300 mm
RCC

ENVIRONMENTAL ENGINEERING
-
II
Itconsistof150–200mmdepthofcoarsesandunderlain
bylayerofgradedgravelrangingfrom3to6mmdiaattop
to20-40mmdiaatthebottom.Thetotalgravelthicknessis
300mm.
Thebottomofthebedslopetowardsunderdrains.The
underdrainconsistofdraintilesplacesupontrencheswith
openbedsectionsareconcrete.Afreeboardof300mmis
given

ENVIRONMENTAL ENGINEERING
-
II
Bedsare6to10mwideandupto40mlong.Atleasttwo
bedsmustbeprovidedineventhesmallestplants.
Dewateringoccurasaresultofdrainageandevaporation
andisheavilydependentuponCLIMATE.Coveringdrying
bedswithglassofplasticsheetsishelpfulinwetclimates.

ENVIRONMENTAL ENGINEERING
-
II
Operation of sludge drying bed
Thebedsareoperatedbyfillingwithdigestedsludgetoa
depthof200to300mm.asmallamountofsandmaybelost
witheachdryingcycle.Thetimerequiredfordewatering
mayrangefromseveralmonthstoafewweeksdepending
upontheclimateconditions.
DESIGN
- Arearequirement 0.2m
2
/person
- Commondimensions10mx40m
- Minimumno.ofunits2
- Reductioninsludgevol.60%

ENVIRONMENTAL ENGINEERING
-
II
Problem(Sludge Drying Beds)
Estimatethesizeofsludgedryingbedsforasewageflowof
19000m
3
/dwithaBODof200mg/l.

ENVIRONMENTAL ENGINEERING
-
II
Solution
BOD contributed/capita/day =80 g BOD/Person/day
.: Population equipment= 19000 x 200 / 80
= 47500 person
Per person area required= 0.2 m
2
.: Total area required= 47500 x 0.2
= 95000 m
2
Let area of one bed= 10 x 40 = 400m
2
.: No of beds required= 9500 / 400
= 23.75
= 24 beds

ENVIRONMENTAL ENGINEERING
-
II
Design Parameters for Septic Tank
DetentionTime : 24–48hr
L:W : 3:1
Depth : 1–1.5m
SludgeCapacity : 0.04m
3
/person/year
DesludgingPeriod : 1–2years
Effluentdisposal : Throughsoakagepit

ENVIRONMENTAL ENGINEERING
-
II
Diagram:
Manhole
Compartment
Baffle
Vent Pipes
(Gases)
Sludge
Sludge
1
st
Comp (2/3 Length) 2
nd
Comp (1/3 length)
L

ENVIRONMENTAL ENGINEERING
-
II
SOAKAGE PIT
Intheabsenceofanysewagecollectionsystem,theeffluent
fromseptictankcanbedisposedinaSOAKAGEPIT.Itisa
circularpitinwhichwaterisabsorbedinthesurrounding
soils.
DesignParameters:
1.Bottomabovewatertable=atleast10’
2.Awayfromwells =atleast50’
3.Diameter =6‘–12’
4.Depth =10’–20’
5.Distancebetweentwopits=3timesdiameteroflarger
pit

ENVIRONMENTAL ENGINEERING
-
II
DESIGN OF SOAKAGE PIT
Soil Applicationretentionm
3
/m
3
–day
Coarsetomediumsand 0.049
Finesand,loamysand 0.032
Sandyloamandloam 0.024
Siltloam 0.018
Siltyclay 0.001

ENVIRONMENTAL ENGINEERING
-
II
DESIGN OF SEPTIC TANK
CAPACITY:
Detentiontime= 48hrs
Sludge = 0.04m
3
/person/year
1.SludgeCapacity.
A=Pnfs(litre)
Where
P= No.ofperson
n= No.ofyearsbetweendesludging(Normally3years)
f= Factorrelatedtoambienttemp.
(forPakistanf=1.0for3yearsdesludgingperiod)
s= Rateofsludgeandscumaccumulation
take0.04m
3
/person/years(40liter)

ENVIRONMENTAL ENGINEERING
-
II
2.Capacityforliquidretention
B = Prq(liters)
Where
P= Persons
q= Averageflowlitre/dayofsewage
r= Minimumretentiontime(indays)forsewagein
tankjustbeforedesludgingiscarriedout(At
least1-day)
3.TotalCapacity= A+B

ENVIRONMENTAL ENGINEERING
-
II
SHAPE & DIMENSION
L : W= 3 : 1
Depth= 1.22 –1.83 m

ENVIRONMENTAL ENGINEERING
-
II

ENVIRONMENTAL ENGINEERING
-
II
INLET&OUTLET
DiameterShouldnotlessthan4”
Slopeshouldnotbelessthan1.5%
GASDEFLECTIONDEVICE

ENVIRONMENTAL ENGINEERING
-
II
VENTILATIONARRANGEMENT
Heightaboveground= 10’
ACESS&INSPECTION
Manholesatbothinletandoutlet
CONSTRUCTIONMATERIAL
R.C.Cbeusedinletandoutletshouldbeproperlysealed

ENVIRONMENTAL ENGINEERING
-
II
INSTALLATION
Mostimportantismaintenanceofpropergrades.Checkfor
watertightness.
PERIODICMAINTENANCE
Desludgingbedoneaftersomeperiod.Neverclean
completely.Leavesomesludgeinsideaftercleaning.

ENVIRONMENTAL ENGINEERING
-
II
DISPOSAL OF WASTEWATER ON LAND
AND WATER BODIES
Liquidwastesmaybedisposedofinanumberofways
(beforegivingatleastsecondaryleveltreatment)
-SurfaceWaters(Rivers,Lakesetc)
-Onland

ENVIRONMENTAL ENGINEERING
-
II
DISPOSAL IN SURFACE WATERS
Innaturalstreams,thereisabalancebetweenplantand
animallife,withconsiderableinteractionamongthevarious
lifeforms.Watersofgoodqualityarecharacterizeby
multiplicityofspecieswithnodominance.
Organicmatterwhichentersthestreamisbrokendownby
bacteriatoammonia,nitrates,sulphates,carbondioxideetc,
whichareusedbyplantsandalgaetoproducecarbohydrates
andoxygen.

ENVIRONMENTAL ENGINEERING
-
II
Introductionofexcessivequantitiesofwastematerialcan
upsetthecyclebycausingrapidbacterialgrowthand
resultingdepletionofdissolvedoxygeninthestream.
Pollutedwatersarecharacterizedbyverylargenumberof
relativelyfewspecies.
Disposalofwastewaterinastreamshouldbethusregulated
withrespecttobothquantityandconcentrationinorderto
safeguardtheaquaticlifeanddesirablewateruse.Thus
thereisalimitontheamountofliquidwaste.Thatcanbe
disposedofinawaterbody,whichiscalledtheassimilative
capacityofthatwaterbody.

ENVIRONMENTAL ENGINEERING
-
II
ASSIMILATIVECAPACITYcanthusbedefinedasthe
amountofwastewaterthatcanbedisposedofinthewater
bodyanditcanbesafelystabilizedwhilemaintainingthe
desiredwaterquality.
Sinceacertainamountofwastewatercanbedischargedinto
areceivingwaterbody,itmaybehighlyun-economicalto
outlawthewastedischarges.However,excessivedischarges
willimpairthestreamwaterquality.

ENVIRONMENTAL ENGINEERING
-
II
ON-LAND DISPOSAL WASTEWATER
Atreatment,atleasttosecondarylevelmustbegiven
priortoLANDDISPOSAL.Thisisnecessaryduetothe
followingreasons.
1.ToreducestressuponSOILSYSTEM
2.ToreduceproductionofNUISANCECONDITION

ENVIRONMENTAL ENGINEERING
-
II
ON-LAND DISPOSAL WASTEWATER
Followingmethodsmaybeemployedforon-land
disposalofWastewater.
1. SPRAYIRRIGATION
2. RAPIDINFILTERATION
3. OVERLANDRUNOFF
ForGROUNDWATERRECHARGE,wastewateris
dischargedintolargebasinsUNDERLAINBYSAND
andSOILofhighpermeability.Thebottomofbasinis
coveredbyBERMUDA GRASS toabsorb
NUTRIENTS.

ENVIRONMENTAL ENGINEERING
-
II
Overland Runoff / Flow
Itisnotatruedisposalsystemsincethewastewatermustbe
collectedafterpassageoversoil.Thisisinfectamethodof
TERTIARYTREATMENTofwastewaterstofurtherreduce
itsBODandnutrientlevels.Thegrassesareplantedonthe
groundoverwhichsewageflow.

ENVIRONMENTAL ENGINEERING
-
II
Wastewater Irrigation
Beginning,littleconsiderationwentintohealthhazards
relatedwithrawsewageirrigationcontainingpathogenic
andparasiteorganisms.
After1945,standardsweresetforthefirsttimeforWaste
Watertobeusedforirrigation.TheinteractinWastewater
reuseguidedmomentumandinmaycountriesconcrete
effortsweremadeinthisdirectione.g
- Khartoum:2800hagreenbeltwasirrigated
withtreatedWastewater.

ENVIRONMENTAL ENGINEERING
-
II
Wastewater Irrigation
- MexicoCity: 100,000hagrainandfodder
irrigatedwithtreatedWastewater.
- Melbourne:Agriculturefarmswith10,000ha
landirrigatedwithtreatedwastewater,where
50,000sheepand20,000cattlegraze.

ENVIRONMENTAL ENGINEERING
-
II
InPakistanrawWastewaterisusedtoirrigate800ha,2000ha
and2500halandinLahore,HyderababdandFaisalabad
respectively.
AlthoughWastewaterreusehasbeenpracticedmorewidelyin
developingcountriesoverthepast30years,muchofitis
UNPLANNED andUNCONTROLLED andposesathreatto
publichealth.Theserisksmustbefullyunderstoodand
appropriatedmeasurestakentoprovideTECHNICALLY
FEASIBLEandECONOMICALLY ATTRACTIVEsolutionso
thatpubliccanreapthefullbenefitofWastewaterreusedwithout
sufferingharmfuleffects.

ENVIRONMENTAL ENGINEERING
-
II PUBLIC HEALTH RISK ASSOCIATED WITH
RAW SEWAGE WASTEWATER
Thewastewaterstreamofacommunitycarriesfullspectrum
ofpathogenicmicroorganismsexertedinthefecesandurine
ofinfectedindividuals.Theirconcentrationis:
- Manymillions/litreforbacteria
- Thousands/litreforviruses
- Fewhundred/litreforhelminthseggs
Mostexertedpathogenscansurviveintheenvironmental
longenoughtobetransportedbythewastewatertothe
fields.Theirdieawayrateindescendingorderis
HELMINTHS,BACTERIAandVIRUSES.

ENVIRONMENTAL ENGINEERING
-
II
Healthriskishighforpeopleusingsaladsandvegetables
EATENUNCOOKED andirrigatedwithRAWSEWAGE.
Suchpeopleareexposedtofollowingdiseasesarrangedin
descendingorderoftheirchanceofoccurrence.
- Helminth(Worm)disease
- Cholera
- Typhoid
SimilarlySEWAGEFARMWORKERSarealsoexposedto
abovediseases.However,evidenceofbacterialandviral
diseasesamongthemislimited.
Thereisnodemonstratedrisktopeopleclosetosewage
irrigatedsites.

ENVIRONMENTAL ENGINEERING
-
II
W.H.O Guidelines*
Parameters Value
HelminthEggs ≤ 1/litre
FecalColiform ≤ 1000/100ml
*forirrigationofcorpslikelytobeeatenuncooked,sports
fields,publicparks.

ENVIRONMENTAL ENGINEERING
-
II USE OF TREATED SEWAGE
EFFLUENTS FOR IRRIGATION
Allthehumanandanimalmanurewhichtheworldlosesby
dischargeofsewagetoreviewinreturnedtotheland,
insteadofbeingthrownintothesea,shouldsuffertonourish
theworld”(VictorHugo,1868)
Theuseofwastewaterforirrigationarosewiththedesireto
prevent
- Pollutioninriversthusprotectingsurfacewater
quality
- Configure water and nutrientsto
AGRICULTURE
- Inaridandsemiaridareas.

ENVIRONMENTAL ENGINEERING
-
II
HISTORY
UseofWastewaterforirrigationpurposecanbetracedbackto
1880s.UK,France,Germany,Australia,Mexicopracticedit.
However,inthebeginninglittleconsiderationwentintothe
healthhazardsrelatedwiththeuseofrawdomesticsewage
usuallycontainingpathogenic&parasiteorganisms.
After1945,Wastewatertreatmentanddisposalthroughland
applicationgainedincreasingalteration.Theusewas
formalizedbysettingstandardsfortheeffluentforirrigation
use.EffortsweremadeatGovtlevelonitisUNPLANNED
andUNCONTROLLED andposesathreattopublichealth.
Theserisksmustbeunderstoodandappropriatemeasures
takentoprovidetechnicallyfeasibleandeconomically
alternatesolutionssothatpubliccanreapthefullbenefitsof
wastewaterwithoutsufferingharmfuleffects.

ENVIRONMENTAL ENGINEERING
-
II
Environmental Impact
Assessment (EIA)

ENVIRONMENTAL ENGINEERING
-
II
ENVIRONMENTAL ASSESSMENT (EA)
EAhasbecomeestablishedworldwideasanenvironmental
managementtoolusedbygovernmentagencies,companies
andotherorganisationstoidentifypredictandevaluatethe
potentialphysical,biologicalandsocialeffects/impactsof
theprojectsandotherdevelopmentactions.

ENVIRONMENTAL ENGINEERING
-
II
TERMINOLOGY
EAorEIA–Environmentalassessmentorenvironmental
impactassessmentarethetermsusedtodescribetheoverall
process.
1.ManycountrieslikePakistanusethetermEIA
2.WorldBankhastheproceduresforEA
3.UKusethetermEA,particularly,toavoidthe
impressiontheprocessisrestricttotheanalysisof
negativeimpacts.
ESorEIS–EnvironmentalstatementorEnvironmental
ImpactStatementdescribethewrittenreportarisingfromthe
studies.

ENVIRONMENTAL ENGINEERING
-
II
DEFINITION
“Wheneverthereisaplannedactivity,itwillcausesome
impacts/effectsontheenvironment,theassessmentofthese
impactsiscalledEIA”.
IMPACT:Effectofonethingonanother
ENVIRONMENTAL IMPACT:Thechangeinenvironment
parameter,overaspecifiedperiodandwithinadefinedarea,
resultingfromaparticularactivitycompoundwiththe
situationwhichwouldhaveoccurredhadtheactivitynot
beeninitiated.

ENVIRONMENTAL ENGINEERING
-
II
PLANNED ACTIVITY
-DAM
-High way
-Air Port
-Building
-Etc
ENVIRONMENT
-Physical
-Land
-Water
-Air
-Biological
-Flora
-Fauna
-Social
-Human
Assessment
Procedures
Methods
IMPACT

ENVIRONMENTAL ENGINEERING
-
II
Project Disposal
Is EIA required?
What are key issues?
Baseline data collection
Potential Env Impacts
Analysis Env Alternates
Mitigation Measures
Prepare EIS
Env Monitoring
Screening
Scoping
Identifications & Analysis of
Information
Present Findings
Post Project analysis

ENVIRONMENTAL ENGINEERING
-
II
SCREENING
Screeningprocedureincludebothprojectandenvironment
criteria/thresholds.
-thecriteriaisbasedonthescaleandsizeoftheproject
proposal,thenatureoftheactivitiesandsensitivityofthe
environmentalsetting
-Procedureforscreeningarecurrentlyinpracticein
Malaysia,Thailand,othercountriesi..eUKetc.
Forexample:
- Thermalpowerplantofmorethen300MW–
MANDATORY RequiredEIA.

ENVIRONMENTAL ENGINEERING
-
II
UKregulations;statesthatnewroadschemesmayrequired
EIAiftheirlengthexceeds1KMandtheirroutepasses
throughaNationalParkofthroughorwithin100mofa
conservationarea.

ENVIRONMENTAL ENGINEERING
-
II Two-Stage Screening Procedure
All Projects
No requirement of
EIA
Req of EIA is
uncertain
Mandatory req of
EIA
IEE “Preliminary
Assessment”
IEE is sufficient EIA should be
carried out
Initial Screening
Secondary Screening

ENVIRONMENTAL ENGINEERING
-
II
BASELINE CONDITIONS
Baselineconditionsdefinethecharacteristicsoftheexisting
andshapeprojectedfutureconditions,assumingnoproject
isundertaken.
BASELINEDATACOLLECTION
Dataaboutthephysical,biologicalandculturalenvironment
iscollected.
PHYSICALENVIRONMENT
Includesallsuchmajorareasastopography,soil&geology,
hydrology,airquality&Noiselevels

ENVIRONMENTAL ENGINEERING
-
II
BIOLOGICALENVIRONMENT
Referstofloraandfaunaofthearea,includingaspecifiedof
trees,gasses,fish,birds.Specificreferenceshouldbemade
toendangeredplantsandanimals.
CULTURALENVIRONMENT
Includeshumanpopulation,trendsandpopulation
distribution,historicsite,publicfacilities,i.e.schools,
hospitals,mosques,percapitaincome,commercialactivities
etc.

ENVIRONMENTAL ENGINEERING
-
II ANALYSIS OF POTENTIAL
ENVIRONMENTAL IMPACTS
Environmentalimpactanalysisconsistsofcomparingthe
expectedchangesinthephysical,biologicalandcultural
environmentwithandwithouttheproject.
IMPACTCHARACTERISTICS
1. MagnitudeofImpacts
2. DirectionofImpacts