This slide explains the concept of a transform in the better way or beginners
natureshorts193
2 views
38 slides
Oct 31, 2025
Slide 1 of 38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
About This Presentation
This is a brief course of Applied physics d Digital signal processing and book followed by prokais
Size: 5.35 MB
Language: en
Added: Oct 31, 2025
Slides: 38 pages
Slide Content
App. Phys. 602: Digital Signal Processing 2. Inverse Z Transform Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 1 The Z Transform
10/06/2022 Digital Signal Processing – 602, Semester – VIII, 2021 1. The Z Transform 2 Powerful tool for analyzing & designing DT systems Generalization of the DTFT: z is complex ... z = e j → DTFT G ( z ) Z g n g [ n ] z n n Z Transform g n r e n j n n z = r · e j → DTFT of r -n · g [ n ]
Region of Convergence (ROC) Critical question: converge (to a finite value)? In general, depends on the value of z → Region of Convergence : Portion of complex z -plane for which a particular G ( z ) will converge x [ n ] z n n Does summa t ion G ( z ) z -plane R e { z } I m { z } ROC | z | > λ λ Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 4
R O C Example e.g. x [ n ] = ∏ n µ [ n ] ∑ converges only for | z -1 | < 1 i.e. ROC is | z | > | | | | < 1 (e . g. . 8) - f ini t e energy sequence | | > 1 (e . g. 1 . 2) - divergent sequence, infinite energy, DTFT does not exist but still has ZT when | z | > 1.2 (in ROC) n z n n X ( z ) 1 1 z 1 (previous slide) n 1 2 3 4 -2 -1 “closed form” when | z -1 | < 1 R e { z } Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 5 I m { z } λ
About ROCs ROCs always defined in terms of | z | → circular regions on z -plane (inside circles/outside circles/rings) If ROC includes unit circle ( | z | = 1 ), → g [ n ] has a DTFT (finite energy sequence) z -plane R e { z } I m { z } Unit circle lies in ROC → DTFT OK Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 7
Ano t her R O C example Anticausal (left-sided) sequence: Same ZT as n µ [ n ] , different sequence? x n n n 1 n 1 2 3 4 -5 -4 -3 -2 -1 X z n n 1 z n n n 1 m z m m 1 1 z n z n 1 1 1 1 z 1 z 1 ROC: | λ | > | z | Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 8
ROC is necessary! A closed-form expression for ZT must specify the ROC : x [ n ] = n µ [ n ] ROC | z | > | | ROC | z | < | | several sequences with different ROCs X ( z ) 1 1 z 1 x [ n ] = - n µ [- n- 1] X ( z ) 1 1 z 1 n 1 2 3 4 -4 -3 -2 -1 z -plane Re Im λ n -4 -3 -2 -1 1 2 3 4 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 9 A single G ( z ) expression can ma t ch D TF T s?
Rational Z-transforms G ( z ) expression can be any function; rational polynomials are important class: By convention, expressed in terms of z -1 – matches ZT definition (Reminiscent of LCCDE expression...) G z P z D z 1 p p 1 z p M 1 M z ( M 1 ) p z M d d z 1 d 0 1 N 1 N z ( N 1 ) d z N Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 10
F ac t ored ra t ional Z T s Numerator, denominator can be factored : { } are roots of numerator → G ( z ) = → { } are the zeros of G ( z ) { } are roots of denominator → G ( z ) = ∞ → { } are the poles of G ( z ) G z 1 p M 1 z 1 1 d N 1 z 1 1 z M p M z 1 z N d N z Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 11
Pole-zero diagram Can plot poles and zeros on complex z -plane: (Value of) expression determined by roots z -plane R e { z } I m { z } × o o o o × × poles (cpx conj for real g [ n ] ) zeros Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 12
Z-plane surface Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 13 G ( z ) : cpx function of a cpx variable Can calculate value over entire z-plane M ROC not shown ! !
− 1 − 0.5 0.5 1 − 1 − 0.5 0.5 1 10 8 6 4 2 R O Cs and sidedness Each ZT pole → region in ROC outside or inside | | for R / L sided term in g [ n ] Overall ROC is intersection of each term’s 1 1 z 1 z -p la ne λ Two sequences have: G ( z ) RO C | z | > | | → g [ n ] = n µ [ n ] n RO C | z | < | | → n g [ n ] = - µ [- n- 1] n L E F T -S I DED Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 14 R IG H T -S I DED ( | | < 1 )
ZT is Linear Thus, if then n G ( z ) Z g n g [ n ] z n Z Transform y [ n ] n [ n ] n [ n ] 1 1 2 2 Y ( z ) 1 1 1 z 1 2 2 1 z 1 y [ n ] = g [ n ] + h [ n ] Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 15 → Y ( z ) = ∑ ( g [ n ] + h [ n ] ) z - n = ∑ g [ n ] z - n + ∑ h [ n ] z - n = G ( z ) + H ( z ) ROC: z > λ 1 , λ 2 Linear
G ( z ) 1 1 1 z 1 1 2 1 z 1 ROC intersections Consider wit h | 1 | < 1 , | 2 | > 1 ... Two possible sequences for 1 term... Similarly for 2 ... no ROC specified n or n µ [ n ] - 1 n µ [- n -1] n n n → 4 possible g [ n ] seq’s and ROCs ... - n µ [- n -1] Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 16 n µ [ n ] or
ROC intersections: Case 1 ROC: | z | > | 1 | and | z | > | 2 | Im Im Re λ λ G ( z ) 1 1 1 2 1 z 1 1 z 1 n g [ n ] = n µ [ n ] + n µ [ n ] 1 2 both right -sided: Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 17
ROC intersections: Case 2 Im Im Re λ λ G ( z ) 1 1 1 2 1 z 1 1 z 1 n Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 18 both left -sided: ROC: | z | < | 1 | and | z | < | 2 |
ROC intersections: Case 3 ROC: | z | > | 1 | and | z | < | 2 | Im Im Re λ λ G ( z ) 1 1 1 2 1 z 1 1 z 1 n g [ n ] = n µ [ n ] - n µ [- n -1] 1 2 two -sided: Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 19
ROC intersections: Case 4 ROC: | z | < | 1 | and | z | > | 2 | ? Re λ λ Im G ( z ) 1 1 1 2 1 z 1 1 z 1 n g [ n ] = - 1 n µ [- n -1] + 2 n µ [ n ] Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 20 two -sided: no ROC → ...
ROC intersections Note: Two-sided exponential No overlap in ROCs → ZT does not exist (does not converge for any z ) g n n n n n n 1 - < n < ROC | z | > | | ROC | z | < | | Re α Im n Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 21
ZT of LCCDEs LCCDEs have solutions of form: LCCDE sol’ns are right-sided → R O Cs are | z | > | i | c i i n y [ n ] n ... c Hence Z T Y z i i Each term i n in g [ n ] corresponds to a pole i of G ( z ) ... and vice versa 1 z 1 (same s) ou ts id e circles Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 22
Z -plane and D TF T Slice between surface and unit cylinder ( | z | = 1 → z = e j ) is G ( e j ) , the DTFT | G ( e j )| z = e j º / r a d / s am p Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 23
Some common Z transforms g [ n ] G ( z ) ROC Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 24
Z Transform properties Conjugation g [ n ] — G ( z ) w/ROC R g g * [ n ] G * ( z * ) R g Time reversal Time shift Exp. scaling g [- n ] G (1/ z ) 1/ R g g [ n - n ] z - n G ( z ) R g (0/ ∞ ?) α n g [ n ] G ( z/ α ) α R g Diff. wrt z ng [ n ] R g (0/ ∞ ?) z d G ( z ) dz Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 25
Z Transform properties Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 26
ZT Example can express as 1 2 n j n re re j 0 0 n x n r n cos n n ; v n v n * v [ n ] = 1 / 2 µ [ n ] α n ; α = r e j → V ( z ) = 1 / (2(1- r e j z -1 )) ROC: | z | > r Hence, X z V z V * z * 1 2 1 j 1 1 j 1 re z 1 re z 1 1 r c o s z 1 1 2 r cos z r z 1 2 2 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 27
Another ZT example y n n 1 n n x [ n ] n x [ n ] where x [ n ] = n µ [ n ] X z ( | z | > | | ) 1 1 z 1 z dX z dz z 1 d dz 1 z 1 z 1 ( 1 z ) 1 2 Y z ROC | z | > | | 1 1 z 1 z 1 ( 1 z 1 2 ) ( 1 z ) 1 1 2 repeated root - IZT Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 28
2. Inverse Z Transform (IZT) Forward z transform was defined as: Generalization of inverse DTFT Power series in z (long division) Manipulate into recognizable pieces (partial fractions) G ( z ) Z g n g [ n ] z n n 3 approaches to inverting G ( z ) to g [ n ] : the useful one Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 29
IZT #1: Generalize IDTFT Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 30
IZ T #2: Long division if we could express G ( z ) as a simple power series G ( z ) = a + bz -1 + cz -2 ... then can just read off g [ n ] = { a , b , c , ...} Typically G ( z ) is right-sided (causal) and a ra t ional polynomial G z P ( z ) D ( z ) Can expand as power series through long division of polynomials g [ n ] z n n Since G ( z ) Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 31
IZ T #2: Long division Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 32 Procedure: Express numerator, denominator in descending powers of z (for a causal fn) Find constant to cancel highest term → first term in result Subtract & repeat → lower terms in result Just like long division for base-10 numbers
IZ T #2: Long division e.g. H z 1 2 z 1 1 0. 4 z 0.1 2 z 1 2 1 1. 6 z 1 0.5 2 z 2 0. 4 z 3 ... 1 0. 4 z 1 0.1 2 z 2 ) 1 2 z 1 1 0. 4 z 1 0.1 2 z 2 1. 6 z 1 0.1 2 z 2 1. 6 z 1 0.6 4 z 2 0.19 2 z 3 0.5 2 z 2 0.19 2 z 3 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 33 ... Result
IZT#3: Partial Fractions Basic idea: Rearrange G ( z ) as sum of terms recognized as simple ZTs especially or sin/cos forms i.e. given products rearrange to sums 1 1 z 1 n n P ( z ) 1 z 1 1 z 1 A B 1 z 1 1 z 1 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 34
Partial Fractions Can do the reverse i.e. go from order 3 polynomial P ( z ) N 1 ( 1 z 1 ) 1 1 z 1 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 35 t o N else cancel if order of P ( z ) is less than D ( z ) w/ long div.
Partial Fractions Procedure: i.e. evaluate F ( z ) at the pole but multiplied by the pole term denominator) → dominates = residue of pole F ( z ) P ( z ) 1 N ( 1 z 1 ) where 1 z 1 F z N 1 1 z 1 z n n 1 f n N order N -1 (cancels term in no repeated poles! Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 36
Partial Fractions Example G iven H z (again) factor: where: 1 2 z 1 1 0. 4 z 0.1 2 z 1 2 1 2 z 1 1 0. 6 z 1 1 0. 2 z 1 1 1 0. 6 z 1 2 1 0. 2 z 1 1 1 0. 6 z 1 H z z 0.6 1 2 z 1 1 0. 2 z 1 z 0.6 1.75 2 1 2 z 1 1 0. 6 z 1 z 0.2 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 37 2.75
Partial Fractions Example Hence H z If we know ROC | z | > | | i.e. h [ n ] causal: h n 1.7 5 0. 6 n n 2.7 5 0. 2 n n = –1.75{ 1 -0.6 0.36 -0.216 ...} +2.75{ 1 0.2 0.04 0.008 ...} = {1 1.6 -0.52 0.4 ...} 1 1.75 2.75 1 0. 6 z 1 0. 2 z 1 same as long division! Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 38