This slide explains the concept of a transform in the better way or beginners

natureshorts193 2 views 38 slides Oct 31, 2025
Slide 1
Slide 1 of 38
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38

About This Presentation

This is a brief course of Applied physics d Digital signal processing and book followed by prokais


Slide Content

App. Phys. 602: Digital Signal Processing 2. Inverse Z Transform Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 1 The Z Transform

10/06/2022 Digital Signal Processing – 602, Semester – VIII, 2021 1. The Z Transform 2  Powerful tool for analyzing & designing DT systems Generalization of the DTFT:  z is complex ... z = e j  → DTFT   G ( z )  Z  g  n     g [ n ] z  n n  Z Transform   g n r e  n  j  n n z = r · e j  →  DTFT of r -n · g [ n ]

Region of Convergence (ROC) Critical question: converge (to a finite value)?  In general, depends on the value of z  → Region of Convergence : Portion of complex z -plane for which a particular G ( z ) will converge x [ n ] z  n n   Does summa t ion G ( z )    z -plane R e { z } I m { z } ROC | z | > λ λ Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 4

R O C Example e.g. x [ n ] = ∏ n µ [ n ] ∑ converges only for |  z -1 | < 1 i.e. ROC is | z | > |  |  |  | < 1 (e . g. . 8) - f ini t e energy sequence |  | > 1 (e . g. 1 . 2) - divergent sequence, infinite energy, DTFT does not exist but still has ZT when | z | > 1.2 (in ROC)   n z  n  n    X ( z )   1 1   z  1 (previous slide) n 1 2 3 4 -2 -1 “closed form” when |  z -1 | < 1 R e { z } Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 5 I m { z } λ

About ROCs ROCs always defined in terms of | z | → circular regions on z -plane (inside circles/outside circles/rings) If ROC includes unit circle ( | z | = 1 ), → g [ n ] has a DTFT (finite energy sequence) z -plane R e { z } I m { z } Unit circle lies in ROC → DTFT OK  Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 7

Ano t her R O C example Anticausal (left-sided) sequence:  Same ZT as  n µ [ n ] , different sequence? x  n     n    n  1  n 1 2 3 4 -5 -4 -3 -2 -1 X  z   n         n  1 z  n n    n    1      m z m m  1       1 z   n z  n 1 1 1    1 z 1   z  1 ROC: | λ | > | z | Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 8

ROC is necessary! A closed-form expression for ZT must specify the ROC : x [ n ] =  n µ [ n ] ROC | z | > |  | ROC | z | < |  |  several sequences with different ROCs  X ( z )  1 1   z  1 x [ n ] = -  n µ [- n- 1]  X ( z )  1 1   z  1 n 1 2 3 4 -4 -3 -2 -1 z -plane Re Im  λ  n -4 -3 -2 -1 1 2 3 4 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 9 A single G ( z ) expression can ma t ch D TF T s?

Rational Z-transforms G ( z ) expression can be any function; rational polynomials are important class:  By convention, expressed in terms of z -1 – matches ZT definition (Reminiscent of LCCDE expression...)  G  z   P  z  D  z    1 p  p 1 z    p M  1 M z  ( M  1 )  p z  M  d  d z 1    d 0 1 N  1 N z  ( N  1 )  d z  N Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 10

F ac t ored ra t ional Z T s Numerator, denominator can be factored :  {   } are roots of numerator → G ( z ) = → {   } are the zeros of G ( z ) {   } are roots of denominator → G ( z ) = ∞ → {   } are the poles of G ( z )  G  z     1 p  M  1    z  1    1 d  N  1   z  1      1  z M p  M  z      1 z N d  N  z     Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 11

Pole-zero diagram Can plot poles and zeros on complex z -plane:  (Value of) expression determined by roots z -plane R e { z } I m { z }  × o o o o × × poles   (cpx conj for real g [ n ] ) zeros   Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 12

Z-plane surface Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 13 G ( z ) : cpx function of a cpx variable Can calculate value over entire z-plane M ROC not shown ! !

− 1 − 0.5 0.5 1 − 1 − 0.5 0.5 1 10 8 6 4 2 R O Cs and sidedness  Each ZT pole → region in ROC outside or inside |  | for R / L sided term in g [ n ] Overall ROC is intersection of each term’s 1 1   z  1 z -p la ne  λ  Two sequences have: G ( z )  RO C | z | > |  | → g [ n ] =  n µ [ n ] n RO C | z | < |  | → n g [ n ] = -  µ [- n- 1] n L E F T -S I DED Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 14 R IG H T -S I DED ( |  | < 1 )

ZT is Linear   Thus, if then  n G ( z )  Z  g  n     g [ n ] z  n Z Transform y [ n ]    n  [ n ]    n  [ n ] 1 1 2 2 Y ( z )  1 1 1   z  1    2 2 1   z  1 y [ n ] =  g [ n ] +  h [ n ] Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 15 → Y ( z ) = ∑ (  g [ n ] +  h [ n ] ) z - n = ∑  g [ n ] z - n + ∑  h [ n ] z - n =  G ( z ) +  H ( z ) ROC:  z  >  λ 1  ,  λ 2  Linear 

G ( z )  1 1 1   z  1  1 2 1   z  1 ROC intersections Consider wit h |  1 | < 1 , |  2 | > 1 ...  Two possible sequences for  1 term...  Similarly for  2 ... no ROC specified n or   n µ [ n ] -  1 n µ [- n -1] n n n → 4 possible g [ n ] seq’s and ROCs ... -   n µ [- n -1]  Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 16  n µ [ n ] or

ROC intersections: Case 1 ROC: | z | > |  1 | and | z | > |  2 | Im Im Re  λ    λ   G ( z )   1 1 1 2 1   z  1 1   z  1 n g [ n ] =  n µ [ n ] +  n µ [ n ] 1 2 both right -sided: Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 17

ROC intersections: Case 2 Im Im Re  λ    λ   G ( z )   1 1 1 2 1   z  1 1   z  1 n Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 18 both left -sided: ROC: | z | < |  1 | and | z | < |  2 |

ROC intersections: Case 3 ROC: | z | > |  1 | and | z | < |  2 | Im Im Re  λ    λ   G ( z )   1 1 1 2 1   z  1 1   z  1 n g [ n ] =  n µ [ n ] -  n µ [- n -1] 1 2 two -sided: Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 19

ROC intersections: Case 4 ROC: | z | < |  1 | and | z | > |  2 | ? Re  λ    λ   Im G ( z )   1 1 1 2 1   z  1 1   z  1 n g [ n ] = -  1 n µ [- n -1] +  2 n µ [ n ] Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 20 two -sided: no ROC → ...

ROC intersections Note: Two-sided exponential  No overlap in ROCs → ZT does not exist (does not converge for any z ) g  n    n   n   n    n    n  1  -  < n <  ROC | z | > |  | ROC | z | < |  | Re  α  Im n Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 21

ZT of LCCDEs LCCDEs have solutions of form:    LCCDE sol’ns are right-sided → R O Cs are | z | > |  i | c i i n   y [ n ]     n  ... c   Hence Z T Y z   i i Each term  i n in g [ n ] corresponds to a pole  i of G ( z ) ... and vice versa 1   z  1   (same  s) ou ts id e circles Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 22

Z -plane and D TF T Slice between surface and unit cylinder ( | z | = 1 → z = e j  ) is G ( e j  ) , the DTFT | G ( e j  )| z = e j  º  / r a d / s am p Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 23

Some common Z transforms g [ n ] G ( z ) ROC Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 24

Z Transform properties Conjugation g [ n ] — G ( z ) w/ROC R g g * [ n ] G * ( z * ) R g Time reversal Time shift Exp. scaling g [- n ] G (1/ z ) 1/ R g g [ n - n ] z - n G ( z ) R g (0/ ∞ ?) α n g [ n ] G ( z/ α )  α  R g Diff. wrt z ng [ n ] R g (0/ ∞ ?)  z d G ( z ) dz Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 25

Z Transform properties Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 26

ZT Example can express as  1 2  n   j  n re  re  j  0 0     n x  n   r n cos   n    n  ;        v n  v n *     v [ n ] = 1 / 2 µ [ n ] α n ; α = r e j  → V ( z ) = 1 / (2(1- r e j  z -1 )) ROC: | z | > r Hence, X  z   V  z   V *  z *   1 2 1 j   1  1  j  1  re z 1  re z   1   1  r c o s    z  1   1  2 r cos  z  r z  1 2  2 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 27

Another ZT example y  n    n  1   n   n   x [ n ]  n x [ n ] where x [ n ] =  n µ [ n ] X  z   ( | z | > |  | ) 1 1   z  1   z dX  z  dz   z 1 d  dz  1   z     1    z  1 ( 1   z )  1 2  Y  z   ROC | z | > |  | 1 1   z  1   z  1 ( 1   z  1 2  ) ( 1   z ) 1  1 2 repeated root - IZT Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 28

2. Inverse Z Transform (IZT) Forward z transform was defined as:    Generalization of inverse DTFT Power series in z (long division) Manipulate into recognizable pieces (partial fractions)  G ( z )  Z  g  n     g [ n ] z  n n  3 approaches to inverting G ( z ) to g [ n ] : the useful one Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 29

IZT #1: Generalize IDTFT Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 30

IZ T #2: Long division if we could express G ( z ) as a simple power series G ( z ) = a + bz -1 + cz -2 ... then can just read off g [ n ] = { a , b , c , ...} Typically G ( z ) is right-sided (causal)  and a ra t ional polynomial G  z   P ( z )  D ( z ) Can expand as power series through long division of polynomials g [ n ] z  n n    Since G ( z )   Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 31

IZ T #2: Long division Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 32 Procedure:   Express numerator, denominator in descending powers of z (for a causal fn) Find constant to cancel highest term → first term in result Subtract & repeat → lower terms in result  Just like long division for base-10 numbers

IZ T #2: Long division e.g. H  z   1  2 z  1 1  0. 4 z  0.1 2 z  1  2 1  1. 6 z  1  0.5 2 z  2  0. 4 z  3 ... 1  0. 4 z  1  0.1 2 z  2 ) 1  2 z  1 1  0. 4 z  1  0.1 2 z  2 1. 6 z  1  0.1 2 z  2 1. 6 z  1  0.6 4 z  2  0.19 2 z  3  0.5 2 z  2  0.19 2 z  3 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 33 ... Result

IZT#3: Partial Fractions Basic idea: Rearrange G ( z ) as sum of terms recognized as simple ZTs especially or sin/cos forms  i.e. given products rearrange to sums 1 1   z  1   n   n  P ( z )  1   z  1   1   z  1   A  B 1   z  1 1   z  1   Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 34

Partial Fractions  Can do the reverse i.e. go from  order 3 polynomial P ( z )  N   1  ( 1   z  1 )     1 1    z  1 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 35 t o  N else cancel if order of P ( z ) is less than D ( z ) w/ long div.

Partial Fractions Procedure:  i.e. evaluate F ( z ) at the pole but multiplied by the pole term denominator) → dominates = residue of pole F ( z )  P ( z )   1  N  ( 1   z  1 ) where     1    z  1  F  z    N      1 1   z  1 z      n  n       1  f  n    N   order N -1 (cancels term in no repeated poles! Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 36

Partial Fractions Example G iven H  z   (again) factor:  where: 1  2 z  1 1  0. 4 z  0.1 2 z  1  2  1  2 z  1  1  0. 6 z  1   1  0. 2 z  1    1 1  0. 6 z  1   2 1  0. 2 z  1 1   1  0. 6 z  1   H z   z   0.6  1  2 z  1 1  0. 2 z  1 z   0.6   1.75 2   1  2 z  1 1  0. 6 z  1 z  0.2 Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 37  2.75

Partial Fractions Example Hence H  z   If we know ROC | z | > |  | i.e. h [ n ] causal:  h  n     1.7 5    0. 6  n   n    2.7 5   0. 2  n   n  = –1.75{ 1 -0.6 0.36 -0.216 ...} +2.75{ 1 0.2 0.04 0.008 ...} = {1 1.6 -0.52 0.4 ...}  1   1.75 2.75 1  0. 6 z 1  0. 2 z  1 same as long division! Digital Signal Processing – 602, Semester – VIII, 2021 10/06/2022 38