This presentation gives complete idea about time domain analysis of first and second order system, type number, time domain specifications, steady state error and error constants and numerical examples.
Size: 1.78 MB
Language: en
Added: Apr 08, 2020
Slides: 65 pages
Slide Content
By
Dr.K.Hussain
Associate Professor & Head
Dept. of EE, SITCOE
Time Domain Analysis
Standard Test Signals
•Thecharacteristicsofactualinputsignalsareasuddenshock,
asuddenchange,aconstantvelocity,andconstant
acceleration.
•Thedynamicbehaviorofasystemisthereforejudgedand
comparedunderapplicationofstandardtestsignals–an
impulse,astep,aconstantvelocity,andconstantacceleration.
•Theotherstandardsignalofgreatimportanceisasinusoidal
signal.
Standard Test Signals
•Impulse signal
–Theimpulsesignalimitatethe
suddenshockcharacteristicof
actualinputsignal.
–IfA=1,theimpulsesignalis
calledunitimpulsesignal.
0
t
δ(t)
A
00
0
t
tA
t
)(
Standard Test Signals
•Step signal
–Thestepsignalimitate
thesuddenchange
characteristicofactual
inputsignal.
–IfA=1,thestepsignalis
calledunitstepsignal
00
0
t
tA
tu
)(
0
t
u(t)
A
Standard Test Signals
•Ramp signal
–Therampsignalimitate
theconstantvelocity
characteristicofactual
inputsignal.
–IfA=1,therampsignal
iscalledunitramp
signal
00
0
t
tAt
tr
)(
0
t
r(t)
Standard Test Signals
•Parabolic signal
–Theparabolicsignal
imitatetheconstant
accelerationcharacteristic
ofactualinputsignal.
–IfA=1,theparabolic
signaliscalledunit
parabolicsignal.
00
0
2
2
t
t
At
tp
)(
0
t
p(t)
parabolic signal with slope A
p(t)
Unit parabolic signal
p(t)
Relation between standard Test Signals
•Impulse
•Step
•Ramp
•Parabolic
00
0
t
tA
t
)(
00
0
t
tA
tu
)(
00
0
t
tAt
tr
)(
00
0
2
2
t
t
At
tp
)( dt
d dt
d dt
d
Laplace Transform of Test Signals
•Impulse
•Step
00
0
t
tA
t
)( AstL )()}({
00
0
t
tA
tu
)( S
A
sUtuL )()}({
Laplace Transform of Test Signals
•Ramp
•Parabolic2
s
A
sRtrL )()}({ 3
)()}({
S
A
sPtpL
00
0
t
tAt
tr
)(
00
0
2
2
t
t
At
tp
)(
Time Response of Control Systems
System
•Thetimeresponseofanysystemhastwocomponents
•Transientresponse
•Steady-stateresponse.
•Timeresponseofadynamicsystemresponsetoaninput
expressedasafunctionoftime.
Time Response of Control Systems
•Whentheresponseofthesystemischangedfromequilibriumit
takessometimetosettledown.Thisiscalledtransientresponse.0 2 4 6 8 10 12 14 16 18 20
0
1
2
3
4
5
6
x 10
-3
Step Response
Time (sec)
Amplitude
Response
Step Input
Transient Response
Steady State Response
•Theresponseofthe
systemafterthetransient
responseiscalledsteady
stateresponse.
Time Response of Control Systems
•Transientresponsedependuponthesystempolesonlyandnot
onthetypeofinput.
•Itisthereforesufficienttoanalyzethetransientresponseusinga
stepinput.
•Thesteady-stateresponsedependsonsystemdynamicsandthe
inputquantity.
•Itisthenexaminedusingdifferenttestsignalsbyfinalvalue
theorem.
First order system
•Thefirstordersystemhasonlyonepole.
•WhereKistheD.CgainandTisthetimeconstant
ofthesystem.
•Timeconstantisameasureofhowquicklya1
st
ordersystemrespondstoaunitstepinput.
•D.CGainofthesystemisratiobetweentheinput
signalandthesteadystatevalueofoutput.1
Ts
K
sR
sC
)(
)(
Example 1
•Thefirstordersystemgivenbelow.13
10
s
sG)( 5
3
s
sG)( 151
53
s/
/
•D.Cgainis10andtimeconstantis3seconds.
•Forthefollowingsystem
•D.CGainofthesystemis3/5andtimeconstantis1/5
seconds.
Impulse Response of 1
st
Order System
•Consider the following 1
st
order system1Ts
K )(sC )(sR
0
t
δ(t)
11)()( ssR 1
Ts
K
sC)(
Impulse Response of 1
st
Order System
•Re-arrange following equation as1
Ts
K
sC)( Ts
TK
sC
/
/
)(
1
Tt
e
T
K
tc
/
)(
•Inordertocomputetheresponseofthesystemintimedomain
weneedtocomputeinverseLaplacetransformoftheabove
equation.at
Ce
as
C
L
1
Step Response of 1
st
Order System
•Consider the following 1
st
order system1Ts
K )(sC )(sR s
sUsR
1
)()( 1
Tss
K
sC)( 1
Ts
KT
s
K
sC)(
•InordertofindouttheinverseLaplaceoftheaboveequation,we
needtobreakitintopartialfractionexpansion
Step Response of 1
st
Order System
•Taking Inverse Laplace of above equation
1
1
Ts
T
s
KsC)(
Tt
etuKtc
/
)()(
•Where u(t)=1
Tt
eKtc
/
)(
1 KeKtc 63201
1
.)(
•When t=T (time constant)
Relation Between Step and impulse
response
•The step response of the first order system is
•Differentiating c(t) with respect to t yields
TtTt
KeKeKtc
//
)(
1
Tt
KeK
dt
d
dt
tdc
/)(
Tt
e
T
K
dt
tdc
/)(
Example 2
•Ifinitialconditionsarenotknownthenpartialfraction
expansionisabetterchoice12
6
SsR
sC
)(
)( 12
6
Ss
sC)( 1212
6
s
B
s
A
Ss s
sRsR
1
)(,)( input step a is since 50
66
12
6
.
ssSs t
etc
50
66
.
)(
Ramp Response of 1
st
Order System
•Consider the following 1
st
order system1Ts
K )(sC )(sR 2
1
s
sR)( 1
2
Tss
K
sC)(
•Therampresponseisgivenas
Tt
TeTtKtc
/
)(
Parabolic Response of 1
st
Order System
•Consider the following 1
st
order system1Ts
K )(sC )(sR 3
1
s
sR)( 1
3
Tss
K
sC)(
Therefore,
Second Order System
•Wehavealreadydiscussedtheaffectoflocationofpolesandzeroson
thetransientresponseof1
st
ordersystems.
•Comparedtothesimplicityofafirst-ordersystem,asecond-ordersystem
exhibitsawiderangeofresponsesthatmustbeanalyzedanddescribed.
•Varyingafirst-ordersystem'sparameter(T,K)simplychangesthespeed
andoffsetoftheresponse
•Whereas,changesintheparametersofasecond-ordersystemcan
changetheformoftheresponse.
•Asecond-ordersystemcandisplaycharacteristicsmuchlikeafirst-order
systemor,dependingoncomponentvalues,displaydampedorpure
oscillationsforitstransientresponse. 24
Second Order System
•Ageneralsecond-ordersystemischaracterizedbythe
followingtransferfunction.22
2
2
nn
n
sssR
sC
)(
)(
25
un-dampednaturalfrequencyofthesecondordersystem,
whichisthefrequencyofoscillationofthesystemwithout
damping.n
dampingratioofthesecondordersystem,whichisameasure
ofthedegreeofresistancetochangeinthesystemoutput.
Example 342
4
2
sssR
sC
)(
)(
•Determinetheun-dampednaturalfrequencyanddampingratio
ofthefollowingsecondordersystem.4
2
n 22
2
2
nn
n
sssR
sC
)(
)(
Sol:Comparethenumeratoranddenominatorofthegiventransfer
functionwiththegeneral2
nd
ordertransferfunction.2
n
ss
n22 422
222
ssss
nn 50. 1
n
26
22
2
2
nn
n
sssR
sC
)(
)( •Twopolesofthesystemare1
1
2
2
nn
nn
27
Second Order System
Second Order System Cont..
•Accordingthevalueof ,asecond-ordersystemcanbesetinto
oneofthefourcategories:1
1
2
2
nn
nn
1.Overdamped-whenthesystemhastworealdistinctpoles(>1).
-a-b-c
δ
jω
28
1
1
2
2
nn
nn 2.Underdamped-whenthesystemhastwocomplexconjugatepoles(0<<1)
-a-b-c
δ
jω
29
1
1
2
2
nn
nn 3.Undamped-whenthesystemhastwoimaginarypoles(=0).
-a-b-c
δ
jω
30
1
1
2
2
nn
nn 4.Criticallydamped-whenthesystemhastworealbutequalpoles(=1).
-a-b-c
δ
jω
31
Underdamped System
32
For 0<<1 and ω
n> 0, the 2
nd
order system’s response due to a
unit step input is as follows.
Important timing characteristics: delay time, rise time, peak
time, maximum overshoot, and settling time.
Delay Time
33
•Thedelay(t
d)timeisthetimerequiredfortheresponseto
reachhalfthefinalvaluetheveryfirsttime.
Rise Time
34
•Therisetimeisthetimerequiredfortheresponsetorisefrom10%
to90%,5%to95%,or0%to100%ofitsfinalvalue.
•Forunderdampedsecondordersystems,the0%to100%risetimeis
normallyused.Foroverdampedsystems,the10%to90%risetimeis
commonlyused.
34
Peak Time
35
•The peak time is the time required for the response to reach
the first peak of the overshoot.
3535
Maximum Overshoot
36
Themaximumovershootisthemaximumpeakvalueofthe
responsecurvemeasuredfromunity.Ifthefinalsteady-state
valueoftheresponsediffersfromunity,thenitiscommonto
usethemaximumpercentovershoot.Itisdefinedby
Theamountofthemaximum(percent)overshootdirectly
indicatestherelativestabilityofthesystem.
Settling Time
37
•Thesettlingtimeisthetimerequiredfortheresponsecurve
toreachandstaywithinarangeaboutthefinalvalueofsize
specifiedbyabsolutepercentageofthefinalvalue(usually2%
or5%).
Step Response of underdamped System222222
2
21
nnnn
n
ss
s
s
sC
)(
•Thepartialfractionexpansionofaboveequationisgivenas22
2
21
nn
n
ss
s
s
sC
)(
2
2
n
s
22
1
n
222
1
21
nn
n
s
s
s
sC)( 22
2
2
nn
n
sssR
sC
)(
)(
22
2
2
nn
n
sss
sC
)(
Step Response
38
Step Response of underdamped System
•Aboveequationcanbewrittenas
222
1
21
nn
n
s
s
s
sC)(
22
21
dn
n
s
s
s
sC
)( 2
1
nd
•Where ,isthefrequencyoftransientoscillations
andiscalleddampednaturalfrequency.
•TheinverseLaplacetransformofaboveequationcanbeobtained
easilyifC(s)iswritteninthefollowingform:
2222
1
dn
n
dn
n
ss
s
s
sC
)(
39
Step Response of underdamped System
2222
1
dn
n
dn
n
ss
s
s
sC
)(
22
2
2
22
1
11
dn
n
dn
n
ss
s
s
sC
)(
22
2
22
1
1
dn
d
dn
n
ss
s
s
sC
)( tetetc
d
t
d
t
nn
sincos)(
2
1
1
40
Step Response of underdamped Systemtetetc
d
t
d
t
nn
sincos)(
2
1
1
ttetc
dd
t
n
sincos)(
2
1
1
412
2
1
( ) 1 sin( )
1
1
tan
n
t
d
e
c t t
where
Classification of Control Systems
•Controlsystemsmaybeclassifiedaccordingto
theirabilitytofollowstepinputs,rampinputs,
parabolicinputs,andsoon.
•Themagnitudesofthesteady-stateerrorsdue
totheseindividualinputsareindicativeofthe
goodnessofthesystem.
Classification of Control Systems
•Considertheunity-feedbackcontrolsystem
withthefollowingopen-looptransferfunction
•Itinvolvestheterms
N
inthedenominator,
representingNpolesattheorigin.
•Asystemiscalledtype0,type1,type2,...,if
N=0,N=1,N=2,...,respectively.
Classification of Control Systems
•Asthetypenumberisincreased,accuracyis
improved.
•However,increasingthetypenumber
aggravatesthestabilityproblem.
•Acompromisebetweensteady-stateaccuracy
andrelativestabilityisalwaysnecessary.
Steady State Error of Unity Feedback Systems
•Consider the system shown in following figure.
•The closed-loop transfer function is
Steady State Error of Unity Feedback Systems
•ThetransferfunctionbetweentheerrorsignalE(s)andthe
inputsignalR(s)is)()(
)(
sGsR
sE
1
1
•Thefinal-valuetheoremprovidesaconvenientwaytofind
thesteady-stateperformanceofastablesystem.
•SinceE(s)is
•Thesteadystateerroris
Static Position Error Constant (K
p)
•The steady-state error of the system for a unit-step input is
•The static position error constant K
pis defined by
•Thus, the steady-state error in terms of the static position
error constant K
pis given by
Static Position Error Constant (K
p)
•For a Type 0system
•For Type 1or higher order systems
•For a unit step input the steady state error e
ssis
•The steady-state error of the system for a unit-ramp input is
•The static velocity error constant K
vis defined by
•Thus, the steady-state error in terms of the static velocity
error constant K
vis given by
Static Velocity Error Constant (K
v)
Static Velocity Error Constant (K
v)
•For a Type 0system
•For Type 1systems
•For type 2 or higher order systems
Static Velocity Error Constant (K
v)
•For a ramp input the steady state error e
ssis
•The steady-state error of the system for parabolic input is
•The static acceleration error constant K
ais defined by
•Thus,thesteady-stateerrorintermsofthestaticacceleration
errorconstantK
aisgivenby
Static Acceleration Error Constant (K
a)
Static Acceleration Error Constant (K
a)
•For a Type 0system
•For Type 1systems
•For type 2systems
•For type 3or higher order systems
Static Acceleration Error Constant (K
a)
•For a parabolic input the steady state error e
ssis
Example 4))((
))((
)(
128
52100
2
sss
ss
sG )(limsGK
s
p
0
))((
))((
lim
128
52100
2
0 sss
ss
K
s
p
p
K )(limssGK
s
v
0
))((
))((
lim
128
52100
2
0 sss
sss
K
s
v
vK )(lim sGsK
s
a
2
0
))((
))((
lim
128
52100
2
2
0 sss
sss
K
s
a 410
12080
5020100
.
))((
))((
aK
Example 4
p
K
vK 410.
aK 0 0 090.
Ex 5: The open loop transfer function of a servo system
with unity feedback is given by
Determinethedampingratio,undampednatural
frequencyofoscillation.Whatisthepercentage
overshootoftheresponsetoaunitstepinput.
SOLUTION: Given that
Characteristicequation
10
(s2)(s5)
G(s)
10
H(s)1
(s2)(s5)
G(s)
1G(s)H(s)0
10
01
s
2
7s200
(s2)(s5)
Comparewiths
2
2s
2
0
n n
Weget
*1001.92%
16
1(0.7826)
2
*0.7826
1
2
2**4.4727
0.7826
2
20
e
204.472rad/sec
M
p e
n
n
2
n 7
n
4.472rad /sec
0.7826
M
p 1.92%
H (s) Ks
The damping factor of the system is 0.8. Determine the
overshoot of the system and value of ‘K’.
SOLUTION: We know that
12
G(s)
s
2
4s16
s
2
(416K)s160
s
2
(416K)s16R(s)
C(s)
1G(s)H(s)
16
G(s)
R(s)
C(s)
is the characteristiceqn.
Ex 6: A feedback system is described by the following transfer
function
nn
2
n
2
Compare with
2
16
s2s0
n 4rad/sec.
2
n4 16K
2*0.8*4 4 16K K0.15
*100
1(0.8)
2
M
p1.5%
*100 eM
pe
0.8
1
2
Ex 7: The open loop transfer function of unity feedback
system is given by
SOLUTION:
50
(10.1s)(s10)
G(s)
DeterminethestaticerrorcoefficientsK
p,K
vandK
a
50
50
50
0
0
5lim
(10.1s)(s10)
(10.1s)(s10)
Klims.G(s)H(s)
KlimG(s)H(s)
lim s
2
s0
2
K
a s G(s)H (s)
lims.
s0
s0
v
s0 (10.1s)(s10)
s0
p