SyedHasanSaeed
13,689 views
21 slides
Aug 26, 2016
Slide 1 of 21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
About This Presentation
presentation slide on TIME DOMAIN SPECIFICATIONS OF SECOND ORDER
Size: 559.32 KB
Language: en
Added: Aug 26, 2016
Slides: 21 pages
Slide Content
TIME DOMAIN SPECIFICATIONS OF
SECOND ORDER SYSTEM
Email :[email protected]
URL: http://shasansaeed.yolasite.com/
1SYED HASAN SAEED
SYED HASAN SAEED 2
BOOKS
1.AUTOMATICCONTROLSYSTEMKUO&
GOLNARAGHI
2.CONTROLSYSTEMANANDKUMAR
3.AUTOMATICCONTROLSYSTEMS.HASANSAEED
SYED HASAN SAEED 3
Considerasecondordersystemwithunitstepinputand
allinitialconditionsarezero.Theresponseisshowninfig.
1.DELAYTIME(t
d):Thedelaytimeisthetimerequired
fortheresponsetoreach50%ofthefinalvaluein
firsttime.
2.RISETIME(t
r):Itistimerequiredfortheresponseto
risefrom10%to90%ofitsfinalvalueforover-
dampedsystemsand0to100%forunder-damped
systems.
Weknowthat:
SYED HASAN SAEED 4
2
1
2
2
1
tan
1sin
1
1)(
t
e
tc
n
t
n
Where,
Letresponsereaches100%ofdesiredvalue.Putc(t)=1
SYED HASAN SAEED 5
01sin
1
1sin
1
11
2
2
2
2
t
e
t
e
n
t
n
t
n
n 0
t
n
e
Since,)sin())1sin((
0))1sin((
2
2
nt
t
n
n
Or,
Put n=1
SYED HASAN SAEED 62
2
1
)1(
n
r
rn
t
t 2
2
1
1
1
tan
n
rt
Or,
Or,
3.PEAKTIME(t
p):Thepeaktimeisthetimerequired
fortheresponsetoreachthefirstpeakofthetime
responseorfirstpeakovershoot.
Formaximum
SYED HASAN SAEED 7
t
e
tc
n
t
n
2
2
1sin
1
1)(
Since
)1(0
1
1sin
11cos
1
)(
0
)(
2
2
22
2
tn
n
nn
t
n
n
et
t
e
dt
tdc
dt
tdc
Since,
Equation can be written as
Equation (2) becomes
SYED HASAN SAEED 80
t
n
e
sin1
1sin11cos
2
222
tt
nn
Put cos and cos1sinsin1cos
22
tt
nn
cos
sin
))1cos((
))1sin((
2
2
t
t
n
n
SYED HASAN SAEED 9
nt
nt
pn
n
)1(
))1tan((
2
2
The time to various
peak
Where n=1,2,3,…….
Peak time to first overshoot, put n=12
1
n
pt
First minimum (undershoot) occurs at n=22
min
1
2
n
t
4. MAXIMUM OVERSHOOT (M
P):
Maximum overshoot occur at peak time, t=t
p
in above equation
SYED HASAN SAEED 10
t
e
tc
n
t
n
2
2
1sin
1
1)( 2
1
n
pt
Put,
2
2
2
1
1
.1sin
1
1)(
2
n
n
n
n
e
tc
SYED HASAN SAEED 122
2
2
1
1
1
11
1)(
1)(
eM
eM
tcM
etc
p
p
p 100*%
2
1
eM
p
5. SETTLING TIME (t
s):
Thesettlingtimeisdefinedasthetimerequiredforthe
transientresponsetoreachandstaywithinthe
prescribedpercentageerror.
SYED HASAN SAEED 13
SYED HASAN SAEED 14
Time consumed in exponential decay up to 98% of the
input. The settling time for a second order system is
approximately four times the time constant ‘T’.
6.STEADYSTATEERROR(e
ss):Itisdifferencebetween
actualoutputanddesiredoutputastime‘t’tendsto
infinity.n
sTt
4
4 )()( tctrLimite
t
ss
EXAMPLE1:Theopenlooptransferfunctionofaservo
systemwithunityfeedbackisgivenby
Determinethedampingratio,undampednaturalfrequency
ofoscillation.Whatisthepercentageovershootofthe
responsetoaunitstepinput.
SOLUTION:Giventhat
Characteristicequation
SYED HASAN SAEED 15)5)(2(
10
)(
ss
sG 1)(
)5)(2(
10
)(
sH
ss
sG 0)()(1 sHsG
SYED HASAN SAEED 160207
0
)5)(2(
10
1
2
ss
ss
Compare with02
22
nn
ss We get%92.1100*
7826.0
7472.4**2
sec/472.420
72
20
22
)7826.0(1
7826.0*
1
2
eeM
rad
p
n
n
n %92.1
7826.0
sec/472.4
p
n
M
rad
EXAMPLE2:Afeedbacksystemisdescribedbythe
followingtransferfunction
Thedampingfactorofthesystemis0.8.determinethe
overshootofthesystemandvalueof‘K’.
SOLUTION:Weknowthat
SYED HASAN SAEED 17KssH
ss
sG
)(
164
12
)(
2 016)164(
16)164(
16
)(
)(
)()(1
)(
)(
)(
2
2
sKs
sKssR
sC
sHsG
sG
sR
sC
is the characteristic eqn.
Compare with
SYED HASAN SAEED 18K
ss
n
n
nn
1642
16
02
2
22
.sec/4rad
n
K1644*8.0*2 15.0K %5.1
100*100*
22
)8.0(1
8.0
1
p
p
M
eeM
EXAMPLE3:Theopenlooptransferfunctionofaunity
feedbackcontrolsystemisgivenby
Bywhatfactortheamplifiergain‘K’shouldbemultipliedso
thatthedampingratioisincreasedfrom0.3to0.9.
SOLUTION:
SYED HASAN SAEED 19)1(
)(
sTs
K
sG
0
/
)(
)(
1.
)1(
1
)1(
)()(1
)(
)(
)(
2
2
T
K
T
s
s
T
K
T
s
s
TK
sR
sC
sTs
K
sTs
K
sHsG
sG
sR
sC
Characteristic Eq.
Compare the characteristic eq. with
Given that:
SYED HASAN SAEED 2002
22
nn
ss T
K
T
n
n
2
1
2
We getTT
K1
2 T
K
n
KT2
1
Or,9.0
3.0
2
1
TK
TK
2
2
1
1
2
1
2
1
SYED HASAN SAEED 2121
2
1
2
1
2
2
1
9
9
1
9.0
3.0
KK
K
K
K
K
Hence, the gain K
1at which 3.0 Should be multiplied
By 1/9 to increase the damping ratio from 0.3 to 0.9