Time domain specifications of second order system

SyedHasanSaeed 13,689 views 21 slides Aug 26, 2016
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

presentation slide on TIME DOMAIN SPECIFICATIONS OF SECOND ORDER


Slide Content

TIME DOMAIN SPECIFICATIONS OF
SECOND ORDER SYSTEM
Email :[email protected]
URL: http://shasansaeed.yolasite.com/
1SYED HASAN SAEED

SYED HASAN SAEED 2
BOOKS
1.AUTOMATICCONTROLSYSTEMKUO&
GOLNARAGHI
2.CONTROLSYSTEMANANDKUMAR
3.AUTOMATICCONTROLSYSTEMS.HASANSAEED

SYED HASAN SAEED 3
Considerasecondordersystemwithunitstepinputand
allinitialconditionsarezero.Theresponseisshowninfig.

1.DELAYTIME(t
d):Thedelaytimeisthetimerequired
fortheresponsetoreach50%ofthefinalvaluein
firsttime.
2.RISETIME(t
r):Itistimerequiredfortheresponseto
risefrom10%to90%ofitsfinalvalueforover-
dampedsystemsand0to100%forunder-damped
systems.
Weknowthat:
SYED HASAN SAEED 4  






2
1
2
2
1
tan
1sin
1
1)(







t
e
tc
n
t
n
Where,

Letresponsereaches100%ofdesiredvalue.Putc(t)=1
SYED HASAN SAEED 5  
  01sin
1
1sin
1
11
2
2
2
2













t
e
t
e
n
t
n
t
n
n 0
t
n
e

Since,)sin())1sin((
0))1sin((
2
2


nt
t
n
n


Or,
Put n=1

SYED HASAN SAEED 62
2
1
)1(







n
r
rn
t
t 2
2
1
1
1
tan









n
rt
Or,
Or,

3.PEAKTIME(t
p):Thepeaktimeisthetimerequired
fortheresponsetoreachthefirstpeakofthetime
responseorfirstpeakovershoot.
Formaximum
SYED HASAN SAEED 7  






t
e
tc
n
t
n
2
2
1sin
1
1)(
Since   
   )1(0
1
1sin
11cos
1
)(
0
)(
2
2
22
2










tn
n
nn
t
n
n
et
t
e
dt
tdc
dt
tdc







Since,
Equation can be written as
Equation (2) becomes
SYED HASAN SAEED 80
t
n
e
      


sin1
1sin11cos
2
222

 tt
nn
Put cos and      cos1sinsin1cos
22
 tt
nn 



cos
sin
))1cos((
))1sin((
2
2



t
t
n
n

SYED HASAN SAEED 9

nt
nt
pn
n


)1(
))1tan((
2
2
The time to various
peak
Where n=1,2,3,…….
Peak time to first overshoot, put n=12
1



n
pt
First minimum (undershoot) occurs at n=22
min
1
2



n
t

4. MAXIMUM OVERSHOOT (M
P):
Maximum overshoot occur at peak time, t=t
p
in above equation
SYED HASAN SAEED 10  






t
e
tc
n
t
n
2
2
1sin
1
1)( 2
1



n
pt
Put, 






















2
2
2
1
1
.1sin
1
1)(
2
n
n
n
n
e
tc

SYED HASAN SAEED 112
2
1
2
2
1
2
1
1
1
1)(
1sin
sin
1
1)(
)sin(
1
1)(
2
2
2




























e
tc
e
tc
e
tc
Put,  sin)sin( 

SYED HASAN SAEED 122
2
2
1
1
1
11
1)(
1)(
















eM
eM
tcM
etc
p
p
p 100*%
2
1



eM
p

5. SETTLING TIME (t
s):
Thesettlingtimeisdefinedasthetimerequiredforthe
transientresponsetoreachandstaywithinthe
prescribedpercentageerror.
SYED HASAN SAEED 13

SYED HASAN SAEED 14
Time consumed in exponential decay up to 98% of the
input. The settling time for a second order system is
approximately four times the time constant ‘T’.
6.STEADYSTATEERROR(e
ss):Itisdifferencebetween
actualoutputanddesiredoutputastime‘t’tendsto
infinity.n
sTt

4
4  )()( tctrLimite
t
ss 


EXAMPLE1:Theopenlooptransferfunctionofaservo
systemwithunityfeedbackisgivenby
Determinethedampingratio,undampednaturalfrequency
ofoscillation.Whatisthepercentageovershootofthe
responsetoaunitstepinput.
SOLUTION:Giventhat
Characteristicequation
SYED HASAN SAEED 15)5)(2(
10
)(


ss
sG 1)(
)5)(2(
10
)(



sH
ss
sG 0)()(1  sHsG

SYED HASAN SAEED 160207
0
)5)(2(
10
1
2




ss
ss
Compare with02
22

nn
ss  We get%92.1100*
7826.0
7472.4**2
sec/472.420
72
20
22
)7826.0(1
7826.0*
1
2


















eeM
rad
p
n
n
n %92.1
7826.0
sec/472.4


p
n
M
rad

EXAMPLE2:Afeedbacksystemisdescribedbythe
followingtransferfunction
Thedampingfactorofthesystemis0.8.determinethe
overshootofthesystemandvalueof‘K’.
SOLUTION:Weknowthat
SYED HASAN SAEED 17KssH
ss
sG



)(
164
12
)(
2 016)164(
16)164(
16
)(
)(
)()(1
)(
)(
)(
2
2





sKs
sKssR
sC
sHsG
sG
sR
sC
is the characteristic eqn.

Compare with
SYED HASAN SAEED 18K
ss
n
n
nn
1642
16
02
2
22





 .sec/4rad
n
 K1644*8.0*2  15.0K %5.1
100*100*
22
)8.0(1
8.0
1






p
p
M
eeM




EXAMPLE3:Theopenlooptransferfunctionofaunity
feedbackcontrolsystemisgivenby
Bywhatfactortheamplifiergain‘K’shouldbemultipliedso
thatthedampingratioisincreasedfrom0.3to0.9.
SOLUTION:
SYED HASAN SAEED 19)1(
)(
sTs
K
sG

 0
/
)(
)(
1.
)1(
1
)1(
)()(1
)(
)(
)(
2
2









T
K
T
s
s
T
K
T
s
s
TK
sR
sC
sTs
K
sTs
K
sHsG
sG
sR
sC
Characteristic Eq.

Compare the characteristic eq. with
Given that:
SYED HASAN SAEED 2002
22

nn
ss  T
K
T
n
n


2
1
2


We getTT
K1
2  T
K
n
 KT2
1

Or,9.0
3.0
2
1



 TK
TK
2
2
1
1
2
1
2
1



SYED HASAN SAEED 2121
2
1
2
1
2
2
1
9
9
1
9.0
3.0
KK
K
K
K
K











Hence, the gain K
1at which 3.0 Should be multiplied
By 1/9 to increase the damping ratio from 0.3 to 0.9