Transformer, LLM and Vibe coding Seminar

laputa999 34 views 120 slides Aug 27, 2025
Slide 1
Slide 1 of 120
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120

About This Presentation

Part 1: The Beginning of Everything - The Fundamentals of Deep LearningBefore embarking on our main journey, we will explore the fundamental principles of deep learning, the backbone of modern AI. We will easily break down, with visual aids, how artificial neural networks mimic the human brain to le...


Slide Content

강태욱
2025.8
[email protected]

Study
BIM, GIS, Facility Management, IoT,Scan to BIM and AX
12 books publication
https://github.com/mac999

Study
Members of the Nobel
Committee for Chemistry at the
Royal Swedish Academy of
Sciences explain the work of
2024 Nobel Prize in Chemistry
winners David Baker, Demis
Hassabis and John M.
Jumper.JONATHAN
NACKSTRAND/AFP via Getty
Images
AI Pioneers Geoffrey
Hinton And John
Hopfield Win Nobel
Prize For Physics |
Latest News | WION

Study

실습권장사양
Hugging Face –The AI community building the future.회원가입(무료옵션)
GitHub회원가입(무료옵션)
Microsoft Copilot: Your AI companion회원가입
ChatGPT회원가입
Claude회원가입

LLM & AI Agent
Trend
mac999/LLM-RAG-Agent-Tutorial: LLM-RAG-
Agent-Tutorial

AX Era
Members of the Nobel
Committee for Chemistry at the
Royal Swedish Academy of
Sciences explain the work of
2024 Nobel Prize in Chemistry
winners David Baker, Demis
Hassabis and John M.
Jumper.JONATHAN
NACKSTRAND/AFP via Getty
Images
AI Pioneers Geoffrey
Hinton And John
Hopfield Win Nobel
Prize For Physics |
Latest News | WION

AX Era

AX Era

LLM
Large Language Models as General Pattern Machines

Multi AI Agent
Yuheng Cheng, 2024, Exploring Large Language Model based
Intelligent Agents: Definitions, Methods, and Prospects

Vibe coding. No coding
바이브
코딩
This Game Created by AI 'Vibe Coding' Makes $50,000 a Month. Yours Probably Won’t, Wix Acquires Six-month-old AI “Vibe Coding” Startup Base44 for
$80MCash, Cognizant’s Vibe Coding Lesson for Indian IT, Vibe Coded a Website With My Daughter Using an AI Tool Called Bolt -Business Insider
Vibe Coding: The Future of
Software Development or Just a
Trend? -Lovable Blog
Build Apps with AI in Minutes | Base44

Vibe coding. No coding

Vibe coding. No coding
Gemini CLI vs Claude Code vs Cursor –Which is the best option for coding? –Bind AI IDE
Is Vibe Coding the Future of Software Development? A Deep Dive into AI’s Role
OpenAI Codex: Transforming Software
Development with AI Agents -DevOps.com

Vibe coding. No coding
노코드(No-code) 확산
Daddy Makers: 노코드서비스비교분석하기

Vibe coding. No coding
소프트웨어 엔지니어링 AI 에이전트 기술
Popular AI Agents for Devs: Chatdev, SWE-Agent & Devin [Example Project]
Software Development Life Cycle Models and Methodologies -Mohamed Sami

AI
foundation
mac999/AI_foundation_tutorial

Deep learning
Deep Learning Neural Networks Explained in
Plain Englishand Becoming Human
ŷ=f(W⋅x+b)
ŷ

Deep learning
Fei-Fei Li & Ehsan Adeli,
2024, Stenford University
Backpropagation

Deep learning
Fei-Fei Li & Ehsan Adeli,
2024, Stenford University
Backprop: Rumelhart, Hinton, and Williams, 1986
∆??????
??????=−α
�??????
��
??????
??????
??????��??????=??????+∆??????
Backpropagation

Deep learning
Gradient Descent and Cost Function in Python -
Startertutorials
ŷ=f(W⋅x+b) target=minLOSS(y-ŷ)

Deep learning
Enhancing Multi-Layer Perceptron Performance:
Demystifying Optimizers | by Anand Raj |
Towards AI
ŷ=f(W⋅x+b)
target=minLOSS(y-ŷ)

Transfomer
mac999/AI_foundation_tutorial

Token
Token ID
How 10
Are 4
You 13

Token
BPE(Byte Pair Encoding)
Understanding Byte Pair Encoding
(BPE) in Large Language Models

Embedding
http://suriyadeepan.github.io/
Intro to Word Embeddings and
Vectors for Text Analysis.

Embedding
for center_word, context_words in dataset:
center_vec = word_embedding(center_word)
for context in context_words:
context_vec = word_embedding(context)
loss += negative_sampling_loss(center_vec, context_vec)
loss.backward()
optimizer.step()
Word2Vec (Google,2013)
Skip-gram과CBOW(Continuous Bag of Words) 두가지학습방법사용.
Skip-gram은중심단어를입력으로 주고,주변단어를예측. CBOW는주변단어들로 중심단
어를예측
“The quick brown fox jumps”문장중심단어"fox”의윈도크기가2라면,주변단어는"
brown"과"jumps"가됨
Word2Vec은주변단어를예측하는 loss를최소화하며 학습. 임베딩모델들은 주로대규모
텍스트데이터에서 비지도학습방식으로 학습

Embedding
https://daddynkidsmakers.b
logspot.com/2023/12/blog-
post.html

Embedding vector distance
distance= F.cosine_similarity(embedding("apple"), embedding("banana"))
Cosine similarity

Sequence semantic similarity
Computing semantic similarity of texts based on
deep graph learning with ability to use semantic
role label information | Scientific Reports
Advances in Semantic Textual Similarity

Attention
Link: 딥러닝모델트랜스포머 인코더핵심코드
구현을통한동작메커니즘 이해하기

Transform Problem
Masking in Transformer Encoder/Decoder
Models -Sanjaya’s Blog
auto-regressive manner

Sequence context calculation
Query
Key

Sequence context calculation
Cosine similiarty for seqnce context calculation
Decoding strategies in
Decoder models (LLMs)
-Sanjaya’s Blog

Sequence context calculation
Attention Mask

Attention equation
Query = Q x Qw
Key = K x Kw
Value = V x Vw
Attention score matrix

Attention equation
Context
Feature
Tutorial 6: Transformers and Multi-Head Attention —
UvA DL Notebooks v1.2 documentation

Cross attention English
Context Space
K V Q
Ehow
Eare
Eyou
Korean
Context Space
K잘
K지내
K너
Ehow
Eare
Eyou
English
Context Space
Vw
Zcontext
(Contextual
embedding
vector)
Add & Norm
FF
Add & Norm
Linear
Softmax
Logits
(len(vocabulary))
K잘
Linear Transformation
Weighted Linear Combination
Self Attention Space

Contextual embedding
"나는학생" → 어텐션→ out → FFN → logits (10000차원) → softmax → "입니다" (예측)
source code
Self-Attention 을통과한벡터값은 어떤문맥(문장)에놓이느냐에 따라그의미를반영하는 고
유한벡터표현을 가지게됨. 예를들어, "과일사과"의임베딩과 "행위사과"의임베딩은 주변
단어의영향을받아서로다른벡터값을가지게됨

Multihead Attention

Position encoding
how are you ? See you soon <EOS><PAD><PAD>
1 2 3 4 5 6 7 8 9 10
Learning Position with
Positional Encoding -
Scaler Topics
pos = position of word in sequence
d = embedding dimension
i = index in embedding vector. 0 <= I <= d/2
A Gentle Introduction
to Positional Encoding
in Transformer Models,
Part 1 -
MachineLearningMaster
y.com

Transformer Architecture
Daddy Makers: 딥러닝모델트랜스포머 인코더핵
심코드구현을통한동작메커니즘 이해하기
Five most popular similarity measures implementation in python -Dataaspirant
Tutorial 6: Transformers and Multi-Head
Attention —UvA DL Notebooks v1.2
documentation

Training dataset in Transformer
source code
디코더입력(힌트) 디코더출력(예측Logits) 정답라벨 Loss 계산
<sos> (0) Logit 1(예: {'너': 0.3, '잘': 0.1, ...})너(100)
Logit 1의예측과'너'가얼마
나다른지계산
너(100) Logit 2(예: {'너': 0.1, '잘': 0.4, ...})잘(101)
Logit 2의예측과'잘'이얼마
나다른지계산
잘(101) Logit 3(예: {'있니': 0.5, '있다': 0.2, ...})있니(102)
Logit 3의예측과'있니'가얼
마나다른지계산
있니(102)
Logit 4(예: {'<eos>': 0.6, '입니다':
0.1, ...})
<eos> (1)
Logit 4의예측과'<eos>'가
얼마나다른지계산
Step 1. Tokenization
종류 목적 원본 토큰화결과
인코더입력 번역할소스문장 how are you [10, 11, 12]
디코더입력
정답을한칸씩밀어서모델에게 힌트로제
공(Shifted Right)
<sos> 너잘있니 [0, 100, 101, 102]
정답라벨 모델이각단계에서 예측해야 할실제정답 너잘있니<eos>[100, 101, 102, 1]
<sos>: 0, <eos>: 1, <pad>: 2. how: 10, are: 11, you: 12. 너: 100, 잘: 101, 있니: 102
Step 2. Train dataset preparation
Step 3. Encoder Forward Pass > Context vector (Self attention. English feature)
Step 4. Decoder Forward Pass > Context vector (Cross attention. English + Korean feature)
Step 5. Calculate Logits Loss to labels (Cross-Entropy Loss)
Step 6. Backpropagation to decrease different between How are you and 너잘있니<eos)

Training transformer model
1.처음엔QK^T가의미없는유사도를 계산함→ softmax 후V를평균해서 출력
2.이결과가예측라벨(예: 다음단어)과멀면loss 증가
3.역전파로 Q, K, V를만드는가중치WQ, WK, Wv가업데이트됨
4.배치데이터셋에 대해1-3을반복하면서 각QKV가문맥에서 다른역할을하도록학습
Scaled Dot Product Attention
이모듈은어텐션의 기본동작을수행하는 핵심
요소.
입력으로 주어진Q(Query), K(Key), V(Value) 벡터
를이용하여 다음연산을수행
Multi-Head Attention
어텐션을 단일벡터로계산하면 정보손실이크
기때문에, 여러개의어텐션"헤드"를병렬로실
행한후결과를concat하여사용
Positional Encoding
트랜스포머는 순서를고려하지 않기때문에각
단어의위치정보를인코딩
이를위해사인(sin), 코사인(cos) 함수를기반으
로위치인코딩벡터를생성
class ScaledDotProductAttention(nn.Module):
def forward(self, Q, K, V):
scores = torch.matmul
(Q, K.transpose(-2, -1)) / math.sqrt(d_k)
attn = F.softmax(scores, dim=-1)
return torch.matmul(attn, V)
class MultiHeadAttention(nn.Module):
def forward(self, Q, K, V):
# Q, K, V 선형변환및split
# 각헤드별attention 계산
# concat 후출력선형변환
return output
class PositionalEncoding(nn.Module):
def forward(self, x):
# sin, cos 벡터계산후입력에더함
return x + self.pe[:, :x.size(1)]
class EncoderLayer(nn.Module):
def forward(self, x):
x = x + self_attn(x, x, x) # Residual
x = LayerNorm(x)
x = x + FFN(x) # Residual
x = LayerNorm(x)
return x

Transformer scratch code
# 1. 입력및라벨시퀀스
input_sentence = ["I", "am", "a", "student"] # 영어입력
target_sentence = ["<sos>", "저는", "학생", "입니다"] # 한국어출력입력(디코더입력)
target_labels = ["저는", "학생", "입니다", "<eos>"] # 예측할실제정답(디코더출력)
# 2. 인코더
X = embed(input_sentence) # 입력시퀀스임베딩→ [x_I, x_am, x_a, x_student]
X = position_encoding(X) # 위치인코딩
Q_enc = linear_Q(X) # Q from encoder input
K_enc = linear_K(X) # K from encoder input
V_enc = linear_V(X) # V from encoder input
# 인코더출력: 입력문맥이반영된벡터들
encoder_outputs = self_attention(Q_enc, K_enc, V_enc)

Transformer scratch code
Y = ["<sos>"] # 디코더초기입력(<sos> 부터시작)
logits_sequence = [] # 출력로짓을저장
# 3. 디코더
for t in range(len(target_labels)):
Y_embed = embed(Y) # 현재까지 생성된디코더입력임베딩
# 디코더Self-Attention (마스킹포함)
Q_dec = linear_Q_dec(Y_embed) # Q from decoder input
K_dec = linear_K_dec(Y_embed) # K from decoder input
V_dec = linear_V_dec(Y_embed) # V from decoder input
dec_out= masked_self_attention(Q_dec, K_dec, V_dec) # 디코더내부문맥계산(마스킹)
# Cross-Attention: 디코더→ 인코더입력참조
Q_cross = linear_Q_cross(dec_out) # Q from 디코더문맥
K_cross = linear_K_cross(encoder_outputs) # K from 인코더출력
V_cross = linear_V_cross(encoder_outputs) # V from 인코더출력
cross_out = attention(Q_cross, K_cross, V_cross) # 입력문장정보에기반한번역벡터
V KQ

Transformer scratch code
for t in range(len(target_labels)):

# 출력로짓생성
logits = linear_output(cross_out) # vocab 크기의예측로짓
logits_sequence.append(logits[-1]) # 토큰예측
# 다음디코더입력을위해정답을넣음(teacher forcing)
next_token = target_sentence[t + 1] # "저는" 다음은"학생"
Y.append(next_token) # 다음루프를위한디코더입력에추가
# 4. 손실(Loss) 계산
loss = 0
for logit, label_token in zip(logits_sequence, target_labels):
label_id = vocab_id(label_token) # 정답토큰을ID로변환
loss += cross_entropy_loss(logit, label_id) # 예측분포와정답ID 간의CrossEntropy Loss
loss = loss / len(target_labels) # 평균손실값(시퀀스길이만큼 나눔)
# 5. 역전파및파라미터 업데이트 수행

Transformer scratch code

Train and Dataset

Train and Dataset

CLIP multimodal 2021
CLIP(Contrastive
Language-Image Pre-
Training. Open AI. 2021
Daddy Makers: 생성AI 멀티모달 모델개발의시작. OpenAI의CLIP모델이해, 코드분석, 개발, 사용하기

LLMlarge language model history
A Timeline of Large
Language Model
Innovation
y=f(w⋅x+b)

LLMlarge language model
Large Language Models as General Pattern Machines

Fine turning
A deep learning-based framework for detecting COVID-19
patients using chest X-rays | Request PDF

Fine turning
No fine tuning

Fine turning
After fine tuning

Fine turning
fine tuning. Epoch = 10 (over 5 hours)

Hallucination

LLM & Vector database
Chroma CEO. Jeff Huber,Anton Troynikov
18M$. 2023

RAG Retrieval-Augmented Generation

RAG
https://daddynkidsmakers.blogspot.com/2024/
02/github-copilot-ai.html

BIM expert agent using RAG

BIM expert agent using RAG

AI Agent with BIM

GeoGPT

LLM & Transformer
mac999/LLM-RAG-Agent-Tutorial: LLM-
RAG-Agent-Tutorial

Vibe coding
Hands-on
Github Copilot

Vibe coding

Vibe coding
도구(Tool)가격(월. 2025/8 시점) 장점 단점
Cursor•Pro: $20
•무료: 기능제한
•코드에디터자체에AI 기능이완벽
히통합
•프로젝트 전체코드를이해하고 답
하는@Codebase 기능이강력함
•AI를통한코드생성, 수정, 리팩토
링이직관적임
•VS Code 기반으로 기존사용자에
게익숙함
•일반에디터보다 무겁고시스템
자원을많이사용
•최신도구라안정성이 상대적으
로낮을수있음
•무료플랜은'빠른모델' 사용
횟수가제한적임
GitHub
Copilot
•Individual: $10
•Business: 사용자당
$19
•학생/교사/오픈소
스기여자무료
•업계표준수준의정확하고 빠른인
라인코드완성
•VS Code, JetBrains 등기존IDE에
확장프로그램으로 설치하여 사용
편의성이 높음
•Microsoft/GitHub의지원으로 안정
성과지원이우수함
•Cursor에비해프로젝트 전체의
복잡한맥락파악은다소부족
•주로코드완성기능에집중되
어있어고차원적인 작업지시
는한계가있을수있음
Claude-CLI•API 기반(사용량
과금)
•모델(Sonnet/Opus)
과토큰사용량에
따라비용변동
•개발자평균월
$100 내외(사용량
에따라크게달라
짐)
•복잡한로직생성, 버그수정, 문서
화등높은수준의추론이필요한
작업에매우강력
•터미널(CLI) 기반으로 스크립트 작
성, 자동화등개발워크플로우에
자유롭게 통합가능
•긴컨텍스트 처리능력이뛰어나전
체파일또는여러파일의리팩토링
에유리함
•IDE 통합이아닌별도터미널
창에서사용해야 해번거로움
•실시간코드완성과같은기능
은없음
•사용량기반요금제로 비용이
예측하기 어렵고, 사용량이 많
으면비쌀수있음

Github

Vibe coding
What is GitHub Copilot? -GitHub Docs

Vibe coding
•TryCopilotforfree:UseCopilotFreetoexplorecoreCopilotfeatureswithnopaidplan
required.
•Subscribetoapaidplan:UpgradetoCopilotProorCopilotPro+forfullaccessto
premiumfeaturesandmoregeneroususagelimits.YoucantryCopilotProforfreewitha
one-time30-daytrial.
•EligibleforfreeCopilotProaccess?Students,teachers,andopensourcemaintainers
mayqualifyforCopilotProatnocost.SeeGettingfreeaccesstoGitHubCopilotProasa
student,teacher,ormaintainer.
•Organizationmembers:IfyourorganizationorenterprisehasaGitHubCopilotplan,
youcanrequestaccesstoCopilotbygoingtohttps://github.com/settings/copilotand
requestingaccessunder"GetCopilotfromanorganization."
SeeGettingstartedwithaGitHubCopilotplanformoreinformation.

Vibe coding
VS Code의GitHub Copilot

Vibe coding

Vibe coding

Vibe coding
Discover and install MCP Servers in VS Code

Vibe coding
Discover and install MCP Servers in VS Code

Vibe coding
VS Code에서MCP 서버검색및설치

Vibe coding
GitHub Copilot in VS Code cheat sheet

Vibe coding
Get started with GitHub Copilot in VS Code

Vibe coding
Get started with GitHub Copilot in VS Code

Vibe coding
GUI 기반텍스트편집기를 개발할꺼야 . 파이썬과 Tkinter 라이브러리를 이용할꺼야 . 메
뉴는파일메뉴, 편집메뉴, 테마선택메뉴(다크모드 하위메뉴포함), 찾기메뉴로구
성됨. 이프로그램 개발을위한PRD를UI 스케치를 포함해md 포맷으로 작성해.

Vibe coding
GUI 기반텍스트편집기를 개발할꺼야 . 파이썬과 Tkinter 라이브러리를 이용할꺼야 . 메
뉴는파일메뉴, 편집메뉴, 테마선택메뉴(다크모드 하위메뉴포함), 찾기메뉴로구
성됨. 이프로그램 개발을위한PRD를UI 스케치를 포함해md 포맷으로 작성해.
확실하게 성공하는 Vibe coding 방법
Daddy Makers: 확실하게 성공하는 바이브코딩도구사용방법

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding
Hands-on
Gemini-CLI

Vibe coding
google-gemini/gemini-cli: An open-source AI agent that brings the power of Gemini
directly into your terminal.
Daddy Makers: 바이브코딩을위한구글
Gemini CLI 도구분석및사용
gemini cli vibe coding demo

Vibe coding
gemini cli vibe coding demo

Vibe coding
gemini cli vibe coding demo
gemini-cli/docs/cli/commands.md at main · google-gemini/gemini-cli

Vibe coding
gemini cli vibe coding demo
> make photoshop web app using three.js, bootstrap. Menus includes layer, line, arc,
circle, fill color with tranparent, border color, zoom in/out, pan, download file as JPG

Vibe coding
gemini cli vibe coding demo

Vibe coding
gemini cli vibe coding demo

Vibe coding
Hands-on
Codex

Vibe coding
openai/codex: Lightweight coding agent that runs in your terminal
Daddy Makers: OpenAI 바이브코딩지원멀
티에이전트 Codex 도구사용법

Vibe coding
openai/codex: Lightweight coding agent that runs in your terminal
Daddy Makers: OpenAI 바이브코딩지원멀
티에이전트 Codex 도구사용법

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding

Vibe coding
Challenge

Study

Vibe coding Challenge

Vibe coding Challenge

Vibe coding Challenge

Vibe coding Challenge

Vibe coding Challenge

Vibe coding Challenge
잘하는것
생산성향상
진입장벽 완화
창의성집중
신속한학습및적용
못하는것
코드신뢰성및품질개선
라이브러리 /알고리즘 과도한의존성
디버깅과 유지보수 어려움
복잡한맥락이해

JoinAIworld
Daddy Makers
BIM digestpodcast
Computer graphics digest
Software engineering digest
[email protected]