Para que serve a trigonometria? Por exemplo, a trigonometria serve para resolver o seguinte
problema: O teodolito, é um instrumento capaz de medir ângulos, muito usado por agrimensores,
engenheiros e topógrafos no cálculo de distâncias inacessíveis. Este instrumento ótico mede
ângulos horizontais e verticais com suas duas escalas circulares graduadas em graus.
Para calcular a altura de um prédio, o topógrafo colocou seu teodolito na praça em frente. Ele
mediu a distância do prédio ao teodolito com uma trena e encontrou 27 m. Mirando o alto do
prédio, ele verificou, na escala do teodolito, que o ângulo formado por essa linha visual com a
horizontal é de 58 graus. Se a luneta do teodolito está a 1,55 m do chão, qual é a altura do prédio?
(Considere os valores aproximados: sen 58
o
= 0,85 e cos 58
o
= 0,53)
Solução: A trigonometria (trigono=triângulo + metria=medida) é o ramo da matemática que trata
das relações entre os lados e ângulos de triângulos.
Na figura a seguir, AB = CD = 1,55 é a altura do instrumento e CE = x + 1,55 é a altura do prédio.
No triângulo retângulo BDE formado, BE é a hipotenusa , DE = x é o cateto oposto ao ângulo de
58 graus, BD = 27 é o cateto adjacente ao ângulo de 58 graus.
Trabalhando com as razões trigonométricas seno, coseno (ou cosseno) e tangente, temos:
sen 58
o
= DE / BE ; cos 58
o
= BD / BE ; tg 58
o
= DE / BD = x / 27.
Como, tg 58
o
= sen 58
o
/ cos 58
o
= 0,85 / 0,53 = 85 / 53 = 1,6 aproximadamente, podemos ter a
proporção: x / 27 = 0,85 / 0,53 = 1,6.
Daí, vem que: x = 27 × 1,6 = 43,2. Logo a altura do prédio é : 43,2 + 1,55 = 44,75 m..
Uma torre vertical, construída sobre um plano horizontal tem 25 metros de altura. Um cabo de
aço, esticado, liga o topo da torre até o plano, formando com o mesmo, um angulo de 60°. Qual é o
comprimento do cabo?
Solução: Temos um triângulo retângulo de hipotenusa x e cateto de medida 25m oposto ao ângulo
de 60°.
Como o sen 60° = = 25 / x , segue que o comprimento (em metros) do cabo é :
x = 50/Ö3 = 50(Ö3)/3 .
Se considerarmos Ö3 = 1,7 , então x = 28,4m.
(UERJ) Um barco navega na direção AB, próximo a um farol P, conforme a figura abaixo.