SlidePub
Home
Categories
Login
Register
Home
Technology
Types of AI you should know.pdf
Types of AI you should know.pdf
443 views
9 slides
Sep 04, 2023
Slide
1
of 9
Previous
Next
1
2
3
4
5
6
7
8
9
About This Presentation
https://pythongeeks.org/types-of-ai/
Size:
83.15 KB
Language:
en
Added:
Sep 04, 2023
Slides:
9 pages
Slide Content
Slide 1
TypesofAIyoushouldknow
ArtificialIntelligenceisoneofhumanity’smostsophisticatedandamazingcreations
todate.Thatignoresthefactthatthefieldisstilllargelyunexplored,implyingthat
anyamazinginnovationweencountertodayisonlythetipoftheAIiceberg.Despite
thefactthatthispointhasbeenreiteratednumeroustimes,acomplete
comprehensionofAI’sfutureimpactremainselusive.
PeopleareconcernedabouttheinevitabilityandvicinityofanAItakeoverdueto
AI’srapidgrowthandformidableabilities.Moreover,theeffectsofAIinnumerous
industrieshavecausedbusinessexecutivesandthepublicatlargetoassumethatwe
arenearingthepeakofAIresearchandfulfillingAI’sfullpotential.Understanding
theperspectiveandcurrenttypesofAIwillprovideafullerpictureofcurrentAI
technologiesandtheroadtotheirdevelopment.
WhatisAI?
Theprocessofcreatingintelligentmachinesfrommassiveamountsofdataisknown
asartificialintelligence.Systemslearnfromtheirpastexperiencesandaccomplish
tasksthataresimilartothoseperformedbyhumans.Itimprovestheefficiency,
precision,andefficacyofhumanefforts.Tocreatecomputersthatcanmake
judgmentsontheirown,AIemployscomplicatedalgorithmsandprocedures.
TypesOfAI
TheextenttowhichanAIsystemcanimitatehumanabilityisusedasameasureto
determinethetypesofAI.Asaresult,AIcanbedividedintonumerouscategories
basedonhowwellamachinecorrespondstohumansintermsofdiversityand
efficiency.Inthisapproach,anAIthatcanperformmorehuman-liketaskswith
Slide 2
equivalentstandardsofaccountabilitywillbeconsideredamoresophisticatedsort
ofAI,whereasanAIwithrestrictedfunctionalityandperformancewillberegarded
asasimplerandlessdevelopedtype.
TherearetwoclassificationsforAIbasedonthiscriterion.Oneapproachisto
categorizeAIandAI-enabledtechnologiesaccordingtotheirresemblancetothe
humanmindandtheirabilityto“think”andpossibly“feel”likehumans.
Type1-BasedOnCapabilities
Basedoncapabilities,therearethreecategoriesofAI:
■NarrowAI
■GeneralAI
■SuperAI
1.NarrowAIorWeakAIorArtificialNarrow
Intelligence(ANI)
“Alexa!Setanalarmfor7A.M.”
AlsoknownasWeakAI,isalevelofAIthatinvolvesrobotsthatcanonlydoalimited
setofactivities.Atthisphase,themachinehasnoabilitytoreasonandjustconducts
aseriesofpre-definedoperations.
Cortona,Siri,Alexa,self-drivingcars,Alpha-Go,Sophiathehumanoid,andothers
areexamplesofweakAI.
2.GeneralAIorStrongAIorArtificialGeneral
Intelligence(ANI)
Slide 3
AGI,alsoknownasStrongAI,isthestepinthedevelopmentofArtificialIntelligence
whenrobotswillbeabletoreasonandmakedecisionsinthesamewaythathumans
do.Itisyettobedemonstratedbutisexpectedtodevelopintelligencethesameas
humans.Manyscientists,includingStephenHawking,believethatstrongAIposesa
threattohumanity’ssurvival.
“ThefulldevelopmentofAIcouldspelltheendofmankind.It’dsetoffonitsown,
re-designingitselfatabreakneckspeed.Humans,whosebiologicalevolutionis
slowed,wouldbeunabletocompeteandwouldbesurpassed.”
3.SuperAIorArtificialSuperIntelligence(ASI)
SuperAIisthestageofArtificialIntelligenceatwhichcomputers’capabilities
surpassthoseofhumans.MachineshavetakencontroloftheEarth,accordingtoa
hypotheticalscenariopresentedinsci-finovelsandmovies.
Givenourpresentrateofdevelopment,Ibelievemachinesarenotfarfromreaching
thisstage.
“Youhavenonotionhowfast—itisexpandingataratethatisnearto
exponential—unlessyouhavedirectexposuretogroupslikeDeepmind.Inthenext
fiveyears,thereisasignificantriskofsomethingextremelydangeroushappening.At
mosttenyears.!—AccordingtoElonMusk.
Thesearethevariouslevelsofintelligencethatamachinecanachieve.Let’slookat
themanytypesofAIandhowtheywork.
Type2-BasedOnFunctionalities
1.ReactiveMachine
Slide 4
TheyarethemostbasicandancientsortofArtificialIntelligence.Theyimitatea
human’sabilitytorespondtoavarietyofstimuli.BecausethistypeofAIhasno
memory,itisunabletousepreviouslyacquiredinformation/experiencetoimprove
results.Asaresult,theseAIsystemslacktheabilitytolearnthemselvesliketheones
weseetoday.
DeepBlue,thecomputerthatdefeatedinternationalgrandmasterGarryKasparov,is
anexcellentexampleofthistypeofequipment.
Thesupercomputerwasabletodetectallofthelegaloptionsavailabletoitandits
opponents.Itchosethebestfeasiblemovebasedontheoptions.However,because
thesemachineshavenomemoryoftheirown,theyareunabletolearnfromtheir
previousactions.
2.LimitedTheory
ThissortofAI,likeReactiveMachines,hasmemorycapabilities,allowingitto
leveragepriordataandexperiencetomakebetterdecisionsinthefuture.This
categoryencompassesthemajorityofthecommonlyusedapplicationsinourdaily
lives.TheseAIapplicationscanbetaughtusingahugeamountoftrainingdata
storedinareferencemodelintheirmemory.
Manyself-drivingcarsusethemtostoredatasuchasGPSlocation,speedof
neighboringautomobiles,size/natureofbarriers,andahundredothertypesof
informationinordertodrivelikeaperson.
Therearethreetypesofmachinelearningmodelsthatcanachievethisformof
LimitedMemory:
a.Reinforcementlearning
Slide 5
Throughseveralroundsoftrialanderror,thesemodelsevolvetomakebetter
predictions.ComputersaretaughttoplaygameslikeChess,Go,andDOTA2using
thistechnique.
b.LongShortTermMemory(LSTMs)
Researchersreasonedthatusingpastdatatopredictthenextiteminasequence,
particularlyinlanguage,wouldbebeneficial,thereforetheydevisedamodelbased
ontheLongShortTermMemory.TheLSTMlabelsmorecurrentinformationas
moresignificantandthosefromthepastaslessessentialwhenpredictingthe
followingpartsinasequence.
c.EvolutionaryGenerativeAdversarialNetworks(E-GAN)
BecausetheE-GANhasmemory,itevolveswitheachevolution.Themodel
generatesadevelopingentity.Becausestatisticsisamathofchance,notamathof
exactitude,growingentitiesdonotalwayspursuethesameroute.Themodelmay
identifyabetterpath,apathofleastresistance,asaresultofthechanges.The
model’sfollowinggenerationmutatesandevolvesinthedirectionofitsancestor’s
incorrectroute.
TheE-GANproducesasimulationthatisanalogoustohowpeoplehavedeveloped
onthisplanetinseveralways.Eachchildismorepoisedtohaveanextraordinarylife
thanitsparentintheeventofflawless,successfulreplication.
3.LimitedMemoryTypesInPractice
Whileeverymachinelearningmodelisbuiltwithafiniteamountofmemory,this
isn’tnecessarilythecasewhenit’sdeployed.
A.I.withlimitedmemoryworksintwoways:
Slide 6
Ateamisconstantlyupdatingamodelwithnewdata.
ModelsareautomaticallytrainedandrefreshedintheA.I.environmentbasedon
modelusageandbehavior.
Machinelearningmustbebuilt-inintothestructureofamachinelearning
infrastructureinorderforittosupportalimitedmemorytype.
ActiveLearningisbecomingmorewidespreadintheMLlifecycle.Therearesixsteps
intheMLActiveLearningCycle:
■TrainingData.Amachinelearningmodelrequiresdatatotrainon.
■BuildMLModel.Themodelhasbeendeveloped.
■ModelPredictions.Themodelmakespredictions,
■Feedback.Humanorenvironmentalinputsprovidefeedbackonthe
model’spredictions.
■Feedbackisconvertedintodata.Thedatarepositoryreceivesthefeedback
andstoresit.
■RepeatStep1.Continuetoiterateonthiscycle.
4.TheoryofMind
Itisthenextlevelofartificialintelligence,withlittletonoimpactonourdaily
existence.ThesetypesofAIareofteninthe“WorkinProgress”stageandareonly
availableinresearchlabs.Onceachieved,thistypeofAIwillhaveacomprehensive
understandingofhumanminds,includingtheirneeds,likes,emotions,mental
processes,andsoon.TheAIwillbeabletochangeitsownresponsebasedonits
graspofhumanmindsandtheirwhims.
ThetheoryofmindAIwasimplementedatHansonRobotics’Sophia.Sophiaisable
toseethankstocamerasinhereyesandcomputeralgorithms.Shecankeepeye
contactwithindividuals,recognizethem,andfollowtheirfaces.
Slide 7
5.Self-AwareAI
ThisistheAI’sfinalstep.Itscurrentpresenceissimplyarumor,anditcanonlybe
foundinsciencefictionfilms.TheseAIsystemsarecapableofcomprehendingand
elicitinghumanfeelings,aswellaspossessingtheirownemotionalstates.Thisform
ofAIwilltakedecades,ifnotgenerations,todevelop.ElonMuskandotherAI
doubtersarewaryofthistypeofAI.ThisisbecauseonceanAIbecomesself-aware,
itmayenterSelf-Preservationmode,viewingmankindasapossiblethreatand
pursuingeffortstoeliminatehumanitydirectlyorindirectly.
BranchesofAI
Byemployingthefollowingprocesses/techniques,ArtificialIntelligencecanbe
utilizedtotacklereal-worldproblems:
■MachineLearning
■DeepLearning
■NaturalLanguageProcessing
■Robotics
■ExpertSystems
■FuzzyLogic
1.MachineLearning
Thescienceofteachingmachinestounderstand,process,andanalyzedatainorder
tosolvereal-worldissuesisknownasmachinelearning.
MachineLearningisdividedintothreecategories:
■SupervisedLearning
■UnsupervisedLearning
■ReinforcementLearning
2.DeepLearning
Slide 8
ItistheprocessofusingNeuralNetworkstoobtaininsightsandbuildsolutionsfrom
high-dimensionaldata.DeepLearningisasubsetofMachineLearningthatcanbe
usedformorecomplexissues.
3.NaturalLanguageProcessing
GenuineLanguageProcessing(NLP)isthestudyofextractinginformationfroma
naturalhumanspeechinordertocommunicatewithrobotsandexpandenterprises.
Amazonemploysnaturallanguageprocessing(NLP)tobettercomprehendcustomer
feedbackandimprovetheuserexperience.
4.Robotics
ItisabranchofAIthatfocusesonvariousrobotapplicationsanddisciplines.AI
Robotsareartificialagentsthatactinareal-worldenvironmenttocreateresultsby
takingresponsiblebehaviors.
Sophiathehumanoidisanoutstandingdemonstrationofartificialintelligencein
robotics.
5.ExpertSystems
Anexpertsystemisacomputersystembasedonartificialintelligencethatlearnsand
mimicsthedecision-makingabilitiesofahumanexpert.
If-thenlogicalnotationsareusedbyexpertsystemstotacklecomplicatedissues.It
doesnotrelyonproceduralprogramminginthetraditionalsense.Expertsystems
aremostlyutilizedindataadministration,medicalfacilities,loananalysis,andvirus
identification,amongotherapplications.
6.FuzzyLogic
Slide 9
Insteadoftheconventionalmoderncomputerlogic,whichisbooleaninnature,
fuzzylogicisacomputingapproachbasedontheideasof“degreesoftruth.”
It’sutilizedtoaddressdifficultchallengesthatrequiredecision-makinginthe
medicalindustry.They’realsoemployedinautomatictransmissions,vehicleclimate
control,andotherapplications.
Conclusion
Wemaybealongwayfromconstructingself-awaremachinesthatcanfixall
problems.However,weshouldconcentrateoureffortsonfiguringouthowa
computercantrainandlearnonitsownandmakedecisionsbasedonprevious
experiences.
IhopethisposthasclarifiedthemultiplekindsofAI.
Tags
Categories
Technology
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
443
Slides
9
Age
826 days
Related Slideshows
11
8-top-ai-courses-for-customer-support-representatives-in-2025.pptx
JeroenErne2
57 views
10
7-essential-ai-courses-for-call-center-supervisors-in-2025.pptx
JeroenErne2
53 views
13
25-essential-ai-courses-for-user-support-specialists-in-2025.pptx
JeroenErne2
42 views
11
8-essential-ai-courses-for-insurance-customer-service-representatives-in-2025.pptx
JeroenErne2
41 views
21
Know for Certain
DaveSinNM
26 views
17
PPT OPD LES 3ertt4t4tqqqe23e3e3rq2qq232.pptx
novasedanayoga46
30 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-9)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better