UNIT-II FMM-Flow Through Circular Conduits

rknatarajan 205 views 53 slides Apr 29, 2024
Slide 1
Slide 1 of 53
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53

About This Presentation

Unit II
-Flow Through Circular
Conduits


Slide Content

Unit II -Flow Through Circular
Conduits

Findtheheadlostduetofrictioninapipeofdiameter300mmand
length50m,throughwhichwaterisflowingatavelocityof3m/s
using(i)Darcyformula,(ii)Chezy’sformulaforwhichC=60.
Given:
D = 300 mm = 0.3 m
L = 50 m
V = 3 m/s
C = 60
??????= 0.01 stoke = 0.01 cm
2
/s = 0.01 * 10
-4
m
2
/s
To find:
h
f
(i)Darcy formula
(ii)Chezy’sFormula
??????�??????�2
1
2

Darcy Eqn:
h
f =
4�????????????
2
2��
Re =
??????�
??????
=
3∗0.3
0.01∗10
−4= 90 x 10
4
> 2000
Hence it is Turbulent flow
So, f =
0.079
��
0
.
25=
0.079
(90??????104)0.25
= 2.56 x 10
-3
h
f =
4∗2.56x10−3∗50∗3
2
2∗9.81∗0.3
=>h
f =0.7828 m
Chezy’sEqn
V = C ????????????���
�=
�×�×??????
�
??????
�
�
V = C
�
4

�
??????
3 = 60
0.3
4
ℎ�
50
h
f = 1.665 m

Findthediameterofapipeoflength2000mwhentherateofflowofwater
throughthepipeis200litres/sandtheheadlostduetofrictionis4m.Takethe
valueofC=50inchezy’sformulae.
Given
L = 2000 m
Q = 200 lit/s = 0.2 m
3
/s →Q =A V
h
f= 4 m
C = 50
To find:
d
Solution:
V = C????????????

(or)ℎ
�=
4×??????×??????
2
�
2
�

�=
4??????2000×??????
2
�
2
�
Discharge, Q = A V
0.2 =
�
4
d
2
* V
V =
0.8
�d
2

�=
4??????2000×??????
2
�
2
�
4 =
4??????2000×
0.8
??????d
2
2
50
2
�
d = 0.553 m = 553 mm

Loss of Energy in pipes:
When a fluid is flowing through a pipe, the fluid experiences some resistances due to
which some of the energy of fluid is lost. This loss of energy is classified a
Energy Losses
Major Energy Losses
This is due to friction and its is calculated
by the following formulae:
(a) Darcy –WeisbachFormula
(b) Chezy’s Formula
Minor Energy Losses
This is due to
(a) Sudden expansion of pipe,
(b) Sudden contraction of pipe,
(c) Bend in pipe,
(d) Pipe fittings, etc.,
(e) An obstruction in pipe.

MAJOR LOSS
❖Themajorlossofenergyisduetofriction
❖Thelossduetofrictionismuchmoreincaseoflongpipe
lines.
❖Itdependsonroughnessofpipe,length,velocityand
diameterofpipe.
�
�=
�×�×�×??????
�
���
FromDARCY’SWEISBACHEQUATION
�
�=
�×�×??????
�
??????
�
�
FromChezy′sEQUATION

MINOR LOSS
❖Thelossesduetodisturbanceinflowpatterniscalled
asminorloss
❖Minorlossoccursdueto
❖SuddenExpansion
❖SuddenContraction
❖Valves
❖Fittings
❖Bends

LOSS OF ENERGY DUE SUDDEN ENLARGEMENT
❖Considerahorizonalpipeof
areaA
1issuddenlyenlargedto
theareaA
2
�
�??????
�
�
�??????
�
??????
�??????
�


❖Consideratwosectionof①and
② isbeforeandafter
expansion.
❖Let�
�??????
�??????��??????
�isthePressure
Intensity,VelocityatareaA
1
❖Let�
�??????
�??????��??????
�isthePressureIntensity,VelocityatareaA
2
❖Let�′istheintensityofpressure,oftheliquidEddiesonAreaA
2–A
1

LOSS OF ENERGY DUE SUDDEN ENLARGEMENT
❖Theresultantforcebetweensection①&②
??????=�
�??????
�−�
�??????
�+�

(??????
�−??????
�)
❖Butithasbeenfoundbyexperimentthat
�

=�
�
❖Theresultantforce
??????=�
�??????
�−�
�??????
�+�
�(??????
�−??????
�)
??????=�
�??????
�−�
�??????
�+�
�??????
�−�
�??????
�
??????=�
�−�
�??????
�

LOSS OF ENERGY DUE SUDDEN ENLARGEMENT
❖Momentumofliquid/secatsection①
=�??????��×??????�������
=????????????
�??????
�×??????
�
=????????????
�??????
�
�
❖Momentumofliquid/secatsection②
=????????????
�??????
�×??????
�
=????????????
�??????
�
�

LOSS OF ENERGY DUE SUDDEN ENLARGEMENT
❖ChangeinMomentumofliquid/sec
=????????????
�??????
�
�
−????????????
�??????
�
�
❖FromContinuityEquation
??????
�??????
�=??????
�??????
�??????
�=
??????
�??????
�
??????
�
=????????????
�??????
�
�
−??????
??????
�??????
�
??????
�
??????
�
�
=????????????
�??????
�
�
−????????????
�??????
�??????
�

LOSS OF ENERGY DUE SUDDEN ENLARGEMENT
❖FromNewton’sSecondLawofmotion
??????����=�??????������??????�������������������??????��
�
�−�
�??????
�=????????????
�??????
�
�
−????????????
�??????
�??????
�
�
�−�
�??????
�=????????????
�(??????
�
�
−??????
�??????
�)
�
�−�
�
??????
=(??????
�
�
−??????
�??????
�)

LOSS OF ENERGY DUE SUDDEN ENLARGEMENT
ApplyingBernoulli'sequationbetweensection①&②
�
�
??????�
+
??????
�
�
��
+�
�=
�
�
??????�
+
??????
�
�
��
+�
�+�
�
�
�
??????�

�
�
??????�
=+
??????
�
�
��
+�
�−
??????
�
�
��
−�
�+�
�
��−��
??????�
=+
??????
�
�
��
+�
�−
??????
�
�
��
−�
�+�
�

LOSS OF ENERGY DUE SUDDEN ENLARGEMENT
??????
�
�
−??????
�??????
�
�
=+
??????
�
�
��
+�
�−
??????
�
�
��
−�
�+�
�
❖Datumheadofsection①&②areequal
∴�
�=�
�
??????
�
�
−??????
�??????
�
�
=
??????
�
�
��

??????
�
�
��
+�
��
�=
�??????
�
�
−�??????
�??????
�−??????
�
�
−??????
�
�
��
�
�=
??????
�
�
−�??????
�??????
�−??????
�
�
��
�
�=
??????
�−??????
�
�
��

Therateofflowofwaterthroughahorizontalpipeis0.3m
3
/sec.thediameterofthepipe,
whichis25cm,issuddenlyenlargedto50cm.thepressureintensityinthesmallerpipeis14
N/cm
2
.determinethelossofheadduetosuddenenlargement,pressureintensityinthelarger
pipepowerlostduetoenlargement.
Given
Q = 0.3 m
3
/sec
D
1= 25 cm = 0.25 m
D
2= 50 cm = 0.5 m
p
1= 14 N/cm
2
= 14 * 10
4
N/m
2
To find:
he
p
2
P
Solution:
Q = A
1V
1=> V
1= Q/A
1= Q/(
�
4
d
1
2
) = 6.11 m/s
Q = A
2 V
2=> V
2= Q/A
2= Q/(
�
4
d
2
2
) = 1.52 m/s

he =
??????�−??????�
�
��
=
�.��−�.��
�
�∗�.��
he =1.07 m
Applying Bernoulli's Equation,
�1
��
+
??????
1
2
2�
=
�2
��
+
??????
2
2
2�
+ℎ
�
14∗10
4
1000∗9.81
+
6.11
2
2∗9.81
=
�
2
9.81∗1000
+
1.52
2
2∗9.81
+1.07
�
�= ��.����
�
N/m
2
Power:
�=??????���
�=1000×9.81×0.3×1.073
�= �.������
�
W

LOSS OF ENERGY DUE SUDDEN CONTRACTION
�
�??????
� �
�??????
�
??????
�
??????
�
① ②©
❖Considerahorizonalpipeof
areaA
1issuddenlycontracted
totheareaA
2
❖Astheliquidflowsfrom
largerpipetosmallerpipe
theareaofflowdecreases
andbecomesminimumof©
❖Let�
�??????
�??????��??????
�isthePressure
Intensity,VelocityatareaA
1
❖Let�
�??????
�??????��??????
�isthePressureIntensity,VelocityatareaA
2

LOSS OF ENERGY DUE SUDDEN CONTRACTION
�
�??????
� �
�??????
�
??????
�
??????
�
① ②©
❖Actuallythelossofheadisdue
toenlargementbetweensection
©&②
�
�=
??????
�−??????
�
�
��
�
�=
??????
�
�
��
??????
�
??????�
−�
�

LOSS OF ENERGY DUE SUDDEN CONTRACTION
❖FromContinuityEquation
??????
�??????
�=??????
�??????
�
??????
�
??????
�
=
??????
�
??????
�
??????
�
??????
�
=
�
??????
�/??????
�
??????
�
??????
�
=
�
??????
�

LOSS OF ENERGY DUE SUDDEN CONTRACTION
�
�=
??????
�
�
��
�
??????
�
−�
�
�
�=
�??????
�
�
��������=
�
??????
�
−�
�
❖IfthevalveofC
Cisnotgiven,then
�
�=
�.�??????
�
�
��

InFigshownbelow,whenasuddencontractionisintroducedinahorizontalpipelinefrom50cmto25
cm,thepressurechangesfrom10,500kg/m
2
(103005N/m
2
)to6900kg/m
2
(67689N/m
2
).Calculatetherate
offlow.Assumeco-efficientofcontractionofjettobe0.65.Followingthisifthereisasuddenenlargement
from25cmto50cmandifthepressureatthe25cmsectionis6900kg/m
2
(67689N/m
2
)whatisthe
pressureatthe50cmenlargedsection?
Given:
D
1= 50 cm = 0.5 m
D
2= 25 cm = 0.25 m
p
1= 103005 N/m
2
p
2= 67689 N/m
2
p
3 = 67689 N/m
2
C
C= 0.65
D
4= 50 cm = 0.5 m
D
3= 25 cm = 0.25 m
To find:
Q
p
4

Solution:
From formula, h
c=
????????????
2
2
2�
,
where, ??????=
1
�??????
−1
2
=
1
0.65
−1
2
= 0.289
Applying Bernoulli’s eqn
�1
��
+
??????
1
2
2�
=
�2
��
+
??????
2
2
2�
+ℎ
�
103005
9.81∗1000
+
??????
1
2
2∗9.81
=
67689
9.81∗1000
+
??????
2
2
2∗9.81
+
0.289??????
2
2
2�
From Continuity Equation, A
1V
1= A
2V
2
V
1= (A
2V
2) / A
1
V
1= (d
2
2
V
2) / d
1
2
V
1= 0.25 V
2

103005
9.81∗1000
+
0.25??????2
2
2∗9.81
=
67689
9.81∗1000
+
??????
2
2
2∗9.81
+
�.���??????
�
�
��
V
2= 8.3 m/s
V
1= 0.25 V
2= 2.07 m/s
Discharge, Q = A
2V
2=
�
4
d
2
2
* V
2
Q = 0.40 m
3
/s
Applying Bernoulli’s Equation for section 3 -4
�
3
��
+
??????
3
2
2�
=
�
4
��
+
??????
4
2
2�
+ℎ
�
Here, V
2= V
3= 8.3 m/s
V
1= V
4= 2.07 m/s
h
e= (V
3–V
4)
2
/2g = (8.3 –2.07)
2
/ 2 * 9.81 = 1.98 m
67689
9.81∗1000
+
8.3
2
2∗9.81
=
�
4
9.81∗1000
+
2.07
2
2∗9.81
+1.98
P
4= 80587.37 N/m
2

LOSS OF ENERGY AT ENTRANCE AND EXIT
�
�=
�.�??????
�
�
��
❖LossofenergyatEntrance
❖LossofenergyatExit
�
??????=
??????
�
�
��

LOSS OF ENERGY DUE TO GRADUAL CONTRACTION AND EXPANSION
�
�=
�??????�−??????�
�
��
�
�=
�??????
�
��
LOSS OF ENERGY DUE TO BEND IN A PIPE

LOSS OF ENERGY DUE TO VARIOUS PIPE FITTINGS
�
??????=
�??????
�
��
�
??????�=
??????
�
��
??????
??????
??????(??????−??????)
−�
LOSS OF ENERGY DUE TO SUDDEN OBSTRUCTION
??????
�=
??????
??????
(??????−??????)

S.No. Loss Of Energy Formulae
1Loss Of Energy Due Sudden
Enlargement
�
�=
??????
�−??????
�
�
��
2Loss Of Energy Due Sudden Contraction
�
�=
�??????
�
�
��
Where, �=
�
??????�
−�
�
C
c==
??????�
??????�
3Loss Of Energy At Entrance
�
�=
�.�??????
�
�
��
4Loss Of Energy At Exit
�
??????=
??????
�
�
��
5Loss Of Energy Due To Gradual
Contraction And Expansion
�
�=
�??????
�−??????
�
�
��
6Loss Of Energy Due To Bend In A Pipe
�
�=
�??????
�
��
7Loss Of Energy Due To Various Pipe
Fittings
�
??????=
�??????
�
��
8Loss Of Energy Due To Sudden
Obstruction
�
??????�=
??????
�
��
??????
????????????(??????−??????)
−�where,??????
�=
??????
??????
(??????−??????)

Waterisflowingthroughahorizontalpipeofdiameter200mmatavelocityof3m/s.
Acircularsolidplateofdiameter150mmisplacedinthepipetoobstructtheflow.
FindthelossofheadduetoobstructioninthepipeifCc=0.62.
Given:
D = 200 mm = 0.2 m
A =
�
4
D
2
=
�
4
0.2
2
=0.031 m
2
V = 3 m/s
d = 150 mm = 0.15 m
a =
�
4
d
2
=
�
4
0.15
2
=0.017 m
2
Cc = 0.62
To find:
h
ob
Solution:
h
ob=
??????
2
2�
??????
�
??????(??????−??????)
−1
h
ob=
3
2
2∗9.81
0.031
0.62(0.037−0.017)
−1
h
ob=3.315 m

Ahorizontalpipeline40mlongisconnectedtoawatertankatoneendanddischargesfreely
intotheatmosphereattheotherend.Forthefirst25mofitslengthfromthetank,thepipeis
150mmdiameteranditsdiameterissuddenlyenlargedto300mm.Theheightofwaterlevelin
thetankis8mabovethecenterofthepipe.Consideringalllossesifheadwhichoccur,
determinetherateofflow.Takef=0.01forbothsectionsofthepipe
Given:
l = 40 m
l
1= 25 m
d
1= 150 mm =0.15 m
l
2= 15 m
d
2= 300 mm = 0.3 m
z = 8 m
f = 0.01
To find:
Q = AV

Solution:
�
1
��
+
??????
1
2
2�
+??????
1=
�
2
��
+
??????
2
2
2�
+??????
2+ℎ
??????+ℎ
�1+ℎ
�+ℎ
�2
0 +0+8=0+
??????
2
2
2�
+0+ℎ
??????+ℎ
�1+ℎ
�+ℎ
�2
8=
??????
2
2
2�
+ℎ
??????+ℎ
�1+ℎ
�+ℎ
�2--------1
Using continuity eqn, A
1V
1= A
2V
2
V
1= (A
2V
2) / A
1
V
1= (d
2
2
V
2) / d
1
2
V
1= 4 V
2

�
�=
�.�??????
�
�
��
. =
8V
2
2
��
�
�=
??????�−??????�
�
��
=
�??????�−??????�
�
��
=
9V
2
2
��
�
��=
���
�
×??????
�
�
���
= 106.66 V
2
2
�
��=
���
�
×??????
�
�
���
= 2 V
2
2
Multiply 2g
16??????=
??????
2
2
2??????
+8V
2
2
+106.66V
2
2
+9V
2
2
+2V
2
2
V
2=1.1132m/s
Q = A2 V2 =
�
4
d
2
2
* V
2
Q = 0.0786 m
3
/s.
??????�??????�
1
2

WHEN PIPE ARE CONNECTED SERIES
�=�
�=�
�=�
�
??????=�
��+�
��+�
��
NeglectingMinorloss
??????=�
�+�
��+�
�+�
��+�
�+�
��+�
�
ConsideringMinorloss

Thedifferenceinwatersurfacelevelsintwotanks,whichareconnectedbythreepipesinseries
oflengths300m,170mand210mandofdiameters300mm,200mmand400mmrespectively
is12m.Determinetherateofflowofwaterifco-efficientoffrictionare0.005,0.0052and
0.0048respectively,considering:(i)minorlossesalso(ii)neglectingminorlosses.
Given:
L
1= 300 m; L
2= 170 m; L
3= 210 m
D
1= 300 mm = 0.3m
D
2= 200 mm = 0.2 m
D
3= 400 mm = 0.4 m
H = 12 m
f
1= 0.005
f
2= 0.0052
f
3= 0.0048
To find:
Q
(i) All losses
(ii) Neglect Minor losses

From continuity eqn, A
1V
1= A
2V
2= A
3V
3
A
1V
1= A
2V
2
V
1= (A
2V
2) / A
1
V
1= (d
2
2
V
2) / d
1
2
= (0.2
2
V
2) / 0.3
V
1= 0.4442 V
2
A
2V
2= A
3V
3
V
3= (A
2V
2) / A
3
V
3= (d
2
2
V
2) / d
3
2
= (0.2
2
V
2) / 0.4
V
3= 0.25 V
2

Solution:
(i)Considering All Losses
H = ℎ
??????+ℎ
�1+ℎ
�+ℎ
�2+ℎ
�+ℎ
�3+ℎ
??????
12 = ℎ
??????+ℎ
�1+ℎ
�+ℎ
�2+ℎ
�+ℎ
�3+ℎ
??????
Losses:
�
�=
�.�??????
�
�
��
. =
�.�∗(�.���??????
�
)
�
��
= 0.098 V
2
2
/ 2g
�
�=
??????�−??????�
�
��
=
??????
�
−�.��??????�
�
��
= 0.5625 V
2
2
/ 2g
�
??????=
??????
�
�
��
= 0.0625 V
2
2
/ 2g
�
�=
�??????
�
�
��
=
�.�??????
�
�
��
�
��=
��
�
�
�
×??????
�
�
���
�
=
�×�.���×���×(�.���??????
�
)
�
���.�
= 3.942 V
2
2
/ 2g
�
��=
��
�
�
�
×??????
�
�
���
�
=
�×�.����×���×??????
�
�
���.�
= 17.68V
2
2
/ 2g
�
��=
��
�
�
�
×??????
�
�
���
�
=
�×�.����×���×(�.��??????
�
)
�
���.�
= 0.63 V
2
2
/ 2g
??????�??????�
1
2

Multiplying with 2g,
24g = 0.098 V
2
2
+3.942V
2
2
+�.�??????
�
�
+17.68V
2
2
+0.5625V
2
2
+0.63V
2
2
+�.����??????
�
�
V
2= 3.167 m/s
Q = A
2V
2=
�
4
d
2
2
* V
2=
�
4
0.2
2
* 3.167
Q = 0.09944 m
3
/s = 99.44 lit/s
(ii) Considering Major Losses
H = ℎ
�1+ℎ
�2+ℎ
�3
24g = 3.942 V
2
2
+ 17.68 V
2
2
+ 0.63 V
2
2
V
2= 3.353 m/s
Q = A
2V
2=
�
4
d
2
2
* V
2=
�
4
0.2
2
* 3.353
Q = 0.102 m
3
/s = 102.18 lit/s

EQUIVALENT PIPE
??????
??????
5
=
??????
1
??????
1
5
+
??????
2
??????
2
5
+
??????
3
??????
3
5
where, L = L
1+ L
2+L
3
The above equation is known as Dupuit’sequation.

Threepipesoflengths800m,500mand400mandofdiameters500mm,400mmand
300mmrespectivelyareconnectedinseries.Thesepipesaretobereplacedbyasingle
pipeoflength1700m.findthediameterofthesinglepipe.
Given:
L
1= 800 m; L
2= 500 m; L
3= 400 m
L = 1700 m
D
1= 500 mm = 0.5 m; D
2= 400 mm = 0.4 m; D
3= 300 mm = 0.3 m
To find:
D
Solution:
??????
�
5
=
??????1
�
1
5+
??????2
�
2
5+
??????3
�
3
5
1700
�
5
=
800
0.5
2+
500
0.4
2+
400
0.3
2
D = 0.37 mm

WHEN PIPE ARE CONNECTED PARALLEL
�=�
�+�
�
�
�=�
��=�
��

A pipe of diameter 20 cm and length 2000 m connects two reservoirs, having difference of
water levels as 20 m, Determine the discharge through the pipe. Take f = 0.015 and neglect
minor losses.
Given:
D = 20 cm = 0.2 m
L = 2000 m
H = 20 m
To find:
Q
Solution:
Q = A V
??????=
�×�×�×??????
�
���
=> 20 =
�×�.���×����×??????
�
��.���.�
=> v = 0.808 m/s
Q
old=
�
4
d
2
* V => Q = 0.025 m
3
/s

Given:
D1 = 20 cm = 0.2 m
L1 = 800 m
D2 = 20 cm = 0.2 m
L2 = 1200 m
D3 = 20 cm = 0.2 m
L3 = 1200 m
H = 20 m
A1= A2 = A3 =
�
4
d
2
=
�
4
0.2
2
= 0.0314 m
2
To find:
Q
new–Q
old
If an additional pipe of diameter 20 cm and length 1200 m is attached to the last 1200 m
length of the existing pipe, find the increase in the discharge. Take f = 0.015 and neglect
minor losses.

Solution:
Q1 = Q2 + Q3 (We know, Q2 = Q3)
Q
1= 2Q
2or Q
1= 2Q
3
Loss of head:
H=
��
�
�
�
×??????
�
�
���
�
+
��
�
�
�
×??????
�
�
���
�
(We know, hf
2= hf
3)
20 =
�×�.���×���×??????
�
�
��.���.�
+
�×�.���×����×??????
�
�
��.���.�
From Continuity equation,
Q
1= A
1V
1=> V
1= Q
1/A
1
Q
2 = A
2V
2=> V
2= Q
2/A
2= Q
1/2A
2

20 =
��.������
��.���.�
x(
�
1
0.0314
)
2
+
��.�������
��.���.�
x(
�
1
0.0628
)
2
Q
1= 0.076 m
3
/s
Q
2= Q
1/ 2
Q
old= 0.025 m
3
/s
Q
new= Q
1= 0.076 m
3
/s
Q
new–Q
old= 0.076 –0.025 = 0.051 m
3
/s

HYDRAULIC ENERGY LINE (OR) HYDRAULIC GRADIENT LINE
❖Itisdefinedasalinewhichgivesthesumof
pressureheadanddatumheadofflowingfluidin
pipewithrespecttosomereferenceline.(H.G.L.)
TOTAL ENERGY LINE (OR) TOTAL GRADIENT LINE
❖Itisdefinedasalinewhichgivesthesumof
pressurehead,datumheadandkineticheadof
flowingfluidinpipewithrespecttosome
referenceline.(T.E.L)

Ahorizontalpipeline40mlongisconnectedtoawatertankatoneendanddischargesfreely
intotheatmosphereattheotherend.Forthefirst25mofitslengthfromthetank,thepipeis
150mmdiameteranditsdiameterissuddenlyenlargedto300mm.Theheightofwaterlevelin
thetankis8mabovethecenterofthepipe.Consideringalllossesifheadwhichoccur,
determinetherateofflow.Takef=0.01forbothsectionsofthepipe.Drawthehydraulic
gradientandtotalenergyline.
Given:
L = 40 m
L1 = 25 m
D1 = 150 mm =0.15 m
L2 = 15 m
D2 = 300 mm = 0.3 m
Z = 8 m
f = 0.01
To find:
Q = AV
??????�??????�
1
2

Solution:
�
1
��
+
??????
1
2
2�
+??????
1=
�
2
��
+
??????
2
2
2�
+??????
2+ℎ
??????+ℎ
�1+ℎ
�+ℎ
�2
0 +0+8=0+
??????
2
2
2�
+0+ℎ
??????+ℎ
�1+ℎ
�+ℎ
�2
8=
??????
2
2
2�
+ℎ
??????+ℎ
�1+ℎ
�+ℎ
�2
�
�=
�.�??????
�
�
��
. =
8V
2
2
��
=
8x1.1132
2
��
= 0.5 m
�
�=
??????�−??????�
�
��
=
�??????�−??????�
�
��
=
9V
2
2
��
= 0.568 m
�
��=
���
�
×??????
�
�
���
= 106.66 V
2
2
/ 2g = 6.73 m
�
��=
���
�
×??????
�
�
���
= 2 V
2
2
/ 2g = 0.126 m
??????�??????�
1
2

A
1V
1= A
2V
2
V
1= (A
2V
2) / A
1
V
1= (d
2
2
V
2) / d
1
2
V
1= 4 V
2
Multiply with 2g
16??????=
??????
2
2
2??????
+8V
2
2
+106.66V
2
2
+9V
2
2
+2V
2
2
V
2=1.1132m/s
Q = A2 V2 =
�
4
d
2
2
* V
2= 0.0786 m
3
/s.
??????�??????�
1
2

TEL:�
�=�.���
�=�.����
�
��=�.����
��=�.����
�.��
�.���
�.����
�.����

HEL:
??????
�
�
��
=�.��
�.��
�.���
�.����
�.����
�.��

THANK YOU
Tags