UNIT IV design of Electrical Apparatus

nganesh90 2,571 views 82 slides Nov 12, 2019
Slide 1
Slide 1 of 82
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82

About This Presentation

Output equation of Induction motor; Main dimensions; Separation of D and L; Choice of Average flux density; length of air gap; Design of Stator core; Rules for selecting rotor slots of squirrel cage machines; Design of rotor bars and slots; Design of end rings; Design of wound rotor; Magnetic lea...


Slide Content

DESIGN OF INDUCTION MOTORS

Introduction
Inductionmotorsaretheprimemoversinmostofthe
Industries(WorkHorseofMotionIndustries)
simpledesign,rugged,low-price,easymaintenance
widerangeofpowerratings:fractionalhorsepowerto
10MW
runessentiallyasconstantspeedfromno-loadtofull
load
Itsspeeddependsonthefrequencyofthepower
source
applicationssuchascentrifugalpumps,conveyers,
compressorscrushers,anddrillingmachinesetc
2

Construction Details
ACinductionmotorcomprisestwoelectromagnetic
parts
Stationarypartcalledthestator
Rotatingpartcalledtherotor
Differsfromadcmachineinthefollowingaspects.
Laminatedstator
Absenceofcommutator&Uniformandsmallairgap
Practicallyalmostconstantspeed
Thestatorandtherotorareeachmadeupof
Anelectriccircuit-usuallymadeofinsulated
copperoraluminumwinding,tocarrycurrent
Amagneticcircuit-usuallymadefromlaminated
siliconsteel,tocarrymagneticflux
3

Stator -Construction
Thestatoristheouterstationarypart
ofthemotor
outercylindricalframe-yokewhichis
madeeitherofweldedsheetsteel,
castironorcastaluminumalloy
Themagneticpath-comprisesaset
ofslottedsteellaminationscalled
statorcorepressedintothecylindrical
spaceinsidetheouterframe.
Itislaminatedtoreduceeddy
currents,reducinglossesand
heating
Smooth Yoke
Ribbed Yoke
4

Stator -Construction
Asetofinsulatedelectricalwindings,whichareplacedinsidetheslots
ofthelaminatedStator.
Fora3-phasemotor,3setsofwindingsarerequired,oneforeachphase
connectedineitherstarordelta..
Stator Laminations
cross sectional view of an induction motor
5

Rotor -Construction
Rotoristherotatingpartof
theinductionmotor
of a set of slotted silicon
steel laminations pressed
together to form of a
cylindrical magnetic circuit
and the electrical circuit
The electrical circuit of the
rotor is of
Squirrel cage rotor
Wound rotor (Slip Ring
Rotor)
6

Squirrel Cage Rotor
setofcopperoraluminumbarsinstalled
intotheslots,whichareconnectedtoan
end-ringateachendoftherotor
windingsresemblesa‘squirrelcage
barsring
ring
bar
s
ring
ring
Even though the
aluminumrotorbarsare
indirectcontactwiththe
steel laminations,
practicallyalltherotor
currentflowsthroughthe
aluminumbarsandnotin
thelamination
7

Wound Rotor
consistsofthreesetsofinsulatedwindings
withconnectionsbroughtouttothreeslip
ringsmountedononeendoftheshaft
The external connections to the rotor are
made through brushes onto the slip rings
Brushe
s
Slip rings
8

Some more parts
Two end-flanges to support
the two bearings, one at the
driving-end and the other at
the non driving-end.
Two sets of bearings to
support the rotating shaft
Steel shaft for transmitting
the mechanical power to the
load
Cooling fan located at the
non driving end
Terminal box on top of the
yoke or on side to receive the
external electrical connections
9

10

Main purpose of designing
istoobtainthecompletephysicaldimensionsofallthe
parts
tosatisfythecustomerNeeds
PhysicalDimensions
Themaindimensionsofthestator.
Detailsofstatorwindings.
Designdetailsofrotoranditswindings
Performancecharacteristics(ironandcopperlosses,no
loadcurrent,powerfactor,temperatureriseand
efficiency)
CustomerNeeds
outputpower,voltage,numberofphases,speed,
frequency,connectionofstatorwinding,typeofrotor
winding,workingconditions,shaftextensiondetailsetc
11

Output Equation
mathematicalexpressionwhichgivestherelationbetween
thevariousphysicalandelectricalparametersofthe
electricalmachine
12

Output Equation
Vph= phase voltage
Iph= phase current
Iz= Current in each
Conductor
Z = Total no of conductors
Tph= no of turns/phase
Ns = Synchronous speed in
rpm
ns = synchronous speed in
rps
p = no of poles,
ac = Specific electric
loading
Ø= air gap flux/pole
Bav= Average flux density
kw= winding factor
eff= efficiency
cosØ = power factor
D = Diameter of the stator,
L = Gross core length
Co = Output coefficient
13

Output Equation
For a 3 Ø machine,
kVAratingQ = 3 VphIph10
-3
kW
Assuming, Vph= Eph
Eph = 4.44 f Ø TphkW
f = PN
S/120 = P ns/2
Output = 3 x 4.44 x Pns/2 x Ø TphKwIphx 10
-3
kW
Output = 6.66 x PØ x IphTphx ns x Kwx 10
-3
kW
Iz= Iph/ a
Let Iz= Iph(1 Parallel Path)
Z = 3 x 2 Tph( Tph= Z/6)
14

Output Equation
Total Magnetic Loading PØ = BavπDL
Total Electric Loading ac = IzZ/π. D
Output = 1.11 x PØ x IzZ x ns x Kwx 10
-3
kW
Output = 1.11 x Bavπ. DLx ac x π. D x ns x Kwx 10
-3
kW
Output = 11 Bavac Kw 10
-3
x D
2
Lns kW
Output(Q) = Co D
2
L ns kW
Where, Co = 11 Bavac Kw 10
-3
kVAinput Q = H.P x 0.746 (kW)/ effcosØ
15

Choice of Specific loadings
SpecificMagneticloadingorAirgapfluxdensity(Bav)
Ironlosseslargelydependuponairgapfluxdensity
Limitations :
Magnetisingcurrent high –Poor power factor
Flux density in teeth < 1.8 Tesla
Flux density in core 1.3 –1.5 Tesla
Advantages of Higher value of Bav
Large Flux/Pole –Tphless –Leakage reactance less -Overload
capacity increases
Size of the machine reduced
Cost of the machine decreases
For50Hzmachine,ThesuitablevaluesofBavis0.35–0.6Tesla.
16

Choice of Specific loadings
Specific Electric Loading (ac)
Advantages of Higher value
Reduced size
Reduced cost
Disadvantages of Higher value
Higher amount of copper
More copper losses
Increased temperature rise
Lower overload capacity
Normal range 10000 ac/m –450000 ac/m.
For Machines high voltage rating –ac value Small
17

Choice of power factor and
efficiency
powerfactorandefficiencyunderfullloadconditionswill
increasewithincreaseinratingofthemachine
Percentagemagnetizingcurrentandlosseswillbe
lowerforalargermachinethanthatofasmaller
machine
thepowerfactorandefficiencywillbehigherforahigh
speedmachinethanthesameratedlowspeedmachine
becauseofbettercoolingconditions
Squirrelcage–Efficiency–0.72to0.91&P.F–0.66to
0.9
Slipring-Efficiency–0.84to0.91&P.F–0.7to0.92
18

Separation of D and L
TheoutputequationgivestherelationbetweenD
2
Lproduct
andoutputofthemachine
The separation of D and L for this product depends on a
suitable ratio between gross length and pole pitch ( L / τ)
to obtain the best power factor the following relation will be
usually assumed for separation of D and L.
Pole pitch/ Core length = 0.18/pole pitch





















DesignEconomicalOverall
higherfor
PFGoodfor
DesignOverallGood
L
:0.25.1
:5.1
:25.11
:1


D = 0.135 P Sqrt
(L)
19

Peripheral Speed
DandLhavetosatisfytheconditionimposedonthevalue
ofperipheralspeed
For the normal design of induction motors the calculated
diameter of the motor should be such that the peripheral
speed must be below 30 m/s.
In case of specially designed rotor the peripheral speed can
be 60 m/s.
Ventilating Ducts : Provided when core length exceeds
100 –125 mm. The width of Duct –8 to 10 mm
20

Design of Stator
TheDesignconsiderationofStatorInvolvesinestimationof
Stator Winding
Stator Turns per Phase
Length of Mean Turn
Stator Conductors
Shape & No of Stator Slots
Area of Stator Slot
Stator Teeth
Depth of Stator Core
21

Stator Winding
ForSmallMotorsupto5HPSinglelayerWindinglike
MushWinding
WholecoilConcentricWinding
Bifurcatedconcentricwindingisused.
GenerallyDoublelayerWinding(LaporWave)with
diamondshapedcoilsisused.
Thethreephasesofwindingcanbeconnectedineitherstar
orDeltadependingontheStartingMethodsEmployed.
Squirrel cage –Star Delta Starter –Stators designed -Delta
Slip ring –Rotor resistance –Either star or Delta
22

23

24

25

Stator Turns per phase
StatorPhaseVoltageEs=4.44fØTsKws
StatorTurnsperphaseTs=Es/4.44fØKws
Where,Kws=0.955Windingfactor
SpecificMagneticLoading,Bav=Fluxperpole/Areaundera
pole
=pØ/pi.DL
Ø=Bavxpi.DL/p
26

Length of Mean Turn of winding
ForStatorsthatuseupto650V
LengthofMeanturn,Lmts=2L+2.3τ+0.24
Where,L–LengthofStatorCore
τ-PolePitch
Resistance of the stator winding per phase is calculated
using the formula = (0.021 x lmt x Tph ) / a
swhere lmt is in
meter and a
sis in mm2
27

Stator Conductors
kVAratingQ =3EsIs10
-3
kW
StatorCurrent/Phase,Is=Q/3Esx10
-3
AreaofCrossSection,a
s=Is/g
s
Where,g
s–CurrentDensity–3to5A/mm
2
AreaofCrossSection,a
s=pid
s
2
/4
Where,d
s–DiameterofStatorConductor
Round conductors are generally used
For diameter more than 2 or 3 mm –Bar or Strip
conductors are used
28

Stator Slots
Ingeneraltwotypesofstator
slots-openslotsand
semiclosedslots
OpenSlots:
slotopeningwillbeequalto
thatofthewidthoftheslots.
assemblyandrepairofwinding
areeasy.
slotswillleadtohigherairgap
contractionfactorandhence
poorpowerfactor
open slots
29

Stator Slots
SemienclosedSlots:
slotopeningismuchsmaller
thanthewidthoftheslot.
assemblyofwindingsismore
difficultandtakesmoretime
comparedtoopenslots
costlier
Airgapcharacteristicsare
bettercomparedtoopentype
slots
30

Choice of Stator Slots
numberofslots/pole/phasemaybeselectedasthreeor
moreforintegralslotwinding
fractionalslotwindingsnumberofslots/pole/phasemaybe
selectedas3.5
SlotPitchforopentypeofSlotsshouldbe15to25mm.
SlotPitchforSemienclosedtypeofSlotsshouldbe<15
mm.
Statorslotpitch,Yss=GapSurface/TotalNoofSlots
=π.D/S
s
So,S
s=π.D/Yss
Stator Slots Ss = Number of phases x poles x slots/pole/phase
31

Conductors per Slot
TotalNoofStatorConductorsZs=Phasex
Conductors/Phase
=3x2Ts=6Ts
ConductorsperSlot,Zss=TotalNoofZs/TotalNoofS
s
=6Ts/S
s
Where,Ts–StatorTurnsperPhase
Ss–TotalStatorSlots
Zss–MustbeEvenfordoublelayer
winding
32

Area of Stator Slot
Areaofeachslot=CopperAreaperslot/SpaceFactor
=Zssxa
s/Spacefactor
Where,Zss–NoofConductorsperslot
a
s–AreaofeachConductor
SpaceFactor–0.25to0.4
33

Stator Teeth
TheDimensionsofslotdeterminethefluxdensityinthe
teeth.
HigherFluxDensity–ironloss–GreaterMagnetisingmmf.
MeanFluxdensityintooth<1.7Wb/m
2
MinimumteethAreaperpole=Øm/1.7
Teethareaperpole=Ss/pxLixWts(Widthofstator
Tooth)
So,Øm/1.7=(Ss/p)xLixWtsmin
Wtsmin = Øm/ 1.7 (Ss / p ) x Li
34

Depth of Stator Core
fluxdensityinStatorCore<1.5
Wb/m
2
.
So,Fluxincore=halfofflux/
pole
=Øm/2
Area = Flux / Flux Density
= (Øm/ 2 ) / Bcs
Also,Area=Lixdepth(d
cs)
(Øm/2)/Bcs=Lixd
cs
Depthofthecore,d
cs=Øm/2
BcsLi
OuterDiameter,Do=D+2(dss+
dsc)
Do
dcs
dss
D
35

36

37

38

39

Length of Air Gap
Advantages larger air gap length :
Increased overload capacity
Increased cooling
Reduced unbalanced magnetic pull
Reduced in tooth pulsation
Reduced noise
Disadvantages oflarger air gap length
Increased Magnetising current
Reduced power factor
ForSmallInductionMotor–lg=0.2+2Sqrt(DL)mm
Lg=0.125+0.35D+L+0.015Vamm
ForGeneralUse -lg=0.2+Dmm
Forjournalbearings-lg=1.6sqrt(D)–0.25mm
40

41

42

43

Design of Rotor
squirrelcagetypeareruggedandsimpleinconstruction
andcomparativelycheaper&haslowerstartingtorque.
Inthistype,therotorconsistsofbarsofcopperor
aluminumaccommodatedinrotorslots.
Slipringinductionmotorsarecomplexinconstructionand
costlierwiththeadvantagethattheyhavethebetter
startingtorque.
Thistypeofrotorconsistsofstarconnecteddistributed
threephasewindings.
44

Design of Rotor
CoggingandCrawlingarethetwophenomenawhichare
observedduetowrongcombinationofnumberofrotorand
statorslots.
Inaddition,inductionmotormaydevelopunpredictable
hooksandcuspsintorquespeedcharacteristicsorthe
motormayrunwithlotofnoise
45

Crawling
Therotatingmagneticfield
producedintheairgapofthewill
beusuallynonsinusoidaland
generallycontainsoddharmonics
oftheorder3rd,5thand7
th
Thethirdharmonicfluxwill
producethethreetimesthe
magneticpolescomparedtothatof
thefundamental.Similarlythe5th
and7thharmonics
Themotorwithpresenceof7th
harmonicsistohaveatendencyto
runthemotoratoneseventhofits
normalspeed
46

Cogging
Whenthenumberofrotorslots
arenotproperinrelationto
numberofstatorslotsthe
machinerefusestorunand
remainsstationary.
Undersuchconditionstherewill
bealockingtendencybetween
therotorandstator–Cogging
rotorslotswillbeskewedby
oneslotpitchtominimizethe
tendencyofcogging,torque
defectslikesynchronoushooks
andcuspsandnoisyoperation
whilerunning.
47

Squirrel Vz Wound
NoSliprings
HigherEfficiency
Star–Deltastartersufficient
Cheaper
Smallcopperloss
BetterP.F,greaterOverload
Capacity
48
Possibletoinsertresistance
inrotor–Increasesstarting
Torque
Lowstartingcurrent
RotorResistancestarter

Design of Squirrel Cage Rotor
TheDesigninvolves
DiameteroftheRotor
ChoiceandDesignofRotorbars&slots
DesignofEndRings
DiameterofRotor
ShouldbeSlightlylessthanthatofStatortoavoidMechanicalFriction
DiameterofRotor,Dr=D–2lg
Where, D–DiameterofStatorBore
lg–lengthofairgap
49
bar
s
ring
ring

Choice of Rotor Slots
Toavoidcoggingandcrawling:(a)SsSr(b)Ss-Sr±3P
Toavoidsynchronoushooksandcuspsintorquespeedcharacteristics
±P,±2P,±5P.
TonoisyoperationSs-Sr±1,±2,(±P±1),(±P±2)
DesignofRotorBars
Rotorbarcurrent,I
b=(6IsTsKwscosØ)/Sr=0.85x(6IsTs)/Sr
(approx)
Where, Is–StatorCurrentperPhase
Ts–StatorTurnsperphase
Sr–Numberofrotorslots
Kws–Windingfactorofstator
50

Design of Rotor Bars
Areaofeachrotorbar,a
b=I
b/g
binmm
2
Where,I
b–Rotorbarcurrent
g
b–Currentdensityofrotorbar,Normally4–7A/mm
2
Copperlossinrotorbars
Length of rotor bar L
b= L + allowance for skewing
Rotor bar resistance, r
b= 0.021 x L
b/ a
b
Copper loss in rotor bars = I
b
2
x r
bx number of rotor bars
51

Design of End Rings
Alltherotorbarsareshortcircuitedby
connectingthemtotheendrings
Therotatingmagneticfiledproducedwill
induceanemfintherotorbarswhichwillbe
sinusoidaloveronepolepitch.
Astherotorisashortcircuitedbody,there
willbecurrentflowbecauseofthisemf
induced.
Inonepolepitch,halfofthenumberofbars
andtheendringcarrythecurrentinone
directionandtheotherhalfintheopposite
direction.
Thusthemaximumendringcurrentmaybe
takenasthesumoftheaveragecurrentin
halfofthenumberofbarsunderonepole.
52

53

Design of End Rings
Maximum value of End ring current,
I
e(max) = ½ x ( Number rotor bars / pole) x I
b(av)
= ½ x (Sr/p) x I
b(av)
Where I
b(av) = (2/π) x I
b(max)
I
b(max) = √2 I
b
Since Bar current is Sinusoidal
I
e(max) = √2 SrI
b/ πp
Rmsvalue of ring current = I
e= I
e(max) / √2
54

Design of End Rings
Area of end rings
Area of each end ring a
e= I
e/ g
emm
2
,
Where g
e= Current density in end ring –4 to 7 A/mm
2
Area of each end ring a
e= depth x Thickness of end
ring
Area of each end ring a
e= d
ex t
e
Copper loss in End Rings
Mean diameter of the end ring (D
me) -4 to 6 cmsless of the
rotor
Mean length of the current path in end ring l
me= πD
me
resistance of the end ring r
e= 0.021 x l
me/ a
e
Total copper loss in end rings = 2 x Ie
2
x r
e
55

Design of Wound Rotor
Rotorcarriesdistributedstarconnected3phasewinding
Threeendsofthewindingareconnectedtothesliprings
Externalresistancescanbeconnectedtothesesliprings
atstarting,whichwillbeinsertedinserieswiththewindings
whichwillhelpinincreasingthetorqueatstarting
TheDesigninvolvesin
Rotorwinding
NumberofRotorslots
Numberofrotorturns
RotorCurrent
Areaofrotorconductor
Dimensionsofrotorteeth
Rotorcore&Sliprings,brushes
56

Design of Wound Rotor
Rotorwinding:SmallMotors–MushType
:LargeMotors–DoublelayerBarType
:Motors>750kW–Barrelwinding
NoofRotorturns
TurnsratioEr/Es=KwrTr/KwsTs
Rotorturns/phase,Tr=KwsTsEr/KwrEs
rotorampereturn=0.85xstatorampereturn
IrTr=0.85xIsTs
RotorcurrentIr=0.85IsTs/Tr
57

Design of Wound Rotor
Areaofrotorconductor,a
r=I
r/g
r
Whereg
r–currentdensity–3to5A/mm
2
Choiceofrotorslots
Rotorslotsshouldnotbeequaltostatorslots
Generallyforwoundrotormotorsasuitablevalueis
assumedfornumberofrotorslotsperpoleperphase,
andthen
totalnumberofofrotorslotsarecalculated.
Semiclosedslotsareusedforrotorslots.
58

Design of Wound Rotor
Rotorteeth
fluxdensityinrotortooth<1.7Wb/m2
Minimumteetharea/pole=Fluxperpole/Maxfluxdensity
=Øm/1.7
Tootharea/pole =Noofrotorslots/polexNetiron
lengthxwidthofthetooth
=(Sr/p)xLixWtr
Equatingboth
(Sr/p)xLixWtr =Øm/1.7
Wtr(min) =Øm/(1.7x(Sr/p)xLi)
Wtr(min)actual=rootRotorslotpitch–rotorslotwidth
=π(Dr–2dsr)/Sr-Wsr
59

Design of Wound Rotor
RotorCore
Thefluxdensityintherotorcore=Statorcoredensity
Depthofrotorcore,dcr=Øm/(2xBcrxLi)
Where,Bcr–Fluxdensityinrotorcore
InnerDiameterofrotorlamination,Di=Dr–2(dsr+dcr)
Where,dcr–depthofrotorcore
dsr–depthofrotorslot
Slipring&brushes:
AreaofSlipring=rotorcurrent/Currentdensity(4to7A/mm
2
)
DimensionofBrushes-Currentdensity(0.1to0.2A/mm
2
)
60

Performance Evaluation
Theparametersforperformanceevaluationareironlosses,
noloadcurrent,noloadpowerfactor,leakagereactance
etc
Ironlosses:Ironlosshastwocomponents,hysteresisand
eddycurrentlossesoccurringintheironpartsdepend
uponthefrequencyoftheappliedvoltage
Thefrequencyoftheinducedvoltageinrotorisequalto
theslipfrequencywhichisverylowandhencetheiron
lossesoccurringintherotorisnegligiblysmall.
Hence the iron losses occurring in the induction motor is
mainly due to the losses in the stator alone
Total iron losses in induction motor = Iron loss in stator core + iron losses in stator
teeth.
61

Operating Characteristics

62

63

64

65

66

Leakage Calculations –Poly
Phase

67

Short Circuit (Blocked Rotor)
Current
ResistanceandLeakageReactance-Needstobeevaluated
FindtheStatorandRotorResistance
Findtotalresistanceofmotorasviewedfromstator
FinallyFindRotorcurrent
Ifrotorleakagereactance&LosscomponentofNoloadcurrent–
Neglected
Statorcurrentequivalenttorotorcurrent=IscosØ
WhereIs–Statorcurrent
cosØ-PowerFactor
68

Circle Diagram
69

Circle Diagram
We should know following for drawing the circle diagram
No load current and no load power factor
Short circuit current and short circuit power factor
Draw I
0at an angle from vertical line assuming some scale for current.
Draw I
scat an angle from vertical line.
Join AB, which represents the o/p line of the motor to power scale.
Draw a horizontal line AF, and erect a perpendicular bisector on the o/p
line AB so as to meet the line AF at the point O’. Then O’ as center and
AO’ as radius, draw a semi circle ABF.
Draw vertical line BD; divide line BD in the ratio of rotor copper loss to
stator copper loss at the point E.
Join AE, which represent the torque line
70

Circle Diagram
Full load current & power factor
Draw a vertical line BC representing the rated o/p of the
motor s per the power scale. From point C, draw a line
parallel to o/p line, so as to cut the circle at pint P. Join OP
which represents the full load current of the motor to
current scale. Operating power factor can also be found
out.
Full load efficiency
Draw a vertical line from P as shown in above figure.
PL = O/p Power
PX = I/p Power
71

Circle DiagramPowerInputRotor
lossCuRotor
Slip
SlipPS
LS

Starting torque
Line BE represents the starting torque of the motor in
synchronous watts to power scale
72

Problems
Solution:
kVAinput, Q = output / effx P.F
Co = 11 Bavac Kw 10
-3
Ns = 2f / p rps
Sub the value of Co & ns in o/p equation
Q = Co D
2
L ns Find D
2
L
Estimatethestatorcoredimensions,numberofstatorslots,noof
statorConductorsperslotfora100kW,3300V,50Hz,12pole,Star
connectedslipringinductionmotorBav=0.4Wb/m2,ac=25000
amp.cond/m,Eff=0.9,P.F=0.9,Choosethemaindimensionstogive
bestpowerfactor.Theslotloadingshouldnotexceed500amp.cond
73

Problems
For best power factor
τ= √(0.18L)we get a equation in terms of D & L
Sub and solve for D & L.
Stator star connected Es = El/√3
Flux per pole Ø = Bav πDL/ p
Find Ts using Flux Ts = Es / 4.44 f Ø Kws
Slot pitch should be 15 to 25 mm
Find Ss when Yss = 15 & 25 mm S
s= π. D /
Yss
74

Problems
We get a range of Ss from the above step
Now Assume q = 2, 3, 4..etc and find Ss
Stator Slots Ss = Number of phases x poles x slots/pole/phase
Select Ss that is within the range
Check for Slot loading = Is .Zss
Since Star connected I
l= I ph = Is
Is = kVAx 10
3
/ 3 x V
L& Zss = 6 Ts / Ss
Finalisethe no of slots Ss
Now find the new Total stator conductors = Ss .Zss
& Turns / Phase, Ts = Zss . Ss / 6
75

Problems
76
Estimatethemaindimensions,airgaplength,numberofstatorslots,
statorturns/phase&crosssectionalareaofstatorandrotorconductors
fora3phase,15HP,400V,50Hz,6,975rpminductionmotor,Themotor
issuitableforstardeltastarting.Bav=0.45Wb/m2,ac=20000
amp.cond/m,Eff=0.9,P.F=0.85,L/τ=0.85.
Solution:
kVAinput, Q = HP X 0.746 / effx P.F
Co = 11 Bavac Kw 10
-3
Ns = 2f / p rps
Sub the value of Co & ns in o/p equation
Q = Co D
2
L ns Find D
2
L

Problems
77
Given L/τ= 0.85, Where τ= πd/p we get a equation
in terms of D & L
Substitute and solve for D & L.
Delta connected Es = El = Eph
Flux per pole Ø = Bav πDL/ p
Find Ts using Flux Ts = Es / 4.44 f Ø Kws
Slot pitch should be 15 to 25 mm
Find Ss when Yss = 15 & 25 mm S
s= π. D /
Yss

Problems
78
We get a range of Ss from the above step
Now Assume q = 2, 3, 4..etc and find Ss
Stator Slots Ss = Number of phases x poles x slots/pole/phase
Select Ss that is within the range
Finalisethe no of slots Ss
Find Zss = 6 Ts / Ss
Now find the new Total stator conductors = Ss .Zss
& Turns / Phase, Ts = Zss . Ss / 6

Problems
79
Assume g
s= 3 A/mm2 find Area Stator conductor a
s=
I
s/ g
s
Where Is = Iph= Q x 10
3
/ 3 Eph
Length of Airgap, lg = 0.2 + 2 Sqrt(DL) mm
Choose the No of Rotor slots Such that Ss –Srare
not equal
Find Rotor bar current, I
b= 0.85 x (6 Is Ts) / Sr
Assume g
r= 4 A/mm
2
find Area of rotor a
r= I
r/ g
r
Find End Ring Current, I
e = SrI
b / πp
Assume g
e= 4 A/mm
2
find Area of End rings a
e= I
e/ g
e

Problems
80
Designacagerotorfora40HP,3Phase,400V,50Hz,6pole,delta
connectedinductionmotorhavingafullloadefficiency87%andafull
loadP.Fof0.85.TakeD=33cmandL=17cm.Statorslots=54,
conductorsperslot=14.Assumesuitablythemissingdataifany.
Given: 3 phase, p=6, Ss=54, Zss= 14, Q=40
HP, Delta connected, V=400 V, Eff. = 0.87,
P.f= 0.85, D=0.33m, L= 17m
Solution:
kVA input, Q = HP X 0.746 / effx P.F

Problems
81
Choose the No of Rotor slots Such that Ss –Srare not
equal to 0,±p, ,±2p, ,±3p, ,±5p, ±1, ±2, ±(p ±1), ±(p ±2)
0,±6, ,±12, ,±18,±30, ±1, ±2, ±7,±5, ±8, ±4
Ss–Sr= ±3, ±9
Choose the minimum and Sr= 54-3 = 51
Find Rotor bar current, I
b= 0.85 x (6 Is Ts) / Sr
Find Is and Ts
Zss= 6 Ts/ Ss, Ts= Zssx Ss/6
find Is from input KVA = 3 Ephx Iphx 10
-3
Since delta connected, Eph=V = 400, Iph= Q / 3 Ephx
10
-3

Problems
82
Find End Ring Current, I
e= SrI
b/ πp
Assume g
r = 4 A/mm
2
find Area of rotor Bar a
r= I
r/ g
r
Assume g
e= 4 A/mm
2
find Area of End rings a
e= I
e/ g
e
Find length of rotor core = length of stator core
Find Diameter of rotor = Dr= D –2lg
Find Length of Airgap, lg= 0.2 + 2 Sqrt(DL) mm