Unit1-Feedback amplifiers in Electronic Circuits

tonysanthosh87 11 views 54 slides Aug 27, 2025
Slide 1
Slide 1 of 54
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54

About This Presentation

Electronic Circuits


Slide Content

FEEDBACK A MPLIFI E RS

Outline Introduction to Feedback Feedback Amplifier – Positive & Negative Advantages/Disadvantages of Negative Feedback Basic Feedback Concept Classification of Amplifiers Series – Shunt Configuration Shunt – Series Configuration Series - Series Configuration Shunt – Shunt Configuration

Introduction to Feedback   Feedback is used in virtually all amplifier system. Invented in 1928 by Harold Black – engineer in Western Electric Company    methods to stabilize the gain of amplifier for use in telephone repeaters. In feedback system, a signal that is proportional to the output is fed back to the input and combined with the input signal to produce a desired system response. However, unintentional and undesired system response may be produced.

Feedback Amplifier  Fe e dback is a technique where a proportion of the output of a system (amplifier) is fed back and recombined with input    Positive feedback Negative feedback A  There are 2 types of feedback amplifier: i n p u t o u t p u t

Positive Feedback  Positive feedback is the process when the output is a dde d to the input, amplified again, and this process continues. A  Positive feedback is used in the design of oscillator and other application. i n p u t output

Positive Feedback - Example In a PA system get feedback when you put the microphone in front of a speaker and the sound gets uncontrollably loud (you have probably heard this unpleasant effect).

Negative Feedback Negative feedback is when the output is subtracted from the input. A  The use of negative feedback reduces the gain. Part of the output signal is taken back to the input with a negative sign. i n p u t o u t p u t

Negative Feedback - Example Speed control If the car starts to speed up above the desired set-point speed, negative feedback causes the throttle to close, thereby reducing speed; similarly, if the car slows, negative feedback acts to open the throttle

Feedback Amplifier - Concept Basic structure of a single - loop feedback amplifier

Advantages of Negative Feedback Gain Sensitivity – variations in gain is reduced. Bandwidth Extension – larger than that of basic amplified. Noise Sensitivity – may increase S-N ratio. Reduction of Nonlinear Distortion Control of Impedance Levels – input and output impedances can be increased or decreased.

Disadvantages of Negative Feedback Circuit Gain – overall amplifier gain is reduced compared to that of basic amplifier. Stability – possibility that feedback circuit will become unstable and oscillate at high frequencies.

Basic Feedback Concept Basic configuration of a feedback amplifier

Basic Feedback Concept Closed-loop transfer function or gain is The output signal is S : o  AS  where A is the amplification factor Feedback signal is S fb   S o where ß is the feedback transfer function S fb At summing node: S   S i i   S o A S 1   A f A  A  A  1 f t he n A  if  A  1

Classification of Amplifiers Classify amplifiers into 4 basic categories based on their input (parameter to be amplified; voltage or current) & output signal relationships:     Voltage amplifier (series-shunt) Current amplifier (shunt-series) Transconductance amplifier (series-series) Transresistance amplifier (shunt-shunt)

Feedback Configuration Series: connecting the feedback signal in series with the input signal voltage. Shunt: c o nn e c t i n g the feedback signal in shunt (parallel) with an input current

Series - Shunt Configuration v v v f A v A  1   A

Series - Shunt Configuration if R o  R L then the output of feedback network is an open circuit; Output voltage is: V o  A v V  By neglecting R s due R to i  R s  V fb i V s:   V i v v i vf  ; error voltage  V o A v  A V 1   A feedback voltage is: V fb   v V o where ßv is closed-loop voltage transfer function

Series - Shunt Configuration O r   R if with feedback Assume Vi=0 and Vx applied to output O r   Input Resistance, R if Output Resistance, R of V i  V   V fb  V    v ( A v V  ) V (1   v A v ) Input current V    i i i V V i  R R i (1   v A v )  I  i f I i R  R i (1   v A v )  V i v x   V  te V rm   in V a bf l.  V  V     v V x o o R R V x (1   v A v )  Inpu V t c x u  r A re v V n  t I i  x v v R o f wit V h x feedba R c o k R of   I (1   A )

  Series input connection increase input resistance – avoid loading effects on the input signal source. Shunt output connection decrease the output resistance - avoid loading effects on the output signal when output load is connected. Equivalent circuit of shunt - series feedback circuit or voltage amplifier Series - Shunt Configuration

Feedback transfer function; Series - Shunt Configuration Non-inverting op-amp is an example of the series-shunt configuration. For ideal non-inverting op- amp amplifier  R 2     1   V R i  1  V o A vf  1  1  1   R  R 2   

Series - Shunt Configuration Equivalent circuit i i f o v i vf o V i R R 1 R 1 A v A v V A R 1 V fb I V  / R i A v V   R i (1   A v )   V i R   1  2   R 1  V  V       1 2     R  R V i  V  A v 1   A    1 2     R  R 1    V o  V   1 2     R  R V o  A v V  V   V i  V fb

Series - Shunt Configuration Example: Calculate the feedback amplifier gain of the circuit below for op-amp gain, A=100,000; R1=200 Ω and R2=1.8 k Ω . Solution: A vf = 9.999 or 10

Series - Shunt Configuration Basic emitter-follower and source-follower circuit are examples of discrete-circuit series-shunt feedback topologies. v i is the input signal error signal is base- emitter/gate-source voltage. feedback voltage = output voltage  feedback transfer function, ß v = 1

Series - Shunt Configuration Small-signal voltage gain:    e e i vf r r R E V    g  R r m E o  A  1  R E V 1   1    g m  R E  1  Open-loop v  o r  ltage  gain:     R E A v   r  g m  R E  r C l o s e  d  - l oo p  i n p u e t r e s i st an c e :  1        g m  R E  r R if Output resistance:    m  E   1   r   (1  g r ) R  r 1  E of   R  R  r  m  r  R E 1    g m  R E ( 1  g r )  1 

Shunt – Series Configuration i i if A  A i 1   A

Shunt – Series Configuration Basic current amplifier with input resistance, Ri and an open-loop current gain, Ai. Current I E is the difference between input signal current and feedback current. Feedback circuit samples the output current – provide feedback signal in shunt with signal current. Increase in output current – increase feedback current – decrease error current. Smaller error current – small output current – stabilize output signal.

Shunt – Series Configuration if R i  R s i i i i f   A  I o A i I 1   A t hen I i  I  then the output is a short circuit; output current is: I o  A i I  feedback current is: I fb   i I o where ßi is closed-loop current transfer function Input signal current: I i  I   I fb

Shunt – Series Configuration O r   R if with feedback Input Resistance, R if I i  I   I fb  I    i ( A i I  ) I (1   i A i ) Input current I    i i i I i R i (1   A ) V i  I  R i  i i i i f R I (1   A )   V i R i Output Resistance, R of Assume I i =0 and I x applied to output terminal. I   I fb  I    i I x  I     i I x V x  ( I x  A i I  ) R o V x   I x  A i (   i I x )  R o V x  I x (1   i A i ) R o R o f with feedback x o f I R  V x  R o  1   i A i 

Shunt - Series Configuration   Shunt input connection decrease input resistance – avoid loading effects on the input signal current source. Series output connection increase the output resistance - avoid loading effects on the output signal due to load connected to the amplifier output. Equivalent circuit of shunt - series feedback circuit or voltage amplifier

Shunt - Series Configuration Op-amp current amplifier – shunt-series configuration. I i ’ from equivalent source o • f I I  i i a s n n d eg R lig s . ible and s i R >>R ; assume V 1 virtually Current I 1 : i i f b I  I '  I i F o f b F R   I R V   I gro I un  d  ; V / R 1 o 1    1  R  R F  1 i I o  I fb  I  I 1   Ideal curr I e i nt  gain R : 1  A i  o   1   F  Output cu I rre  nt: R

Shunt - Series Configuration   1  Output current Ai is open-loop current g I a  in  I i '  I fb  I i  I fb I o  A i I   A i ( I i  I fb ) and Assume V V o 1  is  v I i fb rt R u F ally ground: Closed-loop current gain:   I current: 1  R 1   R   I V F f b o R 1 I    1   R   R  I fb   F  I o  I fb  I 1  I fb     R 1  R A I  1   F  1   i i  I o A i if A

Shunt - Series Configuration Common-base circuit is example of discrete shunt-series configuration. Amplifier gain: Closed-loop current gain: R L I o I i I  R L I o I i I  I fb I o / I   A i   i i if A    I o  A i I 1   1  A

Shunt - Series Configuration Common-base circuit with R E and R C I o R E I i V - V + R C I o R E I i R C i i if R r A i R r A   E     E  I     I o m  g m r   1      A  1      g r

Series – Series Configuration g g gf A g A  1   A

Series – Series Configuration The feedback samples a portion of the output current and converts it to a voltage – voltage- to-current amplifier. The circuit consist of a basic amplifier that converts the error voltage to an output current with a gain factor, A g and that has an input resistance, R i . The feedback circuit samples the output current and produces a feedback voltage, V fb , which is in series with the input voltage, V i .

Series – Series Configuration Assume the output is a short circuit, the output current: I o  A g V  feedback voltage is: o z g i g f A g   I o  A V 1   A V fb   z I where ßz is a resistance feedback transfer functio Input signal voltage (neglect Rs=∞ ): V i  V   V fb

Series – Series Configuration Assume I i =0 and I x applied to output terminal.  R o f with feedback Output Resistance, R of x x g z x o  f b  z x V x  I x (1   z A g ) R o V   I  A (   I )  R I     z I x V x  ( I x  A g I  ) R o I  I  I   I  o z g x of I R  V x  R  1   A  O r   R if with feedback Input Resistance, R if V i  V   V fb  V    z ( A g V  ) V (1   z A g ) Input current V    i i i V V i  R R i (1   z A g )  I  i i f I R  R i (1   z A g )  V i

Series – Series Configuration Series input connection increase input resistance Series output connection increase the output r e s i st an c e Equivalent circuit of series - series feedback

Series – Series Configuration E i g f V R A  I o  1 The series output connection samples the output current  feedback voltage is a function of output current. Assume ideal op-amp circuit and neglect t V ra i n  s V is f t b or  b I a o s R e E -current:

Series – Series Configuration Assume I E  I C and R i  i g f E f b g r A R V m  g E m  g o m  b m  g  A   I o V   V i  V fb  V i  I o R E I o  g m r  A g  V i  I o R E  I   g r I  g r A V V 1   g r A  R

Series – Series Configuration

Series – Series Configuration i o gf f b C R C V I r R C    R  g m  R    C L  A          g m  R E   V  L       R  R  r  g m V   R E      V   1 1    g m  R E  r    1 V i  V   V fb  V   1   I o   ( g m V  )

Shunt – Shunt Configuration z z z f A z A  1   A

Shunt – Shunt Configuration The feedback samples a portion of the output voltage and converts it to a current – current- to-voltage amplifier. The circuit consist of a basic amplifier that converts the error current to an output voltage with a gain factor, A z and that has an input resistance, R i . The feedback circuit samples the output voltage and produces a feedback current, I fb , which is in shunt with the input current, I i .

Shunt – Shunt Configuration Assume the output is a open circuit, the output voltage: V o  A z I  feedback voltage is: V o I fb   g Input signal voltage (neglect Rs=∞ ): I i  I   I fb g z i z f   V o A z  A I 1   A where ßg is a conductance feedback transfer functio

Shunt – Shunt Configuration O r   i f R with feedback Input Resistance, R if I i  I   I fb  I    g ( A z I  ) I I    i (1   g A z ) Input current I R (1   g A z ) V i  I  R i   i i g z i i f R I (1   A )   V i R i Assume Vi=0 and Vx applied to output O r   R with feedback Output Resistance, R of g x   V  te V r  m  in V a bf l.  V  V     g V x o o R R V x (1   g A z )  Input V c x u  rr A e z n V t  I i  g z o x x o f of V R R   I (1   A )

Shunt – Shunt Configuration Equivalent circuit of shunt - shunt feedback circuit or voltage amplifier

Shunt – Shunt Configuration n. Input current splits between feedback current and error current. Shunt output connection samples the output voltage  feedback current is function of output voltage. 2 I A i z f   R  V o Basic inverting op-amp circuit is an example of shunt-shunt configuratio V o   I fb R 2 where I fb  I i

Shunt – Shunt Configuration Az is open-loop transresistance gain factor (-ve value) A I A i zf 1   z R 2 A z   V o where I fb   V o / R 2 V  A I   A  I  I  o z  z i fb

Shunt – Shunt Configuration

Shunt – Shunt Configuration           F  i   o  zf F  F  o F i F C R F      g m  g m  R  V A V o  I i R   r  R    g m  R R V R r I  R g V R 1  1   1   I  1 1  1  1     R 1    1 1   1 1     R C R F  r  R F   R F   C F    F   V  V   V o   V o  V o  V  m 

             F  z o zf F  z F  F   F    F  i o zf R  A z  I i V A R r R R R r R R R  A z  I V A      R r   1  1  A   1      C   1   C  1        A r  R C  A z   1  1    g m r  R C  C    Shunt – Shunt Configuration Open-loop transresistance gain factor A z is found by setting R F =    g m   Multiply by (r π R C )  C Assume R <<R F π & r << R F

Feedback Amplifier Input and output Impedances Summary For a series connection at input or output, the resistance is increased by (1+  A). For a shunt connection at input or output, the resistance is lowered by (1+  A).

Feedback Amplifier
Tags