15]
sl
ta
6
16)
a
0]
ol
Lo]
tu)
ha
bal
bal
bs
us
in
bs]
Journal of Information Systems Engineering and
Management
2025, 1085)
ago
peso mao Research Article
‘Real-Time Grid Stabilization and Efficiency In EgS Web of Conferences (Vol. 591, . 04002). EDP
Scenes
sae, EAE, Ko, VV, e Grigoe A. A (2029). Data centr efficiency model: a new approach
“and the role of atic eigene. Mareusmavecxan Guonorta u Gnounopnanu, 180), 215-227.
1, L Wo, Zhang, J, Zhang, L Tan, 8 Tan, Z. (202). VMD and LSTM based hybrid mode of
load forecasting for power grid security. IEEE Transactions on Industrial Informatis, 189), 6474-
6483,
Alene, M, Ana, F,Packinather M, & Shouran, M. (2024) Enhancing transformer protection: A
‘machine learning framework for cry ful detection Sustainability, 1629), 10759.
Qing, X. & Ni, Y. (2018. Hourly day-ahead solr irradiance prediction using weather forecasts by
STM, Enero, 148, 461-468.
Almasoudi, F. M. (2035). Enhancing power grid rence through real-time fault detection and
‘remediation using advanced hybrid machine learning models. Sustainability, 1510), 8248.
Kim, B.G., Zhang, Y, Van Der Schaar, M, & Lee, J. W. (2015). Dimamie pricing and energy
consumption sebedulin with reinforcement learning. IEEE Transactions on smart ri, 75) 2187
2198.
Dhungans, H. (2035). A machine learning approach for wind turbine power foreasing for
‘maintenance planning, Energy Informati, 8), 2-
Hemmat, A Bazar, Rahman A.M. & Moosad, H. (2025) A Systemati Review on Optimization
Approches for Transformer and Large Language Model. Authorea Preprints.
‘Alomar, K, Aysel LL, Cu, X. (2024) RNNS, CNN and Transformers in Human Acton Recognition:
A Survey and A Hybrid Model arXiv preprinariv2407.06162.
BARTOULI, M, HELALI,A, & HASSEN, F.(2024, Ape). Applying Bayesian Optimized CNN-BILSTM
to Real-Time Load Forecasting Model for Smart Grids. In 2024 IEEE Intemational Conference on
Advance Systems and Emergent Technologies (IC_ASET) (pp 1-6). IEEE.
‘Ashore, MF, Habib, Des D. À, Alattah, W. Ilm, M, & Alabl,. (2032). Imposing the
eficieney ef must "erde electricity load forcasting via REN with ML
ESTA. Sensors, 22018), 619
Wen, X. Liao J, Nin, Q, Shen, N, & Bao, Y. (2021) Dep Iearning-driven hybrid model fr short-term
load forecasting and smart grid information management Scene report, 10, 19720
Baviiet, D. P. AiEnabled Metaheurstie Optimization for Predictive Management of Renewable
Energy Produetion in Smart Grids.
Zafar, A, Che, ¥,Sehnan, M, Al, U Algar, A.D, & Elmannal, H. 2029). Optimizing solar power
generation forecasting in smart rds: À Hybrid convoluional neural network autoencoder long shor
term memory approach. Physica Seripis, 000), 095249.
Abu Hour, M, Bari, 5. M.S, Zar, M.H. Mansoor, M, & Chen, W. (2023). COA-CNN-ASTM:
Coat optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in
mat grid applications Applied Energy, 349, 121638.
Hossan, 5, Zulkefl, A, Suanarıyan, $, & Nair A. (2024) Riscinformed Hierarchical Control of
[Behind-the Meter DERs with AMI Data Integration (Final Technica Report) (No. DOE Eston-09023)
Eaton Corporation, Golden, CO United States)
hanes, Turin, K, & Chertkon, M. (201, Ju). Saiten lasifiaton of easeading fire |
power grid. In 201 IEEE Power and Energy Society General Meeting (pp. 1-3) IEEE.
182
Cort 16h An Lay SEM Ts nas re ua nd Ct Cos Ati,
ets pm en udn mery mein pe gd oks po ed