Fatima, Z., Kumar, A., Bhargava, L. and Saxena, A., 2019. Crude oil consumption forecasting using classical and machine learning methods. International Journal of Knowledge-Based Computer Systems, 7(1), pp.10-18. Jahanshahi, H., Uzun, S., Kaçar, S., Yao, Q. and Alassafi, M.O., 2022. Artificial intelligence-based prediction of crude oil prices using multiple features under the effect of Russia–Ukraine war and COVID-19 pandemic. Mathematics , 10 (22), p.4361. Prochnow, S.J., Raterman, N.S., Swenberg, M., Reddy, L., Smith, I., Romanyuk, M. and Fernandez, T., 2022. A subsurface machine learning approach at hydrocarbon production recovery & resource estimates for unconventional reservoir systems: Making subsurface predictions from multimensional data analysis. Journal of Petroleum Science and Engineering, 215, p.110598. Luo, S., Xu, T. and Wei, S., 2022. Prediction method and application of shale reservoirs core gas content based on machine learning. Journal of Applied Geophysics, 204, p.104741. Martyushev, D.A., Ponomareva, I.N. and Filippov, E.V., 2023. Studying the direction of hydraulic fracture in carbonate reservoirs: Using machine learning to determine reservoir pressure. Petroleum Research, 8(2), pp.226-233. Jin, W., Atkinson, T.A., Doughty, C., Neupane, G., Spycher, N., McLing, T.L., Dobson, P.F., Smith, R. and Podgorney, R., 2022. Machine-learning-assisted high-temperature reservoir thermal energy storage optimization. Renewable Energy, 197, pp.384-397. Thanh, H.V. and Lee, K.K., 2022. Application of machine learning to predict CO2 trapping performance in deep saline aquifers. Energy, 239, p.122457. Li, H., Gong, C., Liu, S., Xu, J. and Imani, G., 2022. Machine learning-assisted prediction of oil production and CO2 storage effect in CO2-water-alternating-gas injection (CO2-WAG). Applied Sciences, 12(21), p.10958.