well and well pump submersible pumpDesign.pptx

baset730 7 views 63 slides Aug 30, 2025
Slide 1
Slide 1 of 63
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63

About This Presentation

design of well based on AED and pump design


Slide Content

Her at Un i ve rsity En g i ne e ring Fac u lty W ater S u pp l y En g i ne e ring Tube Well & W ell Pump Design

Con s truct i on a n d Boring of Tube well T h e meth o ds of b o ring w e lls c a n be cla s sified into Drilled Well C a ble to o l m et h od of drilling is k n o w n as p e rc u s s ion drill i ng ( ha m m e ring a n d c utting) whi c h s uita b le for c utting c o n s oli d at e d ro c k D irect R o tary meth o d I t is s u itable for u n c o n s o lidated formation s u ch as s a n d , gra v el T h e m e th o d in v ol v es a c o n tinu o u s ly rotating h o llow bit thro u gh w h ich a m ixt u re of c lay a n d w at e r or m u d is forc e d. T h e bid c u t t in g s are c arried up in the h ole by r i s ing the m u d

Con s truct i on a n d Boring of Tube well T h e meth o ds of b o ring w e lls c a n be cla s sified into Dri v en w e lls J etted t u b e w ells dril l ed tube wells Driv e n Well w h ere the a s s e mbly is forced do w n the gro u nd to p e n e t r ate into the w a ter b e aring form a tion J e t t ed Well A h o le in the gro u nd is ma d e by t he cutting a c tion of a s t r e a m of w a ter w h ich is p u m p ed into the w e ll thro u gh a s m all pi p e di a m e ter.

Tube well Deep tu b e w e ll d e p th is a b o u t 7 to 300 m Yi e ld c an be a s h i gh a s 20 l/s Avera g e yield is 4 to 4 5 l/s Classif i ed i n to two cat e g o ri e s Cavity type (spher i cal fl o w) Screen type (rad i al fl o w)

Screen type tube well Stra i n e r tu b e w e ll Not reco m m e nd for fi n e sa n d

Slotted pipe with gravel p a ck Gravel p a ck is re q uir e d in fi n e a q u if e r • D 1 < . 2 5 mm

Well design features We l l c a si n g dia met e r Ca si n g mat e rials Well and ca si n g d ep t h We l l s c r e e n length a n d di a met e r We l l s c r e e n sl o t o p e n i n gs Aqu i fer a n d w e ll d eve l o pm ent a n d g r a v el pack mat e rial Collect i on and a nal y sis p ump te st and wate r q u a li t y d ata of Selec t i o n of w e l l p u mp

Sele c tion of a W ell Site

Well casing diameter

Casing material The pr e ferr e d casing m a ter i al is steel (ASTM A 5 3 Gra d e B o r ASTM A 139 Grade B). The PVC p i pe m u st be at le a st Sche d ule 8 or SDR 17 . PVC sha l l NOT be u sed f o r we l ls d e e p er t h an 80 m.

Well screens Mi n im u m t ot a l l e n g th of PVC s c re e ns sha l l b e f o ur ( 4 ) m e t e rs. M i n i m um tot a l le n gth of stai n less steel sc r e e ns shall be two ( 2 ) m e ters

Design the si z e of the s lot openings of a screen The s l ot o p e n i ngs d e p e n ds on t h e s iz e of the a q u i fer ma t e r i a l Over s iz e d slot will p ump fi ner mate r ial and will be d i ff i cu lt to o bta i n c l ear wat er Und ersiz ed s l ot will r esu lt in m ore h e ad l oss an d c o r r os i on The o ptimu m va l u e i s de t e r min e d by mat c h i ng the s i ze of the o p e n i n g a n d t he g r a i n s iz e distr i b u ti o n cu r ve In P ra c tic e i t ranges b etween 0.2 mm t o 5 mm

Design the si z e of the s lot openings of a screen Slo t o p e n i ng f o r a n on g r a v el p a ck we l l The o ptimu m s l ot si z e i s ch o se n a s the o n e which r eta i n 40% of the s an d . This may v a r y fro m a q u i fer to a n ot h er Slot op e n i ng for a g r a v el p ack well On the g r ain s i ze di str i bu t ion cu rv e a po i nt of 90 % s i ze is r eta i n e d i n d i cate the o p timu m s l ot si z e. The a c tu al siz e may be f i xe d within 80 % of the D 10 siz e of t h e gra v el pa c k

Filter pac k ing (gravel packing) is primari l y sand and gravel placed around the we l l screen t o stabi l ize the aquifer and provide a radius of high permeability around the screen. The we l l screen ape r tu r e size w i ll be selected so th a t be t ween 8 5 an d 10 perce n t of t he filter pack is larger than the screen openin g s The thickness of the filter pack wi l l range f r om a minimum of 75 mm to approxima t ely 20 mm

Filter pac k ing (gravel packing) Gr av el Pa c k d esi g n The g r a v el p a ck sh o uld be d e s i gn b e fo r e the d e si g n o f the s ize of the sl ots The g r a v el p a ck sh o uld be d e s i g n ed u si n g Pack Aqu i fer Rat i o ( P A ) P A ra t io = D 50 of the grave l / D 50 of the aq u if e r PA r a ti o n s h o u l d b e b etwe en 9 to as 1 2.5 fro C u ≤ 2 PA r at i on s h o u l d b e b etwe en 1 2 to as 1 5.5 fro C u ≥ 2 Howe v er Cu s h o u l d be k e pt is e q u al o r les s th a n 2.5

BENEFI TS Gr e a t er poro s i t y Higher h y dr a ulic cond u c t iv i t y Reduc e d dra wd o wn Higher y i eld Reduc e d en t ra nce v eloci t y Fas t er dev e lopment Eas i er gro u ting L o n g er well li f e Improved well r ehabili t a t ion Red u ce sand p u mping Filter pac k ing (gravel packing)

Screen length • L=Q/(AV ) L=length of scr e en Q=discharge A=effec t ive open area per unit length of screen length A pproximately ½ of the actual open area which can be obtained f r om screen m anufac t urers. V=ve l ocity above wh i ch a sand particle is t r anspor t ed

Screen length

Grouting and Seal i ng. Grout sho u ld exte n d from the surface to t h e t o p of t h e b e n t o n ite seal over l ying fil t er p ack o f the well The well casing a n d t he gr o ut seal sho u ld ext e nd fr o m t h e surf a ce to t h e d e pth n e ces s ary to pr e vent surface con t a m i n a t i o n via c h a n n e ls t h ro u gh soil a n d r o ck strata

Well Pumps Capac i ty of we l l Capac i ty of system S i ze of we l l Depth of water Type o f well Pow e r source Stan d by equipment Well drawdo w n Total dynamic head

Pump Capac i ty TDH=HS+ H D+HF+( V 2 / 2 g) H s =s uc t i o n l if t ; ve r tic al d i s t a nce fro m the wate rl i ne at dra wdown un der fu l l c ap a ci t y to the p u mp cent erl i n e , m HD=di s ch a r ge h e a d ; v e r tic al d i s t a nce f r om t he pu mp cent erl i ne to t h e pres s u r e l e v el of the d i s c h a r g e pi p e s y s tem, m HF=fri cti o n h e a d ; l o s s of h e a d o n pi p e l i nes a n d fi t ti n g s, m V 2 / 2 g= v e l o city h e a d ; h e a d n e c e s sary to mai n ta i n fl ow, m

Pump brake horsepower • P=(HQ)/ ( 102 *e) Wh e re: P=br e ak p o wer re q uir e d, kW H=t o t a l d yna m ic h e a d , m Q= v ol u me of wat e r dischar g e d , L/s e=Co m bi n ed e f ficie n cy of p u mp a n d m o tor, from m a n u fact u rer ’ s d a ta

Sample problem Site data Depth of well is 80 m Stat i c wate r t a ble is 1 4 m Draw d own is 1 m Screen open area = 12% Wat er demand ADD = 19 lit ( 5 g a l) Po p u l at i on = 3 8 person Peak f ac t or = 1. 8 Wa t er d e ma n d = 1. 8 x 19 x 38 = 1 29.96 m 3 /d ay Pump hours = 16 hr Req uire d fl o w = 1 29 .96 / 1 6 / 6 / 6 = 2. 2 5 L/s

Casing Diameter & Material Q= 135 lpm Casing Would E x ten d 3 m below the Pumping water level Mate r ial is P V C Sch . 80

Screen Length   So the screen length is 8 m

Well pump design Riser pipe based on maximum velocity Limit of 4 ft /sec (1.22 m/sec) V=Q/A  

“ Total Dynamic Hea d ” (TDH) TDH = Hs + Hd + H f + Hv Suction Head • Hs = 8 – 1 4 – 3 (pump location) – 1 (drawdo w n) = 5 3 m Disch a rge Head Hd = 7 7 + 20 ( re s erv o ir el e v.) = 9 7 m Friction Head H f = assume 1m

“ Total Dynamic Hea d ” (TDH) Velocity Head Hv = v2 / 2 g • = 1. 14 ^ 2 / ( 2 ×9. 8 1 ) = 0. 7 (n e gl i gi b le) TDH = - 5 3 + 9 7 + 1 + 0. 7 = 4 5 m

Pump brake horsepower P= ( TDH × Q ) / ( 10 2 × ef f icie n cy in d ex) P = ( 4 5 × 2. 2 5 ) / ( 102 ×0. 7 ) = 1 . 42 KW Pump br a ke h o rsepow e r = 1 . 9 HP

Pump se l ect i on TDH = 45 m Q = 8 . 1 m 3 /hr 4 S R 6 / 13 D u ty p o i n t

Test for Quality of Water

TEST FOR S AND The well shall be al l owed to rest for at l e ast o n e h o ur, t h en p u m p i n g sha l l b e gin at the f u ll d esign well yield The wat e r p u m p ed fr o m the well sha l l be su b sta n ti a lly fr e e fr o m clay, silt, a n d sand (< 8.0 m g /l)

Test For Yield And D rawdown And Recovery Upon com p le t ion of the p e rma n e n t pr o d u ction wel l , a co n ti n u o us 6 -h o ur p u m p ing t e st shall be con d ucted with the p u m p ing ra t e a n d d rawd o wn recor d ed at a p p ro p ri a te i n t e rvals (b e twe e n min a n d 36 mi n )

Test For Yield And D rawdown And Recovery

Do u bling well d iam e ter appre c iably incr e a s es well y ie l d DO U BLING WE L L DIA M E T ER 1 % YIE L D INCR E ASE DOUBLING SCREEN LENG T H DOUBLES WELL YIELD WELL DIAMETE R : MYTH FACT

Develop m ent of tube we l l Restore a q ui f er, fo l lowi n g d a m a g e d ue to d ril l i n g Red u ce h e ad loss by incre a sing p e rme a bi l ity I n crease well e ff i cie n cy Red u ce dr a wdown a n d cost of extracti n g gr o u n dwa t er Restore / Reh a bi l it a te well d u e t o gr a d u al clog g ing a n d bi o fo u li n g .

Development Methods Sur g ing Overp u m p i n g Air L ift (compr e s s ed air) Jett i ng Explosive (rock a q ui f er)

H e ad l o ss in a q u i fer H e ad l o ss n e ar scre e n H e a d l o ss thr oug h scr ee n How to redu c e head los s ?

Why is it important? M o st sensitive ar e a, where fl o w conv e rg e s a n d is t h e f a stest Wh e re we still h a ve m e a n s t o m o d ify the a q ui f er

Ulti m ate Goals M a ke the p o res as b i g a s p ossible so wat e r is fr e e to f l ow. Resu l ts: mo r e fl o w l ower cos t s of o p e r at i on ( r e d u c ed dra wdown = le s s e ne r gy to lift the water = r e d uce d h ydro b i ll)

Other goals Rem o ves fi n es Wat e r qua l ity Min i mize a b r as i on on e q u i pm ent ( ex t e n d li f e of pum p i n g a n d p i p i ng e q u i pm ent) Cre a t e s zone of A u t o fi l tr a ti o n

Develop m ent Methods Overpu m pi n g Sur g i n g Air L ift Jett i ng Explosive (rock a q ui f er)

Overpumping D r awdo w n during operation Increas e d gradie n t D r awdo w n du r ing developmen t

Surgi n g

Air lift

Jetting

Overpumping Pros Simple No sp e cial eq uiment Cons No r eve rs e flow No ag i tat i on of soil p a rt i c l es L o w e n e r gy imp a ct Low eff i ci e n c y Req uire s r e mo v al of fi nes

Autofi l tration

Surging Cons Flow b y p ass Low le v el of impa ct Rela tiv e l y L o w ef f ici e n c y Requ i res rem ova l of fi nes Pros Simple te c h n o l o gy Low Cost

Air Lift Pros Effici ent Met h od Combine rem ova l of fi nes Easy to ad j u st/c on t rol en e r gy l eve l Cons Req uire s “ so p h istic at e d ” Equip ment (e . g. co mp r e s so r) Req uire s g o od under s tandin g of aq u i fer c o n d i ti ons Does n ot tar get sp e cific s c ree ned zones

Jetting Pros Most E f f ic i ent Method E a sy t o adjust / control e n ergy l e vel E a sy t o target spec i fic screened zone E n h a nce moveme n t o f particles “ dee p” i n to the aq u ifer. Screens des i gn e d for jetti n g (V-w i re) Cons Req uire s “ so p h istic at e d ” Equ i pm ent ( e.g. co mp r e s so r) Req uire s g o od un d e rs ta n d i ng of aq u i fer c o n d i ti ons Requ i res rem ova l of fi nes

Wrap Up Devel o p m e n t is very im p ort a nt Immmedia t ely fo l lowin g well co mple t ion As part of t h e mainte n a nce of the well Devel o p m e n t is very com p lex a n d n e e d to be d e sign e d pr o p e rly to be e f ficie n t

U n ac ceptable wellhead

Acc e ptable wellhe ad