Flow measurement
Session 3
Pitot tube
&
Notches/Weirs
Dr. Vijay G. S.
Professor
Dept. of Mech. & Mfg. Engg.
MIT, Manipal
email: [email protected]
Mob.: 9980032104
1
2
Pitot tube
•ThePitottube(namedaftertheFrenchscientistPitot)isoneofthesimplestandmost
usefulinstrumentseverdevisedforflowmeasurement.
•Itisgenerallyusedtomeasurethelocalvelocityofflowinpipesoropenchannels.
•ThePitottubeisasmalltubebentatrightangles
andisplacedintheflowsuchthatlowerend
(calledtheprobe),isbentthrough90
o
andis
directedintheupstreamdirection.
•Theprobeismaintainedsuchthattheaxisofits
hole(probe)isparalleltothevelocityofthefluid
flowing.
•Theliquidrisesinthetubebyadistancehdueto
conversionofkineticenergyintopotentialenergy.
•Thevelocitycanbedeterminedbymeasuringthe
riseofliquidinthetube.
At point (1), Static pressure, p
1=
ogz
At point (2), Stagnation pressure, p
2=
og(z + h)
Free surface of liquid
Pitot
tube
Flow
o
Pitot tube used in an open channel
Tube diashould not
influence capillarity
Probe
3
Pitot tube for a closed conduit (pipe)
Pitot tube used in a closed conduit (a pipe)
•Inaclosedconduit(likeapipe),thereissomeinternalpressure,whichresultsinthe
staticpressureheadzatpoint(1),asindicatedbythepiezometerat(1).
•Duetostagnationoffluidatpoint(2),thestagnationpressureheadindicatedbythepitot
tubewillbez+h.
•ThustheDynamicpressurehead,
h=(Stagnationpressurehead–
Staticpressurehead)
4
V
2= 0
•Thestreamlinealongtheprobeaxiscomestoastopat(2).i.e.,theflowstagnatesat(2).
•Thispointisknownasthe“Stagnationpoint”wherethefluidvelocityiszero,i.e.,V
2=0.
•Sincetheflowissuddenlybroughttorest,thepressureatthatpointrisessharplydueto
theconversionofthekineticheadintopressurehead.
•Thepressurep
2at(2)isgreaterthanp
1at(1)andisknownasthe“Stagnationpressure”.
Pitot tube –contd…
V
1= ?
5
Pitot tube –Stagnation pressure
•TheStagnationpressureatapointinthefluidflowisdefinedasthetotalpressurewhich
wouldresultifthefluidwassuddenlybroughttorestisentropically.
•TherelationshipbetweentheStagnationpressure(p
2)andtheStaticpressure(p
1)canbe
deducedbyapplyingtheBernoulli’sequationatpoints(1)and(2).
•Let p
1, V
1and p
2, V
2be the pressures and velocities at points (1) and (2) respectively.22
1 1 2 2
12
22
oo
p V p V
zz
g g g g
•Atthestagnationpoint(2),thevelocityV
2=0.
•Alsoz
1=z
22
1 1 2
2
oo
p V p
g g g 2
1
21
2
o
V
pp
•Stagnation pressure (p
2
) = Static pressure (p
1
) + Dynamic pressure2
1
2
o
V
o
6
Pitot tube –Stagnation pressure –contd…
•Stagnation pressure (p
2
) = Static pressure (p
1
) + Dynamic pressure2
1
2
o
V
•The stagnation pressure (p
2) is more than the static pressure (p
1) by an amount equal to
the dynamic pressure2
1
2
o
V
The dynamic pressure head is2
1
2
1
2
2
(2)
o
o
V
hg
V
g
Kineticheadlostat
(head = p/g)
7
Pitot tube –Finding flow velocity2
1
21
2
o
V
pp
If the stagnation pressure p
2and the static pressure
p
1are known, then the velocity of the flow V
1can
be determined.2
1
21
2
o
V
pp
212
1
2
o
pp
V
21 21
1 2 1
2
2 2 2
o o o
gpp pp
V g ghhgh
g gg
1
2
th
V gh
V
1
Static
pressure
head (h
1)
Stagnation
pressure
head (h
2)
(V
1)
act<(V
1)
th(V
1)
act= C
v(V
1)
th
where, C
vis known as “Coefficient of velocity”
(V
1)
act= C
v(V
1)
th
This equation gives the actual local velocity of flow measured by a pitot tube.
C
v0.98
8
Pitot tube –Finding flow velocity –contd…
v
Actualvelocity
C
Theoreticalvelocity
1
2
vact
VCgh
1
2
th
V gh
Pitot-Prandtlprobe OR Pitot-Static probe
Probe opening for sensing
stagnation pressure p
2
Connections
to differential
manometer
9
Holes for
sensing static
pressure p
1
V
max
V
1
10
Central
velocity V
1
Pitot-Prandtlprobe OR Pitot-Static probe –contd…
Importance of positioning the pitot-static probe (for a pipe flow)
11
Pitot-Prandtlprobe OR Pitot-Static probe –contd…11
mm
oo
S
hx x
S
11
mm
oo
S
hx x
S
If
m>
oOR S
m> S
othen
an upright differential
manometer is used.
If
m<
oOR S
m< S
othen
an inverted differential
manometer is used.
m
m
o
o
Computing the dynamic pressure head from manometer reading
12
PROBLEMS ON PITOT TUBE
13
Problem1:Findthevelocityoftheflowofanoilthroughapipe,whenthe
differenceofmercurylevelinadifferentialU-tubemanometerconnectedtothe
twotappingsofthepitot-tubeis100mm.Takeco-efficientofpitot-tube=0.98
andspecificgravityofoil=0.8.
o= 800 kg/m
3
(Flowing oil)
m= 13600 kg/m
3
(Manometricfluid)
x = 100 mm = 0.1 m of mercury
C
v= 0.982
0.9829.811.6
5.49/
act v
VCgh
ms
141
13600
0.1 11.6
800
m
o
hx
h mofoil
Problem2:Apitot-statictubeisusedtomeasurethevelocityofwaterinapipe.The
stagnationpressureheadis6mofwaterandstaticpressureheadis5mofwater.
Calculatethevelocityofflowassumingthatthecoefficientofpitottubeisequalto0.98.
15
Stagnation pressure head, h
2= 6 m of water (Flowing water)
Static pressure head, h
1= 5 m of water (Flowing water)
C
v= 0.98
Dynamic pressure head, h= h
2–h
1= 6 –5 = 1 m of water2
0.9829.811
4.34/
act v
VCgh
ms
Problem3:Asub-marinemoveshorizontallyinseaandhasitsaxis15mbelow
thefreesurfaceofwater.Apitot-tubeproperlyplacedjustinfrontofthesub-
marineandalongitsaxisisconnectedtothetwolimbsofaU-tubecontaining
mercury.Thedifferenceofmercurylevelisfoundtobe170mm.Findthespeed
ofthesub-marineknowingthatthespecificgravityofmercuryis13.6andthatof
seawateris1.026withrespecttothatoffreshwater.TakeC
v=0.98.
16
h
1= 15 m (Static pressure head)
o= 1026 kg/m
3
(Flowing sea water)
m= 13600 kg/m
3
(Manometricfluid)
x = 170 mm = 0.17 m of mercury
C
v= 0.981
13600
0.17 12.083
1026
m
o
hx
h mofseawater 2
0.9829.812.083
6.265/
act v
VCgh
ms
V
act= 6.265 ×60 ×60/1000
= 22.55 km/hr
Problem4:Apitot-statictubeplacedinthecenterofa300mmpipelinehasone
orificepointingupstreamandotherperpendiculartoit.Themeanvelocityinthe
pipeis80%ofthecentralvelocity.Findthedischargethroughthepipeifthe
pressuredifferencebetweenthetwoorificesis60mmofwater.Takethe
coefficientofpitottubeas0.98.
17
d
1= 300 mm = 0.3 m (pipe dia) a
1= (d
1
2
/4) = 0.0707 m
2
V
avg= 0.8×V
1(Mean velocity, V
1= Central velocity)
o= 1000 kg/m
3
(Flowing water)
h = 60 mm = 0.06 m of water (Dynamic pressure head)
C
v= 0.98
Q= ?
1
2
0.9829.810.06
1.063/
vact
VCgh
ms
18
Problem 4: contd…
V
avg= 0.8×V
1
= 0.8×1.063
= 0.851 m/s
Discharge through the pipe,
Q = a
1×V
avg= 0.0707×0.851 = 0.06 m
3
/s
Q =60 lps
Central
velocity V
1
Problem5:Apitotstaticprobeisinsertedinapipeof300mmdiameter.The
staticpressureinthepipeis100mmofmercury(vacuum).Thestagnation
pressureatthecenterofthepipe,recordedbypitot-tubeis0.981N/cm
2
.
Calculatetherateofflowofwaterthroughpipe,ifthemeanvelocityofflowis
0.85timesthecentralvelocity.TakeC
v=0.98.
19
d
1= 300 mm = 0.3 m (pipe dia) a
1= (d
1
2
/4) = 0.0707 m
2
V
avg= 0.85×V
1(Mean velocity, V
1= Central velocity)
o= 1000 kg/m
3
(Flowing water)
h
1= 100 mm (vacuum) = -100 mm = -0.1 m of Hg (Static pressure head)
p
2= 0.981 N/cm
2
= 0.981×10
4
N/m
2
(Stagnation pressure)
C
v= 0.98
Q= ?
p
1=
Hg×g ×h
1= 13600×9.81×-0.1 = -13341.6 N/m
2
20
21
4
098110133416
1000981
236
..
.
.
o
pp
h
g
mofwater
1
2
0.9829.812.36
6.668/
vact
VCgh
ms
V
avg= 0.85×V
1
= 0.85×6.668
= 5.668 m/s
Discharge through the pipe,
Q = a
1×V
avg= 0.0707×5.668 = 0.4 m
3
/s
Q =400 lps
Problem 5: contd…
Notches/Weirs
Measurement of discharge through open channels
21
24
Rate of flow through a rectangular notch/weir
Crest or Sill
Top edge of notch
25
Rate of flow through a rectangular notch/weir –contd…
H=Headofwateroverthecrest
L= Length of the notch or weir
•Consider a horizontal strip of water
of thickness dhand length Lat a
depth hbelow the free surface of
water
•The area of strip = Ldh
•Theoretical velocity of water flowing through strip = 2gh
•ThedischargedQ,throughstripis
dQ=C
dAreaofstripTheoreticalvelocity2
d
dQ C L dh gh
where C
d= Co-efficient of discharge
26
Rate of flow through a rectangular notch/weir –contd…
•The total discharge, Q, for the whole notch or weir is determined by integrating the above
equation between the limits 0 and H.00
2
HH
d
Q dQ C L dh gh
0
3/2
0
3/2
2
2
3/2
2
2
3
H
d
H
d
d
QCLghdh
h
CLg
CLgH
3/22
2
3
d
QCLgH
27
Rate of flow through a triangular notch/weir
Apex
Top edge of notch
•LetH=headofwaterabovetheapexof
theV-notchortriangularweir.
•=angleofnotch
•Considerahorizontalstripofwaterof
thicknessdhatadepthofhfromthefree
surfaceofwater
28
Rate of flow througha triangular notch/weir –contd…tan
2
AC AC
OC H h
tan
2
AC H h
Width of the strip AB = 2 2 tan
2
AC H h
Area of the strip = 2 tan
2
H h dh
Theoretical velocity of water flowing through strip = 2gh
ThedischargedQ,throughstripis
dQ=C
dAreaofstripTheoreticalvelocity 2 tan 2
2
d
dQ C H h dh gh
where C
d= Co-efficient of discharge
29
Rate of flow througha triangular notch/weir –contd…
The total discharge, Q, for the whole notch or weir is determined by integrating the above
equation between the limits 0 and H.
00
2 tan 2
2
HH
d
Q dQ C H h dh gh
1/2 3/2
00
22tan 22tan
22
HH
dd
QCg HhhdhCg Hhhdh 3/2 5/2 5/2 5/2
0
22
2 2 tan 2 2 tan
2 3/ 2 5/ 2 2 3 5
H
dd
Hh h H H
Q C g C g
5/28
2tan
15 2
d
QCg H
5/ 28 90
0.6 2 9.81 tan
15 2
o
QH
For a right angled notch (weir) (= 90
o
) and C
d= 0.6,5/2
1.417QH
PROBLEMS ON NOTCHES/WEIRS
30
Problem 1: Find the discharge of water flowing over a rectangular notch of 2 m
length when the constant head over the notch is 300 mm. Take C
d= 0.60.
31
L= 2 m (length of notch)
H= 300 mm = 0.3 m (head over the notch)
C
d= 0.60
3/2
3/2
3
2
2
3
2
0.6229.810.3
3
0.582/
d
QCLgH
ms
Q = 582lps
Problem2:Theheadofwateroverarectangularnotchis900mm.The
dischargeis300liters/s.Findthelengthofthenotch,whenC
dis0.62.
32
H= 900 mm = 0.9 m (head over the notch)
Q = 300lps= 0.3 m
3
/s
C
d= 0.62
L= ? (length of notch)
3/2
3/2
2
2
3
2
0.30.6229.810.9
3
0.192
d
QCLgH
L
Lm
Problem3:Determinetheheightofarectangularweiroflength6mtobebuilt
acrossarectangularchannel.Themaximumdepthofwaterontheupstreamside
oftheweiris1.8manddischargeis2000litres/s.TakeC
d=0.6andneglectend
contractions.
33
L = 6 m
H
1= 1.8 m (depth of water on upstream)
Q = 2000lps= 2 m
3
/s
C
d= 0.6
H
2= ? (Height of weir)
Let H
2= height of weir
H
2= H
1–H
H
2= 1.8 –0.328
= 1.472 m
3/2
3/2
2
2
3
2
20.6629.81
3
0.328
d
QCLgH
H
Hm
Problem4:Findthedischargeoveratriangularnotchofangle60
o
whenthe
headovertheV-notchis0.3m.AssumeC
d=0.6.
34
= 60
o
(V notch angle)
H= 0.3 m (head of water above apex)
C
d= 0.6
Q= ? (Flow rate)
Q = 40 lps
Problem5:Waterflowsoverarectangularnotch1mwideatadepthof150
mmandafterwardspassesthroughatriangularright-anglednotch.TakingC
dfor
therectangularandtriangularweiras0.62and0.59respectively,findthedepth
overthetriangularweir.
35
H
R= 150 mm = 0.15 m (head over the rectangular notch)
L= 1 m (length of rectangular notch)
C
d= 0.62 (rectangular notch)
C
d= 0.59 (triangular notch)
= 90
o
(V notch angle)
H
T= ? (head over the triangular notch)
H
T
H
R
90
o
Q
Q
Rectangular= Q
Triangular
3/2
5/22 8 90
2 2tan
3 15 2
o
dR R dT T
CLgH Cg H
Problem 5: Contd…
362
3
2
dR
CLg
3/28
R
H
4
15
2
5
dT
Cg
5/290
tan
2
o
T
H
3/2
5/2
5
4tan45
dR R
T o
dT
CLH
H
C
3/2
5/2
2/5
50.6210.15
40.59tan45
0.0763
0.07630.3573
o
T
T
H
Hm