02_4-Conventional Decline Curve Analysis.ppt

rokur4099 143 views 63 slides May 04, 2024
Slide 1
Slide 1 of 63
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63

About This Presentation

02_4-Conventional Decline Curve A


Slide Content

Conventional Decline Curve
Analysis

Decline Curve Analysis
Instructional Objectives
•Use conventional decline curve
analysis
•Use effective and nominal decline
equations
•Use exponential and harmonic decline

Decline Curve Analysis
Instructional Objectives
•Match past performance
•Forecast future performance

Why Do We Use Decline Curve
Analysis?
•Match past performance trends with a
model
–Forecast future
–Estimate reserves

What Can Change the Trend?
•Field operations, development
strategies
–Increase or decrease in flowing
bottomhole pressure
–Drilling infill wells
–Drilling stepout wells
–Initiating secondary or tertiary
recovery program

The Arps Equation
 
b1
i
i
tbD1
q
tq

Assumptions for Arps Equation
•Well is produced at constant
bottomhole pressure
•Well is producing from a reservoir with
fixed, no-flow boundaries
•Well has constant permeability and skin
factor
•Applicable only to boundary-dominated
flow data

Hyperbolic Exponent b
 
b1
i
i
tbD1
q
tq

3 Sets of Equations
•Hyperbolic general case
where 0 < b < 1
•Exponential decline where b = 0
•Harmonic decline, where b = 1

0
10
20
30
40
50
60
70
80
90
100
0 5 10 15 20
Time, years
Rate, STB/D Cartesian Rate vs time
Exponential
Hyperbolic
Harmonic

10
100
0 5 10 15 20
Time, years
Rate, STB/D Semilog Rate vs Time
Exponential
Hyperbolic
Harmonic

10
100
0.1 1 10 100
Time, years
Rate, STB/D Harmonic
Log-Log Rate vs Time
Exponential
Hyperbolic

0
50
100
150
200
250
300
350
400
450
0 5 10 15 20
Time, years
Cumulative Production, MSTB Cartesian Cumulative Production
vs Time
Exponential
Hyperbolic
Harmonic

0
10
20
30
40
50
60
70
80
90
100
0 50 100 150 200 250 300 350 400 450
Cumulative Production, MSTB
Rate, STB/D Harmonic
Cartesian Rate vs Cumulative
Production
Exponential
Hyperbolic

10
100
0 50 100 150 200 250 300 350 400 450
Cumulative Production, MSTB
Rate, STB/D Semilog Rate vs Cumulative
Production
Exponential
Hyperbolic
Harmonic

10
100
1 10
(1+b Di t)
Rate, STB/D Log-Log Rate vs (1 + b D
it)
Hyperbolic
Harmonic

Hyperbolic Decline (0 < b < 1)
 
b1
i
i
tbD1
q
tq

 

 
b1b1
i
i
b
i
p qq
b1D
q
tN



Hyperbolic Decline (0 < b < 1)i
b
a
bD
1r
t

 
 
b1
a
b1
i
i
b
i
pa qq
b1D
q
N



Nominal Decline Rate as a
Function of TimetbD1
D
q
q
DD
i
i
b
i
i










  
b1
iei bD11D

   1D1
b
1
D
b
eii 

Graphical Analysis for
Hyperbolic Decline10
100
1 10
(1+b Di t)
Rate, STB/D

Graphical Analysis for
Hyperbolic Decline0
5
10
15
20
25
0 5 10 15 20
Time, years
-q/(dq/dt)

Graphical Analysis for
Hyperbolic Decline0
0.05
0.1
0.15
0.2
0.25
0 5 10 15 20
Time, years
1/q^b

Exponential Decline (b = 0)
tD
i
i
eqtq

 

i
i
p
D
tqq
tN

Exponential Decline (b = 0)i
a
D
rln
t i
ai
pa
D
qq
N

iDD  
e
D1lnD  D
e e1D

 Exponential Decline (b = 0)

Graphical Analysis for
Exponential Decline10
100
0 5 10 15 20
Time, years
Rate, STB/D

Graphical Analysis for
Exponential Decline0
10
20
30
40
50
60
70
80
90
100
0 50 100 150 200 250 300 350
Cumulative Production, MSTB
Rate, STB/D

Harmonic Decline (b = 1)
tD1
q
tq
i
i

  






q
q
ln
D
q
tN
i
i
i
p

i
a
D
1r
t

 








a
i
i
i
pa
q
q
ln
D
q
N Harmonic Decline (b = 1)

tD1
D
q
q
DD
i
i
i
i

 i
i
ei
D1
D
D

 ei
ei
i
D1
D
D

 Harmonic Decline (b = 1)

Graphical Analysis for
Harmonic Decline10
100
0 50 100 150 200 250 300 350 400 450
Cumulative Production, MSTB
Rate, STB/D

Nominal vs Effective Decline



dt
tdq
tq
1
dt
tqlnd
tD  i
1i
e
q
qq
D

•Nominal decline can be directly converted
from one set of time units to another
•Effective decline cannotbe directly converted
from one set of units to another.
–Conversion depends on hyperbolic
exponent b
–Convert effective to nominal decline in the
original units
–Convert nominal decline to the new units
–Convert nominal decline back to effective
decline in the new units
Nominal vs Effective Decline

Example 1
Convert a nominal decline of 12 %/yr to
%/mo

Example 1 Solutionmo
%1
mo12
yr1
yr
%12
yr
%12
D
i 













Example 2
•Convert an effective decline rate D
e=
12%/yr to %/mo, assuming exponential
decline

Example 2 Solution1
010653.0
D
e
mo010596.0
e1
e1D







Shifting Time Zero for
Forecasting
pitqq
~
 
pitDD
~
 bb
~
 pttt
~


Example 3
•Determine the values of q
i, D
i, and bfor
Well X, using the data in your notes and
the current date, 1/1/97, as time zero.

Example 3 Solution
•Part 1 -The updated decline curve
parameters are b= 0.5, q
i= 499.79
STB/D, and D
i= 12.245 %/yr.

•Part 2 -The cumulative production from
1/1/97 through 12/30/2000 is 586,152 STB
Example 3 Solution

Example 3 Solution
•Part 3 -Cumulative production from
1/1/97 through 12/30/2000:STB159,5866704131256572N
p


Estimating b From Reservoir
Drive Mechanism
•Each drive mechanism has a
characteristic b value
•If b cannot be estimated from
production data, b may be estimated
from the drive mechanism

Estimating b from Reservoir
Drive Mechanism
References

Example 4
1.Estimate the decline curve parameters q
i
and D
ifor a) exponential decline, b)
harmonic decline, and c) hyperbolic
decline with b=0.5.
2.Forecast production for 20 years for a)
exponential decline, b) harmonic decline,
and c) hyperbolic decline with b=0.5.
3.Calculate the ultimate recovery N
paand
the time to abandonment t
afor a field-
wide economic limit rate of 9000 STB/mo.

Example 4 Solution
•Prepare the appropriate graphs for
analysis with exponential, harmonic,
and hyperbolic decline and estimate q
i
and D
i
•For convenience, we use time in
months, and plot the production
volume for the month as a monthly rate
at the midpoint of the month
•Develop a new rate table with time in
decimal months

Exponential Decline SolutionDecline Curve Example - Exponential Decline
1000
10000
100000
0 60 120 180 240
Time, months
Production rate, STB/month
65700
3490

Exponential Decline -Forecast  
 
mo/STB31540e65700eqtq
6010223.1tD
i
2
i


 

STB100,793,2
10223.1
3154065700
D
tqq
tN
2
i
i
p 





Exponential Decline -
Abandonment3.7
9000
65700
q
q
r
a
i
 
months5.162
10223.1
3.7ln
D
rln
t
2
i
a 


  
STB100,636,4
10223.1
900065700
D
qq
N
2
i
ai
pa 





Harmonic Decline Solution
•For harmonic decline, we graph qvs N
pon
a semilog scale
•First, we have to compute the cumulative
production as a function of time
•Simply adding the monthly volumes will
give the cumulative production at the end
of each month
•Production rate is calculated as an
average over the month, and should be
plotted at the middleof each month

Harmonic Decline Solution
•To get cumulative production at the
middle of month j+1, use 
1jj21jp1jjp21jp qq5.0Nq5.0NN
 

Harmonic Decline Solution

Harmonic Decline Solution
1000
10000
100000
0 500000 1000000 1500000 2000000 2500000 3000000
Cumulative production, STB
Production rate, STB/month

Harmonic Decline Solution
0 500000 1000000 1500000 2000000 2500000 3000000
Cumulative production, STB
Production rate, STB/month
1000
10000
100000
68800
31300

Harmonic Decline -Forecast
•At t = 60 months, qis calculated from
•Cumulative production N
pat 60 months
is  STB500,796,2
33020
68800
ln
10806.1
68800
q
q
ln
D
q
tN
2
i
i
i
p 



















 
 
mo/STB33020
60101.806+1
68800
tD1
q
tq
2-
i
i




Harmonic Decline -
Abandonment6444.7
9000
68800
q
q
r
a
i
  
years6.30months4.367
10806.1
16444.7
D
1r
t
2
i
a 





 STB500,738,7
9000
68800
ln
10806.1
68800
q
q
ln
D
q
N
2
a
i
i
i
pa 
















The 20-Year Forecast
1000
10000
100000
0 60 120 180 240
Time, months
Production rate, STB/month

Hyperbolic Decline Solution
0.003
0.0035
0.004
0.0045
0.005
0.0055
0.006
0.0065
0.007
0 12 24 36 48 60
Time, months
1/sqrt(q)
3.858E-3
5.583E-3

 
yr/%9.17
mo10490.1
5.010858.3
10875.2
ab
m
b
mq
D
12
3
5
b
i
i








 Hyperbolic Decline Solution

Hyperbolic Decline -Forecast
    
mo/STB32090
60101.4900.5+1
67200
tbD1
q
tq
5.01
2-
b1
i
i




 

 
 
  
 
 
 
 
 
STB900,786,2
3209067200
5.0110490.1
67200
qq
b1D
q
tN
5.015.01
2
5.0
b1b1
i
i
b
i
p











Hyperbolic Decline -
Abandonment4667.7
9000
67200
q
q
r
a
i
  
 
years4.19months6.232
10490.15.0
14667.7
bD
1r
t
2
5.0
i
b
a 





 
 
 
  
 
 
 
 
 
STB100,719,5
900067200
5.0110490.1
67200
qq
b1D
q
N
5.015.01
2
5.0
b1
a
b1
i
i
b
i
pa











Hyperbolic Decline -20-Year Forecast
Decline Curve Example -Hyperbolic Decline
1000
10000
100000
0 60 120 180 240
Time, months
Production rate, STB/month

Comparison of 20-Year Forecasts for
Exponential, Hyperbolic, and
Harmonic Decline
Decline Curve Example -Comparison of Forecasts
1000
10000
100000
0 60 120 180 240
Time, months
Production rate, STB/month
Field Data
Exponential
Hyperbolic
Harmonic
Tags