1.1.1 Vector operations
A scalar has a magnitude (mass, time, temperature, charge).
A vector has a magnitude (its length) and a direction.
Examples: velocity, force, momentum, field strength.
Boldface letters denote vectors.
On the blackboard I use
A .A anˆ,ˆ
Unit vectors are denoted by
Vectors have no location.
-AA
Vector field A(r)
addition of two vectors:A+B
multiplication by a scalar:aA
dot product (scalar, inner):cosABBA 0
BA
BA
ABBA
AB
if parallel
if perpendicular
Example work)(
12rrFW
Example 1.1
cross product (vector, outer):nBA ˆsinAB nˆ
is the unit vector perpendicular to the AB-plane. nBAˆ,, nBAˆ,,
form a right-handed system.BAAB 0AA BA
is the area of the
parallelogram.
Example: angular momentumprL
common notation:
zyx
AAA,,A 312231123ˆˆˆ
0,0
,ˆˆ
321
cyclic
jiifjiif
ij
ijji
nnn
nn
Kronecker
symbol
Properties of the basis
3
1i
iiBABA iii BA)(BA
3
1
)(
i
iiaAa nA
1.1.5 How Vectors Transform
Rotation about the x-axis:
z
y
z
y
A
A
A
A
cossin
sincos
3
1j
jiji ARA
In general
3
1
3
1 i
ii
i
ii
BABABA