1.1 Vector Algebra hggdhhdhhdhdhdhdhd.ppt

muhammedkazim1 23 views 15 slides Jul 29, 2024
Slide 1
Slide 1 of 15
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15

About This Presentation

ghgxhghgfxhg


Slide Content

1. Vector Analysis
1.1 Vector Algebra

1.1.1 Vector operations
A scalar has a magnitude (mass, time, temperature, charge).
A vector has a magnitude (its length) and a direction.
Examples: velocity, force, momentum, field strength.
Boldface letters denote vectors.
On the blackboard I use 
A .A anˆ,ˆ
Unit vectors are denoted by

Vectors have no location.
-AA
Vector field A(r)

addition of two vectors:A+B
multiplication by a scalar:aA

dot product (scalar, inner):cosABBA 0


BA
BA
ABBA
AB
if parallel
if perpendicular
Example work)(
12rrFW

Example 1.1

cross product (vector, outer):nBA ˆsinAB nˆ
is the unit vector perpendicular to the AB-plane. nBAˆ,, nBAˆ,,
form a right-handed system.BAAB  0AA BA
is the area of the
parallelogram.
Example: angular momentumprL

1.1.2 Component FormzyxA ˆˆˆ
zyx
AAA  3,2,1ˆ iA
iin
1: x, 2: y, 3: z
components:basis:zyxˆ,ˆ,ˆ zyx
AAA,, An
iiA

common notation: 
zyx
AAA,,A 312231123ˆˆˆ
0,0
,ˆˆ
321
cyclic
jiifjiif
ij
ijji
nnn
nn





Kronecker
symbol
Properties of the basis


3
1i
iiBABA iii BA)(BA 


3
1
)(
i
iiaAa nA

else
if
ijkif
BACor
BBB
AAA
ijk
kj
kjijki
zyx
zyx
0
321,213,1321
312,231,1231
ˆˆˆ
3
1,


 



zyx
BAC Levi-Civita
symbol

Example 1.2

1.1.3 Triple Products
scalar triple product:cyclic)()()( BACACBCBA 
volumezyx
zyx
zyx
CCC
BBB
AAA
 )(CBA

vector triple product:)()()( BACCABCBA 
bac -cab
rule
Higher order products by repeated bac-cab and symmetries
of the scalar triple product.

1.1.4 Notation r
r
rr 


ˆ , : vectorseparation
ˆˆˆ :ntdisplaceme malinfinitesi
ˆˆˆ : vectorposition
rr
zyxl
zyxr
dzdydxd
zyx

1.1.5 How Vectors Transform
Rotation about the x-axis:

























z
y
z
y
A
A
A
A


cossin
sincos 


3
1j
jiji ARA
In general


3
1
3
1 i
ii
i
ii
BABABA