1- Introduction _ Internal Resultant Loadings (1).pdf

Yusfarijerjis 550 views 20 slides Mar 20, 2023
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

strength


Slide Content

Strength of Materials
Strengthofmaterialsisabranchofmechanicsthatstudiestheinternal
effectsofstressandstraininasolidbodythatissubjectedtoan
externalloading.Stressisassociatedwiththestrengthofthematerial
fromwhichthebodyismade,whilestrainisameasureofthe
deformationofthebody.Inadditiontothis,mechanicsofmaterials
includesthestudyofthebody’sstabilitywhenabodysuchasacolumn
issubjectedtocompressiveloading.Athoroughunderstandingofthe
fundamentalsofthissubjectisofvitalimportancebecausemanyofthe
formulasandrulesofdesigncitedinengineeringcodesarebasedupon
theprinciplesofthissubject.

Historical Development
Theoriginofmechanicsofmaterialsdatesbacktothebeginningofthe
seventeenthcentury,whenGalileoperformedexperimentstostudythe
effectsofloadsonrodsandbeamsmadeofvariousmaterials.However,
atthebeginningoftheeighteenthcentury,experimentalmethodsfor
testingmaterialswerevastlyimproved,andatthattimemany
experimentalandtheoreticalstudiesinthissubjectwereundertaken
primarilyinFrance,bysuchnotablesasSaint-Venant,Poisson,Lamé,
andNavier.
Overtheyears,aftermanyofthefundamentalproblemsofmechanics
ofmaterialshadbeensolved,itbecamenecessarytouseadvanced
mathematicalandcomputertechniquestosolvemorecomplex
problems.Asaresult,thissubjectexpandedintootherareasof
mechanics,suchasthetheoryofelasticityandthetheoryofplasticity.
Researchinthesefieldsisongoing,inordertomeetthedemandsfor
solvingmoreadvancedproblemsinengineering.

Equilibrium of a Deformable Body
ExternalLoads.
Abodyissubjectedtoonlytwotypes
ofexternalloads:
•Surfaceforcesarecausedbythe
directcontactofonebodywiththe
surfaceofanother.
•Bodyforceisdevelopedwhenone
bodyexertsaforceonanotherbody
withoutdirectphysicalcontact
betweenthebodies.Examples
includetheeffectscausedbythe
earth’sgravitationorits
electromagneticfield

SupportReactions.
Thesurfaceforcesthatdevelopatthesupportsorpointsofcontact
betweenbodiesarecalledreactions.Fortwo-dimensionalproblems,
i.e.,bodiessubjectedtocoplanarforcesystems,thesupportsmost
commonlyencounteredareshowninthetablebelow.Notecarefullythe
symbolusedtorepresenteachsupportandthetypeofreactionsit
exertsonitscontactingmember.Asageneralrule,ifthesupport
preventstranslationinagivendirection,thenaforcemustbe
developedonthememberinthatdirection.Likewise,ifrotationis
prevented,acouplemomentmustbeexertedonthemember.

EquationsofEquilibrium
Equilibriumofabodyrequiresbothabalanceofforces,topreventthe
bodyfromtranslatingorhavingacceleratedmotionalongastraightor
curvedpath,andabalanceofmoments,topreventthebodyfrom
rotating.Theseconditionscanbeexpressedmathematicallybytwo
vectorequations:
Ofteninengineeringpracticetheloadingonabodycanberepresented
asasystemofcoplanarforces.
Successfulapplicationoftheequationsofequilibriumrequires
completespecificationofalltheknownandunknownforcesthatacton
thebody,andsothebestwaytoaccountforalltheseforcesistodraw
thebody’sfree-bodydiagram.

Inmechanicsofmaterials,staticsisprimarilyusedtodeterminetheresultant
loadingsthatactwithinabody
•Normalforce,N.Thisforceacts
perpendiculartothearea.Itisdeveloped
whenevertheexternalloadstendtopushor
pullonthetwosegmentsofthebody.
•Shearforce,V.Theshearforceliesinthe
planeoftheareaanditisdevelopedwhen
theexternalloadstendtocausethetwo
segmentsofthebodytoslideoverone
another.
•Torsionalmomentortorque,T.Thiseffect
isdevelopedwhentheexternalloadstendto
twistonesegmentofthebodywithrespectto
theotheraboutanaxisperpendiculartothe
area.
•Bendingmoment,M.Thebendingmoment
iscausedbytheexternalloadsthattendto
bendthebodyaboutanaxislyingwithinthe
planeofthearea.
Internal Resultant Loadings

Coplanar Loadings.
Ifthebodyissubjectedtoacoplanarsystemofforces,thenonly
normal-force(N),shear-force(V)andbending-moment(M)
componentswillexistatthesection.Ifweusethex,y,zcoordinate
axes,thenNcanbeobtainedbyapplyingFx=0,andVcanbe
obtainedfromFy=0,Finally,thebendingmoment(Mo)canbe
determinedbysummingmomentsabout
pointO(thezaxis),Mo=0

Procedure for Analysis
Theresultantinternalloadingsatapointlocatedonthesectionofabody
canbeobtainedusingthemethodofsections.Thisrequiresthefollowing
steps.
SupportReactions.
•Firstdecidewhichsegmentofthebodyistobeconsidered.Ifthe
segmenthasasupportorconnectiontoanotherbody,thenbeforethe
bodyissectioned,itwillbenecessarytodeterminethereactions
actingonthechosensegment.Todothisdrawthefree-bodydiagram
oftheentirebodyandthenapplythenecessaryequationsof
equilibriumtoobtainthesereactions.

Free-BodyDiagram.
•Keepallexternaldistributedloadings,couplemoments,torques,and
forcesintheirexactlocations,beforepassinganimaginarysection
throughthebodyatthepointwheretheresultantinternalloadings
aretobedetermined.
•Drawafree-bodydiagramofoneofthe“cut”segmentsandindicate
theunknownresultantsN,V,M,andTatthesection.These
resultantsarenormallyplacedatthepointrepresentingthe
geometriccenterorcentroidofthesectionedarea.
•Ifthememberissubjectedtoacoplanarsystemofforces,onlyN,V,
andMactatthecentroid.
•Establishthex,y,zcoordinateaxeswithoriginatthecentroidand
showtheresultantinternalloadingsactingalongtheaxes.

Equations of Equilibrium.
•Momentsshouldbesummedatthesection,abouteachofthe
coordinateaxeswheretheresultantsact.Doingthiseliminatesthe
unknownforcesNandVandallowsadirectsolutionforM(andT).
•Ifthesolutionoftheequilibriumequationsyieldsanegativevalue
foraresultant,theassumeddirectionalsenseoftheresultantis
oppositetothatshownonthefree-bodydiagram.

EXAMPLE1.Determinetheresultantinternalloadingsactingonthe
crosssectionatCofthecantileveredbeamshowninthefigurebelow.

Solution:
ThesupportreactionsatAdonothavetobedeterminedifsegment
CBisconsidered.
Theintensityofthedistributedloading
atCisfoundbyproportion
270
9
=
�
6
w=180N/m
Themagnitudeoftheresultantofthedistributedloadisequaltothearea
undertheloadingcurve(triangle)andactsthroughthecentroidofthis
area(i.e??????=0.5×6??????×180�/??????=540�)actat(
1
3
6??????=2??????)

Equations of Equilibrium.
՜
+
??????
�=0 −�
??????=0
+??????
�=0 ??????
??????−540=0 ??????
??????=540�
+ �
??????=0 −�
??????−540×2=0 �
??????=−1080�.??????

EXAMPLE2.Determinetheresultantinternalloadingsactingonthecross
sectionatCofthemachineshaftshowninthefigurebelow.Theshaftis
supportedbyjournalbearingsatAandB,whichonlyexertverticalforceson
theshaft.

Solution:
+ �
??????=0
−??????
�×0.4+120×0.125−225×0.1=0
??????
�=−18.75�

Equations of Equilibrium.
՜
+
??????
�=0 −�
??????=0
+??????
�=0 −18.75−40−??????
??????=0 ??????
??????=−58.8�
+ �
??????=0 �
??????+40×0.025+18.75×0.25=0
�
??????=−5.69�.??????

EXAMPLE 3. The 500-kg engine is suspended from the crane boom in the
figure below. Determine the resultant internal loadings acting on the cross
section of the boom at point E.