1. What is a Limit-an simple approach .pdf

isura678hasanka 11 views 36 slides Feb 26, 2025
Slide 1
Slide 1 of 36
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36

About This Presentation

INTRODUCTION TO LIMITS


Slide Content

What is a Limit
Ms.ChathuriRanawaka
(B.Sc.(Sp.)inMath.(Hons)(USJP−SL),M.Sc.(UoC−SL))
SriLankaTechnologyCampus

What is a limit ?

What is a limit ?
•One of the most basic and fundamental ideas of calculus
is limits.

What is a limit ?
•One of the most basic and fundamental ideas of calculus
is limits.
•Limits allow us to look at what happens in a very, very
small region around a point.

What is a limit ?
•One of the most basic and fundamental ideas of calculus
is limits.
•Limits allow us to look at what happens in a very, very
small region around a point.
•Two of the major formal definitions of calculus depend
on limits

The idea of Limit…….
Considerfindingtheareaofacircle:

The idea of Limit…….
Considerfindingtheareaofacircle:
n=3n=4 n=5…………………………… ........n=12

The idea of Limits…….
Considerfindingtheareaofacircle:
n=3n=4 n=5…………………………… ........n=12

The idea of Limits…….
Let�??????=??????
�
−??????+�.
Fillthetable.
?????? �(??????)
1.0
1.5
1.8
1.9
1.95
1.99
1.995
1.999

The idea of Limits…….
Let�??????=??????
�
−??????+�.
Fillthetable.
?????? �(??????)
1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

The idea of Limits…….
Let�??????=??????
�
−??????+�.
Fillthetable.
?????? �(??????)
1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001
?????? �(??????)
3.0
2.5
2.2
2.1
2.05
2.01
2.005
2.001

The idea of Limits…….
Let�??????=??????
�
−??????+�.
Fillthetable.
?????? �(??????)
1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001
?????? �(??????)
3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

The idea of Limits…….
Let�??????=??????
�
−??????+�.
Fillthetable.
Guesswhatis�??????as??????approaches2?
?????? �(??????)
1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001
?????? �(??????)
3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

The idea of Limits…….
Let�??????=??????
�
−??????+�.
Guesswhatis�??????as??????approaches2?
“thelimitofthefunction�??????=??????
�
−??????+�as??????approaches2is
equalto4.”

The idea of Limits…….
Let�??????=??????
�
−??????+�.
Guesswhatis�??????as??????approaches2?
“thelimitofthefunction�??????=??????
�
−??????+�as??????approaches2is
equalto4.”

Definition of a Limit of a function
f(x)
f(x)
(x,f(x))
(x,f(x))
L
ax x x
No matter how xapproaches a,
f(x) approaches L.

Definition of a Limit of a function
Ifasxapproachesa(withoutactuallyattainingthevaluea),f(x)
approachesthenumberL,thenwesaythat
“Lis the limit of f(x) as xapproaches a”,
f(x)
f(x)
(x,f(x))
(x,f(x))
L
ax x x
No matter how xapproaches a,
f(x) approaches L.

Definition of a Limit of a function
Ifasxapproachesa(withoutactuallyattainingthevaluea),f(x)
approachesthenumberL,thenwesaythat
“Lis the limit of f(x) as xapproaches a”,
and write
f(x)
f(x)
(x,f(x))
(x,f(x))
L
ax x x
No matter how xapproaches a,
f(x) approaches L.lim ( )
xa
f x L

Left & Right Hand Limitslim ( )
xa
fx

 lim ( )
xa
fx

 2
-2
-5 5 0lim
3
0



x
x 0lim
3
0



x
x

Left & Right Hand Limits
Ex: Consider the graph of ????????????given below.

Left & Right Hand Limits
Ex: Consider the graph of ????????????given below.
Find left and right hand limits of
????????????as ??????approaches 0.

Left & Right Hand Limits
Ex: Consider the graph of ????????????given below.
Find left and right hand limits of
????????????as ??????approaches 0.
lim
??????→0

????????????=?
lim
??????→0
+
????????????=?

Left & Right Hand Limits
Ex: Consider the graph of ????????????given below.
Find left and right hand limits of
????????????as ??????approaches 0.
lim
??????→0

????????????=1
lim
??????→0
+
????????????=0

Limit of a function at a point
A function �??????has a limit as ??????approaches ??????

Limit of a function at a point
A function �??????has a limit as ??????approaches ??????if and only if it has
right and left hand limits

Limit of a function at a point
A function �??????has a limit as ??????approaches ??????if and only if it has
right and left hand limits and these one sided limits are equal:

Limit of a function at a point
A function �??????has a limit as ??????approaches ??????if and only if it has
right and left hand limits and these one sided limits are equal:
Ex:0
10
20
30
40
50
5 10 15 20
x
Does the limit exist for this
function as ??????approaches 15
?

Limit of a function at a point
A function �??????has a limit as ??????approaches ??????if and only if it has
right and left hand limits and these one sided limits are equal:
Ex:0
10
20
30
40
50
5 10 15 20
x
Does the limit exist for this
function as ??????approaches 15
?
lim
??????→15

????????????=
lim
??????→15
+
????????????=

Limit of a function at a point
A function �??????has a limit as ??????approaches ??????if and only if it has
right and left hand limits and these one sided limits are equal:
Ex:0
10
20
30
40
50
5 10 15 20
x
Does the limit exist for this
function as ??????approaches 15
?
lim
??????→15

????????????=20
lim
??????→15
+
????????????=36

Limit of a function at a point
A function �??????has a limit as ??????approaches ??????if and only if it has
right and left hand limits and these one sided limits are equal:
Ex:0
10
20
30
40
50
5 10 15 20
x
Does the limit exist for this
function as ??????approaches 15
?
lim
??????→15

????????????≠lim
??????→15
+
????????????

Limit of a function at a point
A function �??????has a limit as ??????approaches ??????if and only if it has
right and left hand limits and these one sided limits are equal:
Ex:0
10
20
30
40
50
5 10 15 20
x
Does the limit exist for this
function as ??????approaches 15
?
lim
??????→15

????????????≠lim
??????→15
+
????????????
So, lim
??????→15
????????????DNE

Limit of a function at a point
Ex: Find the limits of following functions as ??????approaches 1

Limit of a function at a point
Ex: Find the limits of following functions as ??????approaches 1
�??????=
(??????−�)(??????+�)
(??????−�)
g??????=
??????+�,??????≠�
�, ??????=�

Limit of a function at a point
Ex: Find the limits of following functions as ??????approaches 1
lim
??????→�
�(??????)=�
lim
??????→�
�(??????)=�
lim
??????→�
�(??????)=�

Limit of a function at a point
Ex: Find the limits of ????????????as ??????approaches 1, 2, 3, and 4.

Limit of a function at a point
Notice:
Limit is a number.
The limit can exist even when the function is not defined at a point or has a
value different from the limit.