Figure 10.9
White
light
Refracting
prism
Chlorophyll
solution
Photoelectric
tube
Galvanometer
Slit moves to
pass light
of selected
wavelength.
Green
light
High transmittance
(low absorption):
Chlorophyll absorbs
very little green light.
Blue
light
Low transmittance
(high absorption):
Chlorophyll absorbs
most blue light.
TECHNIQUE
(b) Action spectrum
(a)Absorption
spectra
Engelmann’s
experiment
(c)
Chloro-
phyll a Chlorophyll b
Carotenoids
Wavelength of light (nm)
A
b
s
o
r
p
t
i
o
n
o
f
l
i
g
h
t
b
y
c
h
l
o
r
o
p
l
a
s
t
p
i
g
m
e
n
t
s
R
a
t
e
o
f
p
h
o
t
o
s
y
n
t
h
e
s
i
s
(
m
e
a
s
u
r
e
d
b
y
O
2
r
e
l
e
a
s
e
)
Aerobic bacteria
Filament
of alga
400 500 600 700
400 500 600 700
400 500 600 700
RESULTS
Figure 10.10
Figure 10.13
(b) Structure of photosystem II(a) How a photosystem harvests light
T
h
y
l
a
k
o
i
d
m
e
m
b
r
a
n
e
T
h
y
l
a
k
o
i
d
m
e
m
b
r
a
n
e
Photon
Photosystem
STROMA
Light-
harvesting
complexes
Reaction-
center
complex
Primary
electron
acceptor
Transfer
of energy
Special pair of
chlorophyll a
molecules
Pigment
molecules
THYLAKOID SPACE
(INTERIOR OF THYLAKOID)
Chlorophyll STROMA
Protein
subunits
THYLAKOID
SPACE
e
-
Figure 10.14-3
Cytochrome
complex
Primary
acceptor
H
2
O
O
2
2 H
+
+
1
/
2
P680
Light
Pigment
molecules
Photosystem II
(PS II)
Pq
Pc
ATP
1
2
3
5
E
le
c
tro
n
tra
n
s
p
o
rt c
h
a
in
e
-
e
-
e
-
4
Figure 10.14-4
Cytochrome
complex
Primary
acceptor
Primary
acceptor
H
2
O
O
2
2 H
+
+
1
/
2
P680
Light
Pigment
molecules
Photosystem II
(PS II)
Photosystem I
(PS I)
Pq
Pc
ATP
1
2
3
5
6
E
le
c
tro
n
tra
n
s
p
o
rt c
h
a
in
P700
Light
e
-
e
-
4
e
-
e
-
Figure 10.14-5
Cytochrome
complex
Primary
acceptor
Primary
acceptor
H
2
O
O
2
2 H
+
+
1
/
2
P680
Light
Pigment
molecules
Photosystem II
(PS II)
Photosystem I
(PS I)
Pq
Pc
ATP
1
2
3
5
6
7
8
E
le
c
tro
n
tra
n
s
p
o
rt c
h
a
in
E
l
e
c
t
r
o
n
t
r
a
n
s
p
o
r
t
c
h
a
i
n
P700
Light
+ H
+
NADP
+
NADPH
NADP
+
reductase
Fd
e
-
e
-
e
-
e
-
4
e
-
e
-
Photosystem II Photosystem I
Mill
makes
ATP
ATP
NADPH
e
-
e
-
e
-
e
-
e
-
e
-
e
-
P
h
o
t
o
n
P
h
o
t
o
n
Figure 10.15
Mitochondrion Chloroplast
MITOCHONDRION
STRUCTURE
CHLOROPLAST
STRUCTURE
Intermembrane
space
Inner
membrane
Matrix
Thylakoid
space
Thylakoid
membrane
Stroma
Electron
transport
chain
H
+
Diffusion
ATP
synthase
H
+
ADP + P
i
Key Higher [H
+
]
Lower [H
+
]
ATP
Figure 10.17
Figure 10.18
STROMA
(low H
+
concentration)
STROMA
(low H
+
concentration)
THYLAKOID SPACE
(high H
+
concentration)
Light
Photosystem II
Cytochrome
complex
Photosystem I
Light
NADP
+
reductase
NADP
+
+ H
+
To
Calvin
Cycle
ATP
synthase
Thylakoid
membrane
2
1
3
NADPH
Fd
Pc
Pq
4 H
+
4 H
+
+2 H
+
H
+
ADP
+
P
i
ATP
1
/
2
H
2O
O
2
Input
3(Entering one
at a time)
CO
2
Phase 1: Carbon fixation
Rubisco
3P P
P6
Short-lived
intermediate
3-Phosphoglycerate
6
6 ADP
ATP
6P P
1,3-Bisphosphoglycerate
Calvin
Cycle
6 NADPH
6 NADP
+
6 P
i
6 P
Phase 2:
Reduction
Glyceraldehyde 3-phosphate
(G3P)
P5
G3P
ATP
3 ADP
Phase 3:
Regeneration of
the CO
2
acceptor
(RuBP)
3P P
Ribulose bisphosphate
(RuBP)
1 P
G3P
(a sugar)
Output
Glucose and
other organic
compounds
3
Figure 10.19-3
C
4
Plants
•C
4
plants minimize the cost of photorespiration
by incorporating CO
2
into four-carbon
compounds in mesophyll cells
•This step requires the enzyme PEP
carboxylase
•PEP carboxylase has a higher affinity for CO
2
than rubisco does; it can fix CO
2
even when CO
2
concentrations are low
•These four-carbon compounds are exported to
bundle-sheath cells, where they release CO
2
Sugarcane
Mesophyll
cell
Bundle-
sheath
cell
C
4
CO
2
Organic acid
CO
2
Calvin
Cycle
Sugar
(a) Spatial separation of steps (b) Temporal separation of steps
CO
2
Organic acid
CO
2
Calvin
Cycle
Sugar
Day
Night
CAM
Pineapple
CO
2
incorporated
(carbon fixation)
CO
2 released
to the Calvin
cycle
2
1
Figure 10.21