алгебра 11 класс алимов

rosgdz 74 views 136 slides Oct 28, 2016
Slide 1
Slide 1 of 136
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136

About This Presentation

информатика 1 класс горячев


Slide Content

HOBAN PEAAKUNA
za TC

D AMERRAU HAAR |
MATIEMATIUMECKOTO À
AAN

A.A. Kaneeg, O.T. TIeppn.ıpesa

Aomauımsis pa60Ta
no aıreöpe 4 HauaJiam
MaTeMaTH4eCKOro
anaın3a
3a 11 Kıacc

x yaeGuuky «Anreöpa u mayarıa
Matemarnyeckoro anasınza. 10-11 Kaacchı:
yue6. ans o6meo6pasonar. yapexaennii:
Gazonsıl yponens / [UL.A. Arınmon,
10.M. Koasrun, M.B. Tkadëpa u 1p.]. —
18-e wa. — M. : Tipocpeutenne, 2012»

H3danue odunnadyamoe,
nepepabomannoe u ucnpasnennoe

H30amenecmeo
«9Ké3AMEH»

MOCKBA
2014

YAK 3728512
BBK 7426221
KI3

‘Hus asmopa u namaxue yumupyeoz0 undanun peau na mumyrwou sueme
anwar (em 1274 n 1 Sacmu semeepmoi [parcdanexoco xodexca Poceuicod
Dedepar)

Yesoma yadanıl u mpascuen npuaodames ucxvo menso e unas yen u
‘sneobixoduwow Gree — ax uauocmpamuenwü vamepuas.

‘Hrobparcenue yueónozo unanıa «ANU pa u navana nomeuamuvecrozo ananına.
10-11 xiaceu: yue6 dan oéueobpazoom. yıpescdenui: Gmoaui ypoeene /
(ULA, Anwwoe, KOM. Koweun, MB. Travéea u dp. — 18-e u. — M : Mpoceeue-
ue. 2012» npusedeno na oroxexe dannoco undanıa LCL MOAUMENNE e xavecmse Ui
nocmpamuenoco wamepuuna (cm. 1274 n. | wacmu vemerpmoi [paxcdanexoso xodex-
ca Poceuiexoù Dedepayu)

Kaneen, A.A.

KI3 Jowauma pa6ora no anreöpe u Havanam MaTemaruueckoro
anaawoa sa 11 nace x yucómxy HLA, Annmona n ap. «Anreöpa u
Havana marearmueckoro anannsa. 10-11 Knacca: yue6. ann 06-
neo6pasonar. yupexaennit: Gsonuh yposenw» / A.A. Kanes,
OL, flepgunsesa. — 11-e waa, nepepa6, n nenp. — M. : Haase
renserno samen», 2014. — 319, [1] e. (Cepua «PeueGwro»)

ISBN 978-5-377-06377-3

B nocob peruet Gonmumneme cayıaen nozpoóno paroópan
sana yrpaacmen a 11 race yuca «Aareópa u navana Mae
Temarıyecxoro anamına. 10-11 xaaccu: yueó. ana oÓueoGpasonar
yapexaenui: Gaon yposent / (ULA. Annwos, 10.M. Konarun,
MB, Trasera map.) — 18-e ma — M. :Tipoceuenne, 2012»,

Tlogoßne anpeconano POJINTENAM, XOTOPME CMOFYT IPOKOwTPOxIpo-
BATE IPARMIMNOCTO PELCHIX, a cae HEQEROAKMOCTH HONDA 2CTAM
1 nommen JOMALIMEÑ POGOT no aareGpe u HaaaM Märewanıne-
cxoro anna.

BBK 74,262.21

Tloxnncano » nevanı 21.02.2013. Gopuar BAxIOW32,
Fapnmypa «Taf. Byuara raoemuan. Yan. 2. 11.1
Yen. nev. 16%. Tupac 10.000 ex axa M 6278.

ISBN 978-5-377-06377-3 © Kanees A.A., Meppunena O... 2014
(© Hunarenscroo «SK3AMEH», 2014

Conepxanne

VIII Taana.
Tiponsnoauas x ee Teomerpnuecknl CMBICA
§ 44 ipoimonnan

$45 Tipowssonnan crenesoh ¿yoo
§ 46 Mpannaa anbpepenumporanms.

$ 47 Tlpowspoanme HEXOTOPMX snemenrapHnrx DYHKUMH
§ 48 Teomerpurecxh eunacn nponanonoh
Inpasenenua x 2nase VII.

IX raapa. Tipumenenne nponsnoanol
K HCCACAOBAMAIO DYHK UM

$49 Bospacraume n yOusanne pyran

§ 50 Dxerpeuynau ya .

$ 51 Tpnwewenne nporanoaiof x docrpocnino rpaguxoR ya.
$ 52 HanGomsee u nanmensue aveux y

4 53 Bumaoe raga Gyms, row epa.
Ynpasenenus x znate IX. E

X raana. Hurerpaa
$ 54 eproospaanas....

§ 5 Iipamuna naxO IA neproobpann
§ 56 TInowanı panne paneuun w wirerpan
$ 57 Burwncncıme mierpanoe

§ 58 Buswucneue nxouaaeh € nomonimo mrerpaños
559" inet mormemoh errar x pen marne
ana

Ynpascnenus x ace.

XI raapa, KomÖnnaropuka
§ 60 Mipanuo nponsseneuns

$61 Tiepecranone

§ 62 PMA nn
§ 63 Coveranne 1 vx cn
§ 64 Bow Musorona
Ynpascnenus x nase XI.

XII rasa. Demente! Teopun Beponrnocrei
$65 CoGurmn

$ 66 Kombmauumn cos. Tipormononoxnoe EM 145
$67 Beponmuoern coburn.

$ 68 Coxenne veposriocreil....
$ 69 Hesannemme cobra, Yawonenne some.
$70 Crammernecxas neporrnocre … a
Ynpasenenun x ¿nace XI.

XIII raasa. Crarneruxa
$71 Cayuaiinise nenes
$72 paras remesas
$73 Mepu pan6poca,
Ynpascnenun x rase

7

Ynpannennn ana wrorosoro noBTopenna Kypea
aareGpui m and MATMATINECKOFO AMAIA,

Sanam aan nmexaccnol paGorus….

VII Paapa.
Tipouspoanas n ee reomeTpHyeckHit CMBICA
$ 44 Mponspoanan

prenne LO pa ape ot hu

ea 0-00 rare anerkennen Bn
sro EG nema es
a ete

E

Dh=4=

3
SHIA LA se 143008 = 34

2h=1-08=0,
3408,
wi "02

(O QUEMA 2h a
h h

24
A+ De 21224; s(0) = 21 #25 veg ni
erh) 4) a 02

BU th 21+(L2-1)=22.
MT O = 214 1:
SAS) 2004 A) + 12k 1 = 20+ 2h 26-1 = Dh
6) vp = 002
be h x
DsD=2- 3
DSH h)~ 0) = 2. IA h)~ 24 30231 3h-2+30=-3M;
„surh-s)_3h
h

MT. st) = 025142

2; 0) lim»,

0% 2) im, =Him(-3) =.

ha 8-44,
vag SMS) _ 0,25-(444)42-0,25-4-2 _ 242-1-2
en - na

2) 40) limy, =11m0,25 = 0,25,

M 780. 1) fs) = 3x + 2;
(ARO = Hath) #2 Be 2 Be + 3h +2 de 2m 3h

La. ») imŸ = "(x)=
OPE my = 3,re sees

DAN 5x + 7
2) Af = fe + h)—flx) = Slax + A) + 7 5x = 7 Sx à 5h47 8x2 7 = Sh;

aL ») im =
JE a + figs “ims =
3) Ax) = 36 - Sx

2) fm fie +h) = fa) = 30+ = See + = + Sm
LUE À GA + ME Sx Sh~ 30 + Sx» Euh + D = Sh

LES nn fin Y poes

4) ix) = -37 +2;
DNA +24 32-2 = Be WDR 2 = Gch IH

La SEM. 6-3 wy im DL = im 6-34) = 6x.
ear Cr

M 781. 1) fx) = 4; 2) fx) = 7:

wom. 040= à

DI) = -5. (onewarxa 8 orpere ana).

ay ste +h) = s(9= Hr

3 39.3
dame Si dem
Pera LES

vex MM =H WETTE CONEA
ve E a sm

DOS
2)s()= Sé;

DO SAM SP = SP + 10th + SH? — SP 101 h + SH;
pv,» ACE - LOSA

Y A
% ñ

9) M0) lim, = im (101+ SA) = 105;

ein or de

= 101+ 5h;

TBB. Std = À + 2 nañaen v (D:
a) s(¢+h) ~s(0) = (0+ RP +2 PD 2 4h 4 +2-P-2= heh
sU+D=s hw

ou, sen

h
DO) = mv, = fim vey lim 20h m2
1) = 5,48) =25 = 10; 2)¢= 10, (10) = 2-10 = 20.

AA 784.1) ma [05 1] ve, =

Auen SR 5;

»

ars
x 1

Samos 3-25,
A

2) a [15 2) 1 =

3) ma [253] %ep= 05

sti h)=s(0)

M 785. 1) na [05 2} vey à

A aS

-2
A 786.1) lim 2-4 1)= 3,14, fia) = 264 1,10:
M3 Re-21= 2e 1hABe, rae e—IB, Be E, re. au Ve que
crayer $ yaonemopmonnee OMPERCAEIDOO, NAT panencrno BEPHO.
2) limo = 4, Tx fx) = 27,10: fx) 4|= 4] =)e= DH + 2] < Of + 2 21 <8,
8x + 21= Br -2) + 415 Bi 21+ HD <8 + 43 =e, nommen d= 2 + JEFE.
$45 Ilpomnonn:

a 787. 1) (0) = 66 2) (0°
REDE

crenennoï pynkann

som (ol) etal

»(<)

(Onevarea » omneve saga)

2.) (5 j- (Jus

(Onevarea » orgere susana),
TI. 1) (Ar DY 4= Bac 3),
2)(Sx+2) 5=-15(5x+ 29%,
DU 29 Y =-8(1-20 7-2 = 120-297
DO SAY = 40-50) 20(2 - 5x);

OY = 32x) 2 = 6- (20) = 240,
9-59 =4 Sx) -(- 8) =-20-(~ $3)? = 25000;

(15577) = (2018) Lacer? 2
2792.1) (VIET) =((2+7)}) Ionen? 2 yer

j-0-snt e

2 (FR) (0!

2 (45%)

CE an? 3= “War
4) (45%) (6) ht se E.
WEN = F0)=6 8

ETS ee à e. dan
DOY Jade eg

9/0) = (ve) =| (jé 7 Jde es

ar. EC E su)- FE

910 = (FER) = (6-40! Lay iy

Pod Te

oro» (ont) toco!
3 3

Fed ee

3794,

Bmax

M 795. 1) y'=()'=2x, y/(0)-2:0-0, y/(1)-2
DIARIO.)

YENE2LN-2 — ne noaxow
3173 — romo

ar (e) 30) ne cyueerayer, ne noaxoanr
76.1 = (243) #2243973 s
(5) (+397) =-20 +30) Te

1 29- 29
Y A
15) Bene,

D (GBF) (0021) «Joa! segs
4 (6-17) -(0-10)) 30-00)? cee

5 (qs) -(e-) one

of | -(-20)3) E O
(5) (0 =) ) gay) a
797 DAD SP, JS, Je E Me lire 83

a fois 2
Ro ST

84798. (0 VTT à OO) (VET Ye (41)! =) 4 “WaT

48799. 1) x) = 2x = 1), DA = Gx +2)
JR) = 2x = 192 = 42e = OI AN
RIAL) = O IPD > Art 2) = 93x42;
(Qu 2-1 Gr + 2) (x +2 -9)= 0;
Gr DOx-5)= 0, fra) Gr 70:

anfo2-1e0 = x=) mode 2=0 >

mi-nem ando ret aed

Ne 800. a) Ouensano, vro 210 napaßona, cnegonareno, ypanwenne meer nun
year’ + bx+ ei a > 0, TK, neram napaGons narpannenit nsepx.

9

eps napaßon mer a6cuncey x = — À, »maeu eryune

x4=0>5=0>ymar +. Toncranun wınecmne Tomos

(OP +emc=1=y= a +1;2= a) +1mal my del;
6) Ovesnano, «To 310 napaGona, Hmetoutan ypannenne m oGue mae
par +by+e.

Tx. seran napaßoma nanpannema nu, 10 a € 0.

B oßuen wunenepumma napa om mer abeuncy x, ==.

mamen cryuse x à = 0 = b= 0 = y = ax? + c. Ban Tow, NOACTADIM:
Im +e=c= lym ax’+l;
“arial o yet y ie

eo RT: y= ((94-7)!) In".

3 E ol],
ANA A a
$ 46 Tipanuaa anppepenunponanns
BOL. Hirt; AY 312
DE = 2-1; OS) = 1,565
D GR) 232022 73 +26) = 26x;
4) CID) = -17 2x34, 8) (BE - 16) = Ir
ME NOS Yon 5) (0 + 0) = Be +5;

DSP +6x~ 7) = lOr+6, | 6) (20 + IRD) = 6 + 18;

3) G4 + 2) 40 + ds 7) Qe) ~ 36 + 6x + 1) = 6x = 6x + 6;

Ay = Sx*— 6x; 8) (- 30 +20? x 5) = 9x + la
Ne 804, y= 3x- 2)? AS

GI) aorta ter
ME 10/60) = @ ~2e+ 1) = 2x-2:f'(0)=2-0-2=-2; /(0)=2:2-2=2
DRAP 2) 32-2; /(0)-3 (0) 22 f2)-3.22-212-2"10,
DA BPH, 10304200: (2) 37422— 2148;
MSG) = + x ly = 2x + LSC O+1=1J0)=2:2+1=5.
mf
a. oro +)" ( L

RO RUE

oye 43-6 O)
ro- are ae Cond :
aria)

JE a tara 128 pei.

808,1) ne mdepenopyes, x pu | yaa y
2) ne ab bepemamyeve, rx parc 3 yaa y= 23,

fet

'n(Jrei) =. (x+iyt =
ay. ule (epee.
YO)" q "3 anbbepenupyen:
or (a) hea nage.
yo =-1 mbdcpenmpyena.

2809. 1)/()= (0-20 = 3 2/10) = 0:30 -2

DIA) = (ox + 3x4 1) = 2e 43:19 = 0; -20+3=0; ak.

DS +3271 2x-3)'=6x7 +64-12; f(4)=0; 617 + 62-1220; x7 44-2 = 0;
1

WEHREN re
Bean 2
Sn A - ar = 126) = 120 ~ 128 - 20-0;
12P 12-2404 none.

Le 13
2
Of ey a? Be SY wae + 128-1 f=
A + 126 - 161=03x=Om + 3x4 =

D=1+8

3.4
ur

D=9+16= 25:2

M 810. 1) (a ~ xx + x AY GP + x) + 008 =
EAS Bee 3%

2) (DE) mer (uen) en area) Late

345
2

Axt

2
= Re = 7 m}
3) ((-1vx) (1) Erlen) =

CAE

13

a) =) e (2-0) =
=8(x-1) (2) (2) E):
Se (2-1) +11) 72-1 =0

2) (e (een) (e) re (+0) =
252(2x-1) (19) +(2x-1) -4(14x) =

= (2x1) (14 x) (10x + 10x + 8x4) = (2x1) (+ x) (18x+6);
FO-Q- DU + 1°08 +6) = 1-8: 24 = 192.

» rer (NE) B- 27) (1) 6-20 (0-20) =
+ 12-2) B- 2x) + 2-78. (3-22) (2);

reia 2) (4

4) ro (ay)
=6-s(51-4) Vx=2+(5x-4) ="

ET ag y 0 Es). ee]

AT 2
ros -#)-8

MB Y = (a +2 23 +4 ae He.

I epeCeXMOTGR, TO TOUKH HlepeceveHHA YAORNETBOPAIOT YPABNEMMO
Be +463 =3xt1,3e +x- 40,

a
3
=

profs

yaaterea

6
ee
Ormer Hepeceratoren, , :
men. y =((x-3) (2450) =((x-3)') (2450) + (4-23) (2450) =
=5(x-3) (2+ 5x)‘ +(x-3) -6-5(2+51) =
=S(x-3)((2+51)) (2+5x+6x-18) =5(1-3)(2+5x) (11x16)
y -0> S(x-3)'(2+51) (11-16) =0

2+ mue) Lol.
momo TIA
waren) A
msn (FE ) et -
MORENO SAA)
” (erly =
EEE 3e 4er 0 mx 40 + 5x 420 4 3 41
[203 (erly
IA
ee Je a —

(pete) y e a
ey (=

(0-1) BES (VIRB) =

u à à
RT IE" 2e AN

EY ET ,
A) EHRE),
815.1) $ (>| E 1). Om A
A 21) 20 420-20 rear
(a) FE (eal
or

(28) 0-7%)-(2eJ0-79)
DE ea.

MIO) are Hart ae |
0-7) Or et

816 1) Ag) = g! = (1-2); DA)" Je = Vinx.
MI I)g= 27-7, Ag ei Den C+D), Ae)=sing.

sax) (Es) re eur oran om

(332+ 2x)e—(x +21 416)-1 30420016 FT
© E E EN

DER (ers) (VE) (a) (8) |
Y Ve
ie nt oe y dé?

lolita al rl lia
Cm
ee

ES ce

14

EE ata aes,

ul
(Onevara» oracre ana) ,
032.1) (2-9) +24+1)) =(2r-3)) (Be +20+1)+

xtl

He

Ha) (302 +2441) = 5-2(2x-3) (3x2 +2441) (2x3) (61+2)=
(2-3) (200 4206 4104122 + 4x—184~6) = (22-3) (827° 46x44);
D (n'en) = (y) (cen) += (ty) >
(e) (an) (x4) (rr 44 inne
(Y (aa):

3) (x42, ow) (BR) + er 2((- y)

A TF 4.3 (00-17 222 Yogi Y.
sea fx)

(9x-341441496)2 LE
«boy dr

4) (PET (2x3) (VET) (26-3) VAT (2x 2) =

CON EST) sn
2x4) ay

EN 0.40. RED)
ex ex

eee vel zu). Beret sere

SH);
ay

A) 3)
a)
+ +4x=3x-3- 22 +3x- 1. 26 +424,

(ey Gy

(G2 1]. [ERBEN TRUE RR

Gy

„(er daran),
a) |
MENA
ery

QE CN HVE) andeeten won
E ET ENS
(era) (a) (ea Er)
. EE) L
DOVE e Yeo VE)
Er)
ole
Er)
TIEREN BEN EI PUS UE
EE ET
RL AR = de 12 + IY = 6 = 6 12400) = 68 = 12 20:

Pal Dr
2 2

Pr TER
(ay
EA MEA
(iy Gey ey

ES (= SE

De 32 (+ Pal at ie bale + 2) = 05 050; 0-2,
Ne B24 fi) = IND (OPA = D + Où + 21-62
29-60 + 1x6

JD = BP = Ne + LS SR 12e UL = LE Ge 12) = 0
= 8e>0 axé -2)>0
xe V2 004 V2: +=)

DI) = 120 - 120 24x f(a) > 0, 12000 -x-2)>0
Peu ypanneume: x(x?~x~2)=0,x=0,x°--2=0,D=1+8=9,

7 ae LO) +.

y. CROIRE (8) =

atra ston arroyo 2)

$09>0 Se >O= (x +25 +2)>0 x>0

2

uma, x > 0260 +=)
me
3
sw (av) =(r-3) Vista) (A) =
e ri un
AR NE a
29 > 02/0 > 0m 3>0 x>1.

Yaurrumas, 70 x > 0, non xe (1; + 0)
826.

DA ((5-39)(4-1)}) =(65-20)) (0x1) (5-29 (013) >

24-35-31) (3x1) +3-3(5~3x)'(3x-1)' =

25-34) (Bx =) (12x +4+15-9x)=3(5-34) (3x1) (19-213)
1 6)<0 npu 3(S-3x) (3x1) (19-21x) <0.

Tx. 3>0, x= 1) > 0,10 (5-31) (19-214) <0.

R fi 19

RS Omer. se
y fi 2
a E

ar

2)fa)= ((28-3)'(9=22)') =(-(2x-3) (2x3) (ay) =

=-5-2(2x-3) =-10(2x-

F00)<0mpu= 1005-31 <0=3 (2-90 3123. Omen 193

MEAN
(a

„EUR =I) 6x12 +62 61 +6x-2
(ay Ber 1-2)"
JG) <O npn - 20 - 3x + 1) < 0,36 - 3x + 1 > 0. Peumm coornerersyio-
nee ypannenne. D= 9 - 12.<0 — ner peer, enenoeareo, fx) <0 Mpa noex
1 1
pon. Orver:x ey.
J. Ge) (39-38-38) oe Bete

are (E (ax) ay

A A o an
a Om

1 1
-29<0=x>L, Omer: x>1
) Fo Omen >

2
Na 827. vi) = (LOY = (0,17 — 0,51 + 0,2 = 0,2r-0,5,
120) =02"20-05=4-05=
(Na 828. 0) = (sd) = (1 - + P)
EN 025 2x.
829. pl) = m = (27 + HI) = 41+ 3,
1) 93) =4-3+3= 15 (Fiem);, 2) p(25)= 4 : 25 + 3 = 103 (Tem).
2 830. pu x < Zu x > 3 noaropewioe oups nono Ten.
2-5

vo=((#-52+9)') He recrea

Nr 21 (10) = -1 + 2:10 = 19000),

$ 47 Niponssoaubie HEKOTOPLIX anemenTapmnıx dynxunit

ei

» e + si =) (A)

{et

2 (

ae 3, (er) { } nase ote
(o) (e) «(e
1

D (er) 266.0:

DOY TF +26) (oneuanea » ornere sana)
DY = 26h 1: 4) (C+ DEY = Ie" + Ae

5 (92) (9.3) =180:3" 32203 in
(Onewarxa » omere saxaumxa) a

BI) (0,5% +0") 0,5+305 2 (3-e") =3in3- 26" à
3 (er) ee sr (e

Mas DE y = 2 +3 40m,2) 0 tue 2y = À +20:

A (on eet
(apa) =D

© ((3x° ~2)log,) = (92? -2) tog, x+ (98° ~2)(lg, 2) =
32-2 Grlnx 3-2 Beil? Inx+1)-2

=6xlog,x+
PTE ES)
2 Inst)
m3
836. 1) (cinx+ ey =cosx+25 (core) = sin e
2)(cosx- I= =sinx+0=~sinx; 4) sinx—2"Y = co 2-2 1n2.

MBIT. 1) Gin (Qe D} = 2606 (2x1) 3) (sin = == cos (3-2);
2) (eos (x + 2)) = — sin (x +2) 4) (eos (O) re sin GO) = rin.

ann 9 oas(-1} ey DES

a¢sin(Z+a)+2ry= Lon Zo3) +212

1 1
ar. + Ll
3) Geos 4x qq Y = sind t E

sam (se) (ee ete

Din cos 31) = (nacos 3x + nr (cos = BE

+ ne 3(-sin 34) =

„os

mind
‘og sin 247 = on 2 gin 2 =
= ae grace BE ag ze
MB DJ)» (ey din) = 20044 2 Je e 24163;
De fe ne) er
Gdn gi 03-3004
DO log a) ln.
Syeda La + i"
DW (log,sx-3') use
Lye N a.

BEL. (a) = (ecos Y = + sin xf") 0 2 À + sin x = 0 = sine,

zul same
DJ = (Lx-sinay = 1 cosa,

2 quo

L 1 x
"0-0 1 crm, corr 1, omyaax= £2 +20, n0Z;
Jus air Lain

DNA + Ya

F0=0>-(1+1)=0>x 1,
OLA 2,

20

Sue + de tamy zen on 0-224+2- 2 0440,

Wr“ He 690, Dal +4, LS a,
ses ses
7

9/0) = (2 ~ 64-8 ney =2x-6- 0-02 2-6- 8 = 0,020,

345 4. 3s

28 6x8 =0:x - 3x4 = 0; D= 9+ 16 = Bu ran

20314

MB. =’ =’ 1,/"PO me" 1>0,10.01>1
wie" >e°, orxyaa x0;

DI - (end 2 = In2~2 "m2, E
J'@2 0mpn all =2")> 0,

‘Tx. 220,10 1-2" >0 man 2" < 1,2"<2, 2 0 x
ona <0;

INOX Y = ex + 2e, (> 0 mp (+ 20) > 0,6 > 0x + 2)> 0
(Orne: ze(- =; - 2140; +).

are (ei) =e VF

E Mi 2

> 0npn ee (+ >0),
Vz >0,1014 1 >0= x>-1 1(9>00x >
au edi 20,101 + 5, 202 x>—7 [0 >0nx>0.Omer.x>0

[1
3

+n

wae Euro ¡META

(1) 2345). Ve 10
E (2-53 Nix 2-5

pra

u. of

a) 1 2

a

(ere

als F5) (er Léa

M 845. 1) (0,5'-cos2x) = (0,5) cos2x + 0,5'(cos2x) =
=0,5'In0,5cos2x+0,5"-2-(-sin2x)= 0,5" (In0,5cos2x—2sin2x)

D (se ae te)
se Se” (1-2x)

(ET Yeost3 - 20) + €" Fa -20ÿ =
29005 (3 = 2) - 2 67-24 2) =
20" 4e08(3 ~ 2) sind - 20) = 26 P(in(S ~ 2) -cost3 — 2)

a (Invi) ee

Le" (onevarxa » ormere santa)
are (one nasa).

3) (In(coss)) "ander (ns) sonar

2°" In24-sin9.2) (0,5%) =0,5°™" NO. co x.

ale?)

ma. (2=
(cost) es VTT rate

1 En

4) (Gin (nd) = costa) ~

ey (TT) ie

A USE
ep ar
mo. vt). (1+ 08x

sima sinx—(1+cosx)-cosx _ -sin?x-cosr-cos! x __I+eosx
sx ina sin

2

De j- Be | HE) iris),
341 Pay Ey
ARA in3 3 (123) +3

AR] re

ie

ETE sy (on sy



28" Ans(sinde+T)- 8" 3-cos3x _ S"(2:1nS sind +14In5 360831)
(sin3x+7) (sin3x+7)°

May

„ere) Se Y tae A ACE

4 (eke 2) bua x-(2 log, x)(In2 a.
a a 2

m2) ea gpa) al rm
h’2 a Pein? 2

sinx

aj. ACTE cosx) :x- on om

_ (cosx-sins)-x~(sinx—cosx)-1_

man

e SOSA sing:

x tcosx , cosatx 1) + sin (x)

2 J [eco] an neti

a (ae) (Ses
2882.) /100=(S(sinx—cosx)+ Beosse) =
=S(cosx+sinx)+V2.5-(-sinSr)= 5(cos x + sin x-V2sin5x)=

(cool ¥-1)-sinss) =

{nf Find Musa)» ssl of 3). ‘i nse)
5/3 dein LI E 1045 00(5-20)oo[ E+ x)

N) =0 np w(f-}o(E-x) -o,

x
O
$ 16 qa nez

Ornyaa:

Eee [xeEete, bez
a ze
2) FU) =(1-Scos2x+2(sinx—cosx)-2x) =
=10sin2x+2(osx+sina)-2= 10 5-24) 2(ouxuinx)-2=

m6 +2) -($os)Jetonrosna-a=

=10(2s0e(Z-1)-1)+2/Reo $s) -2-

= 20cs'(-1)+2con{ Zr) -12

17) =0,cem Deo (a) 24300 E-x)-12 =0
cost x) = 1,207 + 2421-12 =0 man 107 + J21-6=0

HE, E, 9h
2

D=2+240= 242 =2121;4 =
20 5

wr 92

vh vi; 18<25>| FR
SU 5
Crenonaenao, 22 51, E y tres 2+ 260,

a Se 20, nez

x caer a
Eyes du keZ = x =2mk, ke Z, m = +2nm meZ
Front + 28h bez > x =20, REZ, 9 =5

883.1) (a) = (€in(2x-1)) = (e%) -In(2x-1) e (im2r=0))
merma (mar).

fo) = 0 = in2x- 1) = 0, € > 0, rax wo Int2x— 1)=0, bn 1) = ln Is

2x0) 20 {ne 1) =280+ 1)

5 re-(es=es) „ „ (Sinx-cos2) sin x (sin x =cosx){sin x). u

(coax +sinz)sin~ (ina ms}osx
sat
sinxcos-+cos'x
vit
sinx-008x
so =0 (EEE).

Omer pescan ému ir 20 050,002
73)

Tox, 0/6 sin anos xaaapare, 1/9) o ncex rowax + un, Gyaer

2
Legx=00gx=tx= hsm,
ctg x= Oe one,

METI oxo H TO xe amaene.
Ne 854. f(x) = (x sin 20) = (asin 2x + sin Zu) = sin 2x + 2x cos 2x
HD = JR) +f) + 2 sin 2x + 2x cos 2x + x sin 2x + 2
Mn) = sin dr + 2 cos 2x + sin 2 + 2 = 0 + 2 + 0 + 2 = A1 + x)

MASS. Wende 1.r>0

JO 0mer 7070
EL ae 0 rate 4

J'() < 0 np se (Ci)
DS (Y = nn + 1, x>0
8) = In + 1 =O, bee 1, Ine = 1
D > 0 lxs 1> ne > 1 cine
xe"! xe e's +) f)<O np xe (ie;
I) = Im = elm + x x > 0

F69=0 xine + 1)=0 x = On Ine

F 09703218 Donner;
35

JG) < 0 npn xe(0; 0 y 4
DE ET Zr

1000, 3020, 330,01, 15/60, 37-2 >0,

3x2 = 1) > 0 apy xe (1; +0);
SI) <0 npu xe(0;1). o 1 x
BSG. pu x < 2 x > 3 upaxene nox aaxou norapıfa NOROKITENAHO

(iG? = r+ 69 = ES)

$ 48 Teomerpnueckuil cmbica mpoussoaHolt

12+bb=-5;

M887. Dkmıgamıg À ml x 2 323,16
Drag an xo mI pod 10 2e 1-3) b= 5;
paa (orion Vi e Fi

Y

re Et ie

A TO IS

Diemer garra,
arto kewanseg=t=1;
arre

M 859. 19/09 =;

da

DO Te: wansa= war:

ar. + af) = + =- V3 sa-

ONE 1a=fto)= Be sas ar (VE à

26

= u? ano?
Ban ng Daraus

JPA Ala, RD 1, de 2 1123, ps ook).

y 2343x-3,y=35
2) fsa) = 2-3-2? =-10,/'(e) = 1 — 6x, f"G) = 16-29-11,
0-11x+22, y= 12— Mx.

y= Axa) + 0 Ma ~ xo),
DR SO Ne arg.

y---11@-2, y

11
ye sped

ero). L+l lt je 2;
VRR) + GOA 0), y 4 362 Lan ir 2” ad
omita pro sec jou rente EE,

o AO
rra E y Bae

ODIO CF Ceo) = = 1, y= Ate) FT NE),
AO y +

DA m1 =0,7 0-2 409 t=,
INAH), y 04 1D y xl
DL DER EEG reo wh

IO GD y = 14 he Dyed À

1
zeigen)

MOGI, D/(9>0=150>0>06(0: 71/10) <0 a <0= ae 5:0)
S'@)=0>ga=0>a=0;
phe. a; a) /(9) > 0: A, B, E; 6) f“(x)<0: D, G; ») f(x) = 0: C.F.
pue. 6; a) f(x) > 0: C, G; 6) f"(x)<0: A, E; 8) f(x) = 0: B,D, F.

862 M0) =0+ He ase

yal+O(e-0), pe
DAD) =sin0-ln1=0; (= 2062 - —

yeOrle-0), yee
27

2863. 1) (2) = I-€,/(0) = 1-6» 0, al) = 0 > = 0 = B= 90°-a = 90:

Bf) JO) n0=0g0-/ly=a-0=
Deen TE +08 ir
ean Sted) Te 4 Dana à 2 90 a= 90" ara y

Ne 864. 1) a) Acuneca roux nepecenenma rpaguxos:
B-x-4 F4; 64 16x+ = 16x + 64; PO; x(r-32)= 0
x, = 32 — nocropounmil Kopem, 1x. 8 - x 2 0: x = 0.
6) yron naraona nepnoR acaremmoh » Towe x = 0
3

a an À

1) yron nakaona wropot kacarenunofi
222

Le Fagg oh a.

2) a) AGcuneca row nepecevenns rpaduxos:

Jue Ja ee nr rd 01200, 00:

©) yron naraona nepnoñ acaremmoh np x = 0:

1 x
ga = fl = Lot D=Go+ Del ae 2
1g où = f(s) = 20 + 1) = (io + 1) Cire
5) yron nakaona kacarenmoh Ky = hu D mpu x = 0:

“y? ES
wa f= 5 20D 1nd ae À:

ee

Be

3.) Abe roms reprenne rufen

Il + x) = (1 =x) => 1 tax lex, 2e "0,220

ron ten acres y bal +3) pm = 0:
Loa ojal

120, = fa) Tex 1>4 E

0) yon win casa I=) ir

“aye ir
uf Lens a=;
tga = fC)" 7 e
mona
ar

4) a) Abcuncca rower nepeceuenna: e
28

xx 120

6) yron ac racarensnoR «y =€" mu 0
fees:

1) yron naxaona xacaremsoii xy = e

‘got, = f(x) =

ar
mz

Ni B65. 1. a) Towa nepecesema: = + 20, 0 = 4 2) = 0,2, = 0,
D = 1 #<0 = (0; 0) — exumcracnman o6uian Towa
6) Ypanneume xacarenbmol xy = x' Tone (0; 0)
Aa) = 00,40) = AS’) = 40° = 0, y * 0 + O(x 0) = 0, y = 0;
») Vpannenne nacaremuol «y =x + 26 à route (0;
fis) =0+0=0,f (0) = 6 + Ai, fq) = 60 +40 = 0,y= 0+ 0) =0,y=0,
‘OGuax wacareaniän y = 0,
2) a) Towa nepocesennn: x = - 36, ed 14 3) 0, = 0,

D 1- 12 < 02 (0:0) — exmeremtan o6uuas rowxa;
6) Ypannenne xacaremo x y= x» rouxe (0; 0):
LCD 0,6) = SC) = 0,950 + x = 0) = 0,9 = 0,
9) Ypanenne kacaremnof «y = - 3 » roue (0; 0):
ao) = 0,110) = 3 ~ 61, f(x) = 30-60 = 0, y = 0 + Ok 0) = 0, y = 0.
‘Osan xacarenmaa: y» 0.

feas on

De Trac erro
(xt 2m 2x + dx +424 m0, 2 + 4x + 2m 0,2 + 2x4 1% 0
(t=O xml 15 1) —eammersennan oGunas roue

6) Ypamenne kacaremuoh x y = (x +2)! 1 rouxe (-1; D:
AD = JO A + D = 2€ L + 2)= 2, 14 2G4 1) m0, pe 2 #3;
1) Vpannenne xacarenbitol! xy = 2 2° a roune (-
Aa = 1, SLR) -2 C1) = 2,9 = ADEN), y= DEH
Oduan kacarenmnan: y = 2x + 3
4) a) Toa nepocevew: 2 +) = 2 =), 2 + = 2x +1 = 0,2 =0,x=0
(0;0)— eannersennan o6uas rouxa
6) Ypannene xacatemsioH xy = x(2 +2) 8 Touxe (0; 0):
Hiss)" 0, JD = (2 + 2) += 2+ 25, f" (40) = 2,y= 0 + 2-0) = 0, y = 2x
9) Ypannenne xacarensuolt xy = x(2 2) Tone (0; 0):
Ad = 0,0) = (2-20 == 2-26, Sa) = 2,y = 0 + A0), y= 2x
‘Cows racareman: y = 2x.

M866. gato hee
262 - 36‘ - 2= 0.710 wmapamioe ypasnienne orocremno e', D=9 + 16 = 25;

e im en = 1 me >0,
4 2

222 exo row 2524);

fn De et re”

2

Dig a=f
ee 2 e odia =
SORT Safest a te
3x+1=4,x=1 /(1)=V3.T71=2 nexomaa rosa (1,2)

3) k= ag = ff) = 205 24,1) = 2, Tora 2005 2x = 2,
cos 2x = 1 => 2x = 2, ne Z. x = REZ, | sin(2nn)= 0,
NexoMax roux: (m; 0), eZ.

A) R= Hg = SL) = 1 + cos xf") = 0e. 1 + cos x = 0,

cosr = -1 => x = +210, neZ; Art Zun) = Rt2nntsinik+2nn) = +A, eZ;
exoma Tow (+ A; m+ Zn), eZ,

sy ADA (42) do, 6
mungen EIA
Je) rere rien

FO =18(-E)=-1,roraa > 1, ona (1-2) 4,

A)
1202 lex dann Jo nerowne ron (0-1), (43.

10868, Karen Rap, SAT x yr! akon K Ox past,
tga~ fx) = (10)
JD 2 D O) = 604, 30-1 = r= 432-644 30,
II,
ypasnenne kacatenbHoll x (x) = x - x I np x= 1
Ko) = LL 312 pe 1 + 2x 1) y 2x3,
ypasnenne racaremmol x g(x) = Jl + | npu x = 1: glxe)= 31241 + 1 = 0,
Poy=61-4=2,y 0% Je Day = 2e nocone rol.) (1,0.

Ynpascnenua x zuase VIII
MA 869. 1) (Auer) BA 2) RI Str;

3) CE

ebria
3

a (3-85) =
5) ((2x + 3)'Y = 8-2(2x + 3) = 16(2x + 3);

gt
e

HU 32)Y =7 (3420) = 2104-39)

Bea) lay
CA A) 2
FE) nr en

MET. 1) (€ sin x) =e! cos x;2) (eus x = In x) = = sin x

3) Ginx= WY = cos x Zr Ver zer ei

30

DIE are «ec: (eh)

IMST. 1) (sin Sx + cos(2x - 3)) = SeasSx - 2sin(2x - 3); 2) (À — InBxY = 2e — 4

2

3) ine = 3)~ In = 22) = cos(x-3) +
2x

ï

D GNT y eon 2275 a
nenn you x + Pla) = Bons x in
Der À Beinxt es

3) (Sx e = Set + 5x6", 4) (x sin 2x) = sin 2x + 2x cos 2x;
Het sinay = —e "sin x + e cas x = e cos x — sin 2);

6) (€' cas x) = efcos x €” sin x = €(c0s x — sin 2};
M8.

»(£2)- EEN

Fr

7 ET (ay (y
for tee
af )- FB en

5 (jene

a+ (+)
tnx) JU loto
CE =) a ay

874. 1) (si? x) = 3sin? cos x; 2) (BY = 8% In 8 (sin x) = -8™* LB sin x,
3) (costs! = eos in) = tears sin, m = À.
MI 1)/'6)= QP ZEV DEN ESEL = Ou = à
SEO mad. Om DEEE, — 9 0
DIG) = C30 +28 +4) = 927 + 4x,
110)=0, 4-984 4) =0-255 = 0,25

à;
ch

Sao mdr 100 muro: =

4
5
31

DIO) = (x = Sx? - 20x) = Sx*~ 15x? - 20,
F9=0, Sé-3é-4)=0,D=9+16=25

ee Ea, mate = -1 < 0 — ne cymecrayer Kopel

2

FO npn x<-2 m x>2, (1950 npn -2<x<2 se ;
9 ue (c+3) (e—4P = 30e + 3) AA
= (ro 3P (c= X0x—12 +2146) lao.

s

3, mad ned.
5

CRE

Pme afp Bera ae

xe?

Best) _ 6
rw . k
ar (E =) GP er
Sa) = 0 raxux x ne cyuiecrayer; f'(x)>0 taxmx x He cyuectayer
S<O npu ncex x, kpome x = 2

Orr ya Zee.

LODO PL, LO pH O OR, — te

876.1) / (0) coran = 4 sin 2,
‘wet - a Em coset:
A =c052-% = cok abs
DAT, pyme mir © morere

ar (2224) «

ar (

0877. 1) M3)-32:329-6=3, 2-2, Y (0) 76-24, 3 4-3), JAD;
2) 93)=2749=36, y (0-23, Y (6)-2742-30, y=36:30(1-3), y=301-54:

a nh

372

Na BTR. s(4)-0,S 443 442284128220) MOPS POS 20030043, (A) Tudo).
ac 1) y = (cos? 3x) = 2cos 3x-3(~ sin 3x) = -3sin 6x;
sx = sina + À = cos 2x+ Is
Dy (@ + Leas 2x) + 1)
Seo 26-200 Dur
MY Gi 2 Y= sin 22606 3 = Sins

y= (ee) RENE EEE
= (Ye=1(x*- > A ry =
y = (ik -1)) Er eu] emia
¿AGD _13a¢= 128! =1
se) Sen)
in y= (sm) ant (roi),

_ 2sin2x +2sin2x cos2x + 2sin2x-2sin2x cos2x |
(cos 2x)

Asin2x_ dsin2x _sin2x
Utcos2) (eos x) cos"

nn
av. (3) 15 ee teta
MR, nn

DENT FT ÈS
Nr

y AE +4
rl A ra

sings cosx) _
oy (BS):
„ (cosx~sinx)(sinx~c0s.1)~ (cosx +sinx)(sinx+cosx) _
(sin x cos x)"
33

„sin? x + 2sin roos x = cos? x— sin? x~2sin xc0s x = cos? x |
1-sin2r

2
x" Sine

881.) (log, (x? 1) = 222

PF am
3-(log, x)" _ 3In?x ,
xin2 xa"
3) (sin(log, x) st 4 (os 3Y =~ sin 3°3"In3.
Many = (02192 6°" mad r)y = vol;
Y = (=x) rpadux a) y = Aix);
Y = (sin2x) = 2605 2x rpaux 1) y = Pl);
Y =(2cosaY =-2sinx pad 6) y = gts),
2883. 1)/()=(0*+2 Y =2* Im -2 "2,
Se) = 0, 1n2(2* = 2°) = 0, 1n2 #0, 24-278 = 0,2 m2 ox ex, x= 0,

F09> O mpx > 0; (8) <0 mp < 0 — 2 +
o x

2 (log; x)

DS) = (3% Dandy’ =23% ind - An 3
FG) 0,W3B™— 1) = 0, 2B 0,3" — 1 O93 93%

ES
F0)> 0 npux > 0,1%) < 0 npn x < -

—_—
o 7

1,
FC) >Ompux>0,f)<O ne eywecreyer: 7777797777
4 o -

NU E -1+ Loose? dex

DN 4 ne + LY +

fu=0 14-20

> Onpus>— 5 fs) < One eyueenyer 777 :

DNA VR Y=6- AN 220,000, 6-0, Li 16,
20 pm OC (NO pm x16, 7777772
OF) = (e+ D VA 30 avi

E

S0=0, Wat -6=0= Vat] =2>x4+1= 4,253,
J'@)> 0 mpnx> 3: f 0) <0 mu 77777

884. / (0) = 32+ 6x + a, fx) 20,

38 4 re a 20/1000 npu oer, com De =9- 32 60, oyas 3029,
Omer: a2 3.
Ne 885.0) = da - 125—1,/'050 mpn ex x, sum Jar - 12x- 150,
aco

A E [E92 Omer s-

rem (à

M886, De 2ar+ Free anne,

panne ne acer acicrmrensiaax opel, cam a2 0;
DIW na 00800 E -0/0é=1.8=1,

Spano vu eme pu, om 50:
DS) = ar + 6x + 6,11) = 0, a + 6x + 6 = 0, ax + 2x+2=0,
spor ne tensa sem D =1-20<0505 Li
4)f 9) = 3 + deta JD = 0,36 + 12x+a=0,

ypannenne we nweer nefcrairemuux Kopneil, ec
D

=36- da <0 = 3a> 36,0> 12
B87. DJ = Tan! + PJ <0, Ta + 3 < 0 0 (Ta + 3) < 0, > 0,
a9, Tue ate-à, m0, — eme pont pu,

mao. > > — peneus neers. :
DI) = St + Ja, 0) <0, (ER + 34) < 0, 2 20350 + 3a = 5 <- Ja,

da
202 — nepaneneeo ne meer gere sone np 020;

xta _ deta Arta

DS E+ SG) <0;x>0, 15 <o,
‘Wr Wx” We

2x Mair ta» x. <5 cures ne maser peu np a2 0;

am #70 <0,
2302 2 - a <0 2 <a—nepanevirao ne nacer peuenn pn aS 0,
3

Ne 888, 1) Touxa nepeceucnni ados:

AN 2x-6-n20=64~ Say Fi

(TETE + sas hy Mery = ges
e mid se À

2) Towra nepecescan raquis:

VBR ar nly = re

[own FT isa?

P= 17 G)=0, 1805 =/'49)=0= 0 =0,8= S02 %

Y yz

3% 109 = cos À, y = cos =
20889, 1) 002 in Ed Eo 2 (a) = cas 3. 0) = 06

DN) 202 Pays: "Ind +227 m,

vo ma 21-209=m(p-

31 1 3,
TN ro 242,
yn gine» yo Amar Zot

242
Da ES a,
DO

ya rs WERNE
Meer hyena t+ Eyes tte!

Ñ m
recto Days Loire Se

NER y/(x) = x ~ Sx, yz! 6,6360,
paseando, e, EC
Daran DEL nm 16-2026

Yrn18 + 66-6), EEE
36

De:
rn pete Le
e lt

372776

7 19
191459 6y= rr yn bet 2
EDR TES er #6 + Day 6

ar +8,

mast. y= Leaders).
Kacaremmas nepecexaeten c ocamn 8 Touxax A (0,8) B(2,0).
base l
Sasos' 7 9B04=> ‘82 = 8 (xs. cn).

one Ered td homer À

Dow pre com om: 0, 2) 800
Sun E008» 4.8 aa 21 mme oras

2%

DTloneranım roux (xo, 4 Du (2x. 0) ypannenne kacateunonl
kkk

k
Laya H

nono, MON, parano creo

a un
k

Gaya diy E 0 acerco an roue remar

E
racaremnoit
4893. 9(1) = 1 p.00 236 =p, =3 =p. = 1 p+ B= pX- D,
y= G-px + 1=p=3 +p,y= (px 2
Koopamaru roux M ao YAOMACTROPATA TOM ypantenmo

3-0-p)=2-233-p=5 =p 4

4-22 4'In4=2lind zur
Ina ind

y 210 2-21 22, 28-22 = 0 —aro Knanparnoe ypanmenne orH0-
cnrenmo 2°

MB

+3

D=ieg=one LS ate nae ot

1 <0 — ner wopneii;

2
=

Omer: wexomas rouxa (1,0).

-0,

El

MB.) =Inx+1,x>0,/=0,Inx+1=0=>Imx=-1=31=e"!,
al

ey Bin

Paceroanne or xacarenswoll 0 ocu suce: = 0 y = 0

39896. pen xy — roma can, Tora Go) = 1+ no + + ue L,

yu rta Lira y E ttting- Ly E lan.
ES

Yarmunan, so y = ax - 2, nomyuaen cncresy: {re = face
2,

Omer: a = e.

9897. Tiyer x; — rowxa xacanns rpaginea dyna x), Tora
Ai) == 9,10) 2 4 Fa) = 2 =
yar? 4x +34 (2x 0x0),
yo Qu 44) + x 4x1 + 3 2x + du y= Qe Gx).
Tiyers xs — Towra kacanerpafınca Gun ge)
#03) = a = + 62 — 10, g 0)» -2x + 6,8) = 2H +6,
yal + 6x = 10+ (6 2e =)
Y= (6220002 + 6 ~ 10-61 + 20? y =(6- Zn) + (1-10)
Ferro ona ua me mettent, 10

Be (men
Bas Gate =
ausm > fasse
la -10=3- 25410, -x lx, 10x, +12=0

an +6=0,D=25-2= ye Sl 3,9200,

2-1 my = 6 + 2x — ane obume sacaremunit
MA 898. yee x; = roux xaca, Toraa yxy) = x) = 6,0) = 3, y (4) = au,
qa 6x0), y= nx + (+ 2x) — 6).
(+ +3)

Tor nepecevennx e ocanı oopauar: (O, - 2x 6), B (5

aan nn ER)
ih a ar

SS = zen

‘rw xacarenvie napsnaensiny, Tax «ro KonphminenTu pH x 207
arr pans, ne. 3x)? = 3431? = 27

38

60 x, = x, — Tora TOUCH COBNAAAIOT, NO Y Hac ARE pase PAM
200 x) =

O [RP DEE
46 +3) san a + 2g? +36= 9-64) +6
Bn 300 +270, 1049-0

549,1 979,

28-941
4

IX raasa. Hpamenenne nponsnonnok
x HCCACIOBARMLO DynK HI

§ 49 Bospacranne u yOusanne @ymeumm
1999.0) "21 h,190,50>0,20- 4)>0.2>0,

120,2 > 1, x> 1 — norpacraer; f'() <0, x <0,0<x< 1 — yOuimaer,

oa ,

m. Dyn2r-1,y>0,2-190.> — apace, <0, 24-10, x4 Gamer,
D =100-3,y > 0106-3 02> À — mme:
Ya tc-30.1 À ae

DY = 2x +2, >0, 2e+2>0,x>—1 —sonpacraer;
Y <0,2x+2:<0,x<- 1 —yOunaer;
4)y=2x+12,y>0,2x+12>0,x>-6— pospacraer;

y <0,2x+12<0,x<- 6 — yOrnaer;

DI =30-3,/>0,20-3>0,0>, 2<-1,2> 1 —sompaeraer;
Y <0,30-3<0,x<1,-1<x<1—yóumaer,

y = 40 = 41, >0,4:(2 - IDO npn 1 <x<0,x> 1 —ompcrer;
Y <0, 4 )< 0 mpu x <—1,0<x < 1 — yOunaer;
nn nn

By

Dd 36,y 0 2650,

Penns ypammeime x 6 = 0: D= 1 + 2425, x

pn «<= 2,x> 3 - sospacraer; <0 npu 2 < x < 3 — yOuaer;
ie
tod
8) y= 3 — 121, y/> 0, 3x(r- 4) > 0 np x <0, x>4—woxpactaer;
y <O npn 0 < x < 4 — yOunaer;
Rh
o. o.
901.2) 6)

1

MOOD = EE PARO D > 0 ue munonneren
m np ax x6 Rx (+ 2)°> 0,
<0: - <0 munomweren np ncex xe R, nexmovas x= -2
Y way ps
oyunu yOuinaer npt x < 2, > 2

<0 munonnaerex npu ex xe R, normonan x = 0,

‘dyunuuis yOunaer npn x < 0, x > 0

iu > > > pn ax

DY = E 0: = > O ne merca HH pn aos
retin Yes >:
i

<0: Le <omunommenc pn cou 3,
PUS "
yaaa yOrinacr npn x > 3;
Sys q 5 20 zh > mamon mp ex 5,
de a F3
50: O venere mem ref YTS >0

us x

yeux Bospactaer npw x > 5.
40

IAN at 49

a eae

tox?

(P43)
at 49x"
(ey
“yan Dospactaer npu ncex xe R

y>0:

> O nepno npu ncex xe R;

y<0

< 0 ne nepwo um npn Kana x Ro

o

y >0 npn 2(32-10x)>0, O<r<3,2 — nospactaer; y/>0, x<0,> 3,
DY e+ BOM 1)= 3er - 26 (x 2),

y>0 2202 due 220 2 p> À Ama soc;

— yOuunaer.

y<o: 2°Gx-2)< 0-20" > 0u3x-2<02 mpux < À pa younser

MN

> OEM LE >On 1 =31>0-2 p< 1 yi ompacraer

Y 0:61 +39<020">0w(1-39:<03pua> à main yörınaer.
MR

JURA €

» > On 243202 mpm x> 3 —
uns nonpacrar;

<0: rr pe com eM Sonat co mad —
dyneunx yOuinaer; a

2)y =(Qx-1) 3 In;

> 0:Qx~1) 3" "1m > 02 m >On 2e = 1> 0 = mpux> 4 —
Ay sonpacrar;

YO <0 2 Fd > On 2e~ Op à —
yeux y6uinaer.
0905. 1) y= 1 ~ 2005 2x, > 0: 1 - 2c0s 2x > 0 => cos 2x < +

a

A A A A
Em 58 same E 2 anne 2— dyn.

ospacraer:

Y <0: 1 ~2cos 2x < 0 = cos 2x >

2

roca van Eanes Evan ne 2— puc ame

DY =3- side, > 0:3 sind > 0 2 sin < 4;

Sn Br Sm, Zu 13%, 2am
E CR A
6 6 ws es

‘oxpacraer;,

Me 907, 1) # = 3x? — a nospacraer, amar ÿ > O npn ncex xe R
¥ 0,30 -a>0,7°> Frases

2)y'=a-cosx, y > 0, a - cos x > 0, cos x < a, a > 1.
24908. y = 36 4x + a gym nonpacraer ua À, ccm > 0 mpn cex x
3x 4x + a > O nepanencrno BAMOMACTEA rh MOG X, cc

2 =4-30<0,0> $. (Onevara» orere sans).

20909. y = 3a +66-2 yen yunaer na R, cent < 0 mpm neex x

Jar +6x-2<0 HEPABEHCTBO BMNNOANACTCA IPH MOGMX x, ECM
i os :

Deco ler E

a 3

42

$ 50 Ixerpemymsı @ymxuuH

ou. or (55)
Dy = 6x" — 30 + 36, y = 0 => Ox" -51+6)=0,
D=25-24 Sl

en ge St

7
DN 20-26, ÿ = 0,20(¢ = 1) = 022 > ONE = 1 = 0 2 de 1 >
20-410.
My = cos + sin, y =0=cosx+sinx=0,
2

+ 2 En
Voss) +sinx 9-02 V2cos(r- F)=0,

seme Ze 3 eme

veo. ny (26x) Sd Botana Vi;
at

¿EL dl sucres
aplomo bed ati
Dye 00 NAO
y 2 in 22x 1),

#=02 2/2 (2x4 1)=0= 2°

1
In2>0n2x+1=0,x. -1
2

MIA. 1) ÿ = Ax 20, =O mpux = S—crammomapman _-_ 5 +


Ton. Tp neperone pes x = 5 y enter Su 6 > ns
man.

7=5— roux rama

Dy 60936 y =0mpnx= 6

Tipn nepexoae wpe x = 6 mener max mem. 2 g +
Chenomaremano x= “6 — roux soon —
pere E

Tipu nepenone vepes tomy m =Sy weiner + = +=

au ¢ eb» MA, MANDA x= —S — Toma MAK
mg, a Hope x = $ — € de na cin, HT
x=5—rowa roma.

aro bak re dern.

a

Tipn nepexone vepes rouy x = -8
3° mener max © «+ Ha «>, Maur X = -8 — TouKA MAKCHMYMA, à Meca

2286 2" na +”, aur x= 8—rouka My.

4 0 8 x
M915. 1) y= 3x? 6x, Y = 0, x(x 2) = 0 x= 0,2 =
x= 0— Towa money; x
y(0) = 0 ~ 307, (2) = 2? = 3:2

Dy
2-2 Towa Ma;
x = 0 roux MAXIMA; x= 2 - roux MANI a;
1-2 = (2-82) +3 = 16-3243 =-13,
£O)= 08-80 +323 £2)=2-82 + 3e 16-324 IB:
2 0 2 x
DY =1 ten y = Ocosxe 1 = x = n+ Inn ne Z,
Tipn nepexoae nes X = TY HO MEMXET MAX, MAT, x= A ne annnercn
si > A
row erpenym D de à

Zi 1. =0,sinx= Loue À + em nez:
2 6

x
Ey ann neZix= E +2m,me Z—rowwa naxcumyaa;
6 6

x = + nn, me Z — roue Munya;

x x x
HE + 2m» 2008 À + E+ 2m V5 + À + 2am,

A ea) dt «Bees
HE + 20) = 2008 (5% + 2m) + amm Br + 2mm me Z

916. 1) = 2, 2 + 0 => wer rouex axerpemys
2) = -$, 5 #0 > ner rouex erpeuy

Dee 42,7 0238 42-02 = 3 — ner rover open

ne cymecrayer rouex axerpe-

yaa, (Onewarxa » orsere sax).
4

917.1)

neste. ae aya,

Dy= amooo,

F0 ere 0 = MP1) =O x= 4h;

rl. 271 = on sa;
yet
orne a fh a.
2
22 O — TUNE nnanercn peck TOMO
1 1
re he +1
AA
ñ 11
Sloan ll
a EE
se LE ron asonan: Lo
7
ayy = EL 101,3 =0— ner peut
ia = tele m
Dyed tea any’ 02er fare + 2mm
di —_——
$ es.
6

262 À Hrn — ro nancy:

x Eros — roue mes:

6
My = sine,

y=0=-Ksinir+ 1)= 02 sin 3x = -1 2 3x

4

+
-3(2=x)' (3-x)' +
any HE
0
Ia
- I »ı=2r=
a mars
= 2 — craunonapnas rosa;
X= 5 —rowxa marcnnya; “oo à 2

pesaje REDEN
(I

EDG +6 41-20 4)
a)

Y = 0,262 - 31-4) 0,x

Rad — rea ur me

Dy-

xel

0+0 wann
fo" cre Ss
Se
4 0 1 4

TEN
¥=0,€"(3x-2)=0 =e >0n3x-2-0=x=

4) y = cos x + cos 2x, ’ = 0, cos x + cos 2x = 0,
¿osx + cos 8x -sin'x = 0, 2608%x + cos x 1 = 0,

AB at seth mn

D=1+8=9, cosx

4 "2

cos x CREVER TT Lee ne.

x
12 À + Dm, me Z— rows asoma,

FE 2mm ez —roua vna,

EN

ree
y =0 npn pr

Fi

=0, nockomxy

>0, nem me = 0, orxyaa x = 0;
men Joe en

Tipn nepexone wepes rowry O npowssoanax Y' MENT CROÑ SHAK Ha OTPMLA=
‘emu, ar, x = 0- roa mona, 3(0) = € = 0

6 pe y=0 mu ="
lex =

e = ie" ze; x = 0 pm nepexone wepes Tony O mpoaoatax
y' menser cool ax € OTPHLATERINOTO na nOnOXATEAR, MAT, x = © —
roue anges, y(0)= (0 =1

oo

Ryan CE em CHE et,

D + AD (n= 1) = 0, >

ni E
n=24,x=-1 —TOWKa MOON, x = | — roux MAKCHMYMA.
n= 24+ (e+ Dm Le (e+ 2k+ 1 1 (e+ 12420,

xen | Towa Marcia.

4

$ 51 Iipnmenenne nponssoanoh
x nocrpoenno rpaguKos GynKunH

88923. 1) o6nacns onpenenenna: -7 < x 57,
MHOKECTBO mavemni: -2 $x) $2;
DH) = 0 npu ri = 6, x = 4,2 = 0, ra = 4,25 = 6;
3) ymin nospacraer npu-$ < x < -2,2 x < 5,
“yan yOusaer npn -7 < x < 5,2 < x < 2, 5 < x < 7
AO >0 npn- 7< x < 6, -4<x<0,4<x<6,
NO <Onpn-6<x<-4,0<x<4,6<x< 7;
5) Ama Ts nas = 25 Sa Xp 5, Km 2

8924.1) 2)

A ERRE

Ms.

I eh
1 06ncre onpeaenenun — unoneerno A; 2. y= 3 - 65;
3. 20, 3e 2)= Drm Ours 2
SY > 0x < 0,1 2 monpacraer y <0,0<<2— younger;
5-0 roma MET PA NEP HED nee MEET €

MO) = 4, x= 2 — Towa min, Tx. npw nepexoae Nepes wee Mensercn 210K y"
cum na tn,
32) 8-12+4=1
220 © CET 1 3 FER]

Fe + o = 0 =

20 A 4 iio we

pra

Dy-2+3H- 0
1. o6nacrs oupenenenix — unoneerno R; 2. y = 3-32
3.90307) 0 e m0 en

— row monos fl) = 2-3 + 1 20,
‘Towa maxcumyna A1) =2+3—1=4;

a a NN ECC er
Fo ° +

rn N
Dyan? +46 dr

1. oGmaes onpeneacnnn —R;2. = Be? + 4;
BY e082 Ber 4 0D= 16-124 = APP 2a,

4./>0,3é-8r+4<0, Jerez y <0:30-80+4>0,

zT 1
» fw? ] 2 [zeal 2 [un
Fw = 0 + O z
#4 32 0
xi-2 wa NS

49

om)

x=2— 1008 mar 2)» -8 + 16-8 =0;
Ayn + 62+ 9x

1. oGnacrs onpeneneuna ~ R; 2. y =3 + 12x +
= OR +4r+3=0,D=4-3=1,

4 y>0 0 +41+3>0,0>-3,1>-1,y <0;
Pe det 30,3 cr <n)
= 3 3 sa

reo | + o = o +
w | 7] > il
FS row man A-3)=-27759-27=0,

2-1 row min cl) =-1 + 6-9 = À

MIT. 1)y=x +80 — 16

1. o6aacrs onpeaenenx — Ri

Ly 40 + len

3.9 0,4100 4)=0,

x= TE WEN

Ay >02 #2) <0,

2 o 2
x<-2,0<x<2,
y SO xr 2 Mx + 2)>0-2<x <Oux>2
Tap > [-2<x<0] 0 [osxe2l 7 ]r>2]
[fey | + 0 = o | + =

fe) Va o AS, 6 Pa
= 2 — roma max, A-2)=-16 + 32-16=0,

‘rouxa min, AO) = —16; x = 2 — rouxa max,
16+32-16=0;

3.7 0,40 - 1)=0,1=0,x=21;

4 >0,x(é -1)>0

a o y 5

1 <x<0,x> 1,ÿ <0 aes oe
22-1) <0x<-10<x<1

X [ret [1 fro 0 Tosssıf ı per

[te [= 2 + 0 5 0] +

Mm Sal a LR | ow | | a 15%
EE roma min E 1-37 2= 1,820 roma max,
f0)=0+0+2=2; "= 1 —roua min,

Riya 1224221

3y=0 #(
0x8
aya jols,

#)-0,

2 o 2
x<-2,0<x<2,y<0;

Loli=rl)eo, 200013

EIC E ECON OMA IT E

ol + To pots er

Ko a y 4
AE IX

5.x=-2-rowa max; (--

x= 0— rouxa min; Â0) = 0 + 0 = 0,

x=2— roux max; (2): ;

s

y= Gta

1. O6nacre onpenenenm — A

2. 90-09 = 6-2)" — 4) = 6 — dx =
= 160) — vera, pad cnvarerprsen TIT
omocirenio Oy.

Hecaeayent wa (0; +)

3y = 240-246

4. =0, 26-2) =0, yoru
xe0,x=d1
5.

= 7 (Oo) 7 ta
on ; ? =

Ñ we =

x=0—rowra min AO) = 0
xml — rouxa max Al) = A1) = 6-4 = 2

MO. y=x = 3 +2

1. O6sacte onpeaenennn [-1; 3] — no yenoamıo

2y=30 -6x

3. # = 0; 3x? ~ 6x = 0, (2) = 0, x = 0, x = 2

4

A I [5091 9 170513 CE E

tet ot ot

‚|: ES E
mar Fr

2Dy=x4- 10+ 9a [-3,3]
1. Obnacrs onpeaeacuna (3, 3,
2y =40- 208,

2

3.y =4n(?-5)=0,x=0,x= +45;

pes] 5109) [cal # [6]
x PC A TS

rol | a6 a6 | Zo
MN = 3,4 Son 6, 1,6.

M9. 1) y= 2+ 50-30

1. OGnser onpenenemn — 2.

PANNE TRE TEEN EET

Past} pa papi par
Dt jp pj
, SS or: A 4 N

Dyn 3-5?
1. Obnacrs onpeaenenns —1R;2. = 154 - 154

3

y= 0; 1S¥(e -1)=0,x=0,.x=41

a] a [-iex<of 0 aa past

AAA = poy = ot

” va ? N ° SN E A
#777

yate “

1. O6nacrs onpeaenenun — LR; 2.’ = 204 - 200°

Y= 0;20:3(e~ 1)=0,x=0 x= 1

x x20 0 _ EXI 1 FEN]

a E 0 = Y +

» A IN

1. OGnacre ompexenema — R;

Eee
29h S42, y m0 ése +4-0,D-25-16-9,

ornocuremano 0. Ilpoaomum paccyaaenne a (0; + =)
se

Gr)

sain pe:

1. O6nacts ompeneneunx — À npn x #0
2 ja —y(x) — dynes neveras, rpadux cHmmerpHien

ormociem 0. Paceworpn eo na (0; +)
Dni 0 9810, x=

@

y=
LL O6nacts onpeaenenna x #0;

-y(x) — y neserna n ce paq certe

‘otHocirenswo 0. Pacemorpn ero ma (0; + =);
4

3. ya i4,ÿ 0440 =0— ne cyueemer crauronapnaa roues

S.nepecovennec Ox: Om Tex; 4,042;

6. ecau x +, 10 Y => -x, eon 0,10 e
a

x>0

>0 npu0<x<2,

770.4

1, OGnacrs onpenenemun x > 0; 2

DATENT

5 — ver raumonapınıc roux;

4 ym x Teno aix

5. can x > 0,10 $ > 09, een Toy
6.y> 0: x-e>0 Wales;

MI. pere"
1. OGracrs onpeneneunn R; 2. y = exe = 641 x);
3.y=0; 6% —x)=0,6> O.x= Ly >0,1-1>0,X<1

x ral xT

y +

">

Dyas
J- Otero open
rre
AAN
x [et = DT
y ù =
1
ro A
min,

roa ammeya;

Dynes
1. Omer onpeaeremna R:
2. y'=2ae" 3.9 = 0; 2x6" =0,x
20 FED
ya = 0 a
Y ™ 1 LT
Dy=e"

1. OGnacre onpeaenennn - R;2. y'= 2x6"

3.7 +0: 2x6" =0,x=0

EE 10 1 550
ra + D 2
‚| de me >.

MN) y E

1. OGnacrs ompenenenna: x # 2
se

2 7e BRA ERES
(2) 6-2
3.y =0npu a ona
es [oT on [2 [en [4 [ar
vr Lol - E Tot
8
1 o Su DT FA

tn;

1.O6mers onpenenemax#0;2. "= 1 Li
aa 3495

320; tao may art 1202294282 dE,
x ar =L LO) 0 1 dl; 25
> tel E o

Y Sá s | 1 N]

FE

Aer dr
y ara!
1. O6naers onpenenenna x = 2;

9

pal PDL? Sr) 21x lar 1-20)
2)

14 -2+87-8- 2044 18-10,
(y

Ay-0:44x- 2/02 1-40,

22 10 TY] Gre
=

y 5 =

Y E D
8

Ne 934. 1) Paccmorpum rpaduk dynxunn y = x" - 4x’ + 20. Ero nepeceuenne e
= O mer xonitee m0 AeCTONTEAANAR KOPNER HEXOANOFO pe
1 OGnacro onpencnennn R: 2. = 4x = 124%
3-0. 4e D= 0,1" 0x03
0 (0:3) 3 G+ ©)

‘Omer: ana sopna
2Dy=8r-3x-7=0

1. O6nacrs onpeaenema R;2., = 24x? - 120°
3.y=0;12(2-x)=0,x=0,x=2

X I 9 © GI [2 [1 Gr
+ + ° =

1) O6nacts openenemu x #15
yA (4) ar nor, ds)
(y (y (=i!

62 [2 | Gre

ser
min max
Sym 0,2 =4, x= /4,x=0,y=4;
EEES

Te CR
¿Soya

Tx. (0,9) >0;,(1,1) € 0, ro caesa O7 x = 0 y > + , a cnpana pacrer or es

res

6

7) Pacemonpua rpaik;
4
<= teen ox open; € = ana opus;

4
D SEL pn nopua; c= Hana opus 1<c<4 rpu opna;

€ = 4 apa xopua; € > 4 ou Kopens,

$ 52 HauGoavuee

ensure 3mavena GyHKUNK

2936. 2) cp = 3; 0 Yaaro 2
Omer = 0 Das 3
8) Sep 232 Yo =3
Domo rl Yr © 4

937. y = 20 + 3 - 36 ma (4 3)

1.4) = 2 -(-64) +3 - 16-36: (-4) = 64,
13)=2-27+3-9-36-3=
Ly’ = 66 4 66-36.) = 06 4x6 "0, De 1 +24 =25,

x qe

7
3.2€ [4,3]
y2)=2-8+3-4-36-2=-44,

sax ay y( x)= 9(-3)=81, min (2) = (2) 445

2
1-3 6 4: 3) 903) =2: (27) +3:9-36(-3) =81,

2) wa (22: 1)
a) A-2)= 2-8) +34 ~ 36(-2) = 68, Al) = 2 +3-36=-31;
6) 2 21-3 [-2; 1 mar as (2) = 68, mi /(

20998, 1) fa) = + 5 na 3:21
LAI) 81-8945 = 14,A2)= 16-844 5-11;
2. f(x) = Ar - 16x, f(x) = 0; A(x? — 4) = 0, x = 0, x = #2;
3.De (-3:2],-2e (-3:2],2€ (321,40) =5,A-2)

Ets, pin Fle) = JR) 2e 1

Der, E

NAD =,

mas Mesa, min ie -2)= f(t) =a

[ [

3) fa) = sine + cose (3:

1. fin) = sinn + cos = 0 —

OCT
nl) sca ete
e NÓ

Demo ent, ce Femme Zi

O IS

ora.

20939. 1) POP HEC

1. O6men ompenenemur:x>0, f°(1)=24-22,

2-32

1090 Eo, 2 16) 0, 425

2e (0; +)-2e (0; +09), x = 2— roux mage, HORS ES

ri A
2 =

2) f(x) =2-x , x < 0. O6naers ompexenema x < 0;

MD lija,

L == h-20,100-0,

ser)
max f(x)= f(-1)

Ne 940, Flyers o2no uncao x, Toraa sropoe (50 - 4). Hano naltrn nansensuuee
marce cyan wx ryBon, 1. x) = x° + (50 — 2),
F(a) = 3x = 3650 ~ x)" = 3 7500 + 3001 3x4 = 300x = 750,0) =0,

8

3, x=-1 —rowa maxcimyaa,

3

300 - 7500 = 0 => x = 25,
_——
25 x

222 25 —rowea momunyna, x= 25; (50 - 2)

5, 50 = 25 +25.
1625
MR 941. Myers oauo uneno x, roraa sropoe [22 |, no uncaa aru raxne, wro

yaa ux Knaaparop HanMenbulan

2xt-2.628 =0,

reo

per arica
sra em ras, as
Omer 2-28.25

2 DE Ten ona puso pa 01,

DE EE rt DE

Tlaowaas Toro IPAMOYTOIANKA MAXON KaK:

flan (2-4) — maltes max ro yn,

ala fo 0;
axe Ener

2

Towa x of — TowKa max, MANN, NPAMOYFOABNHK HMECT CTOPOND!

PE PE.
4 2 474
943. Ilycrs cropoms npaoyronsuxa papi a ,
“ab.

— 0 xnaapar.

9

Myers a = x, torna.

orten fer?) ve

Hate mme roh un [10-2

3e O+—)3e (+=)

Orser: Dro xeaapar co cropouoil 3.

1 > Danl-1 -w3-3<
8944.1) 2) tua [La]. oi 1? init 49) = -3<0:

0.0133 ve[Sa]am-m-1=-1

Buscan, wo Gomme amer, /(+)>/()

11 1 5 pl É UE
int 113-3. 101-1039, 113103 l>
PU. alas neo
©? >6— uro nepno

onyerum A3) < A1), re. In3 = 3 > -1, In3 > 2,1n3 > Ind,
32 6 ne sepa, mar A1) > AD).

renom (4)> 70.0. 3321, wb te!

Ye >2,0>4—ne apn mur /(9>/(+)
Jef ()=-1, Bee

Hrax,

DAD 2x te (2h;
LAD=-ltese-1<22<e<3,1<e-1e2, fQ)=2+->2;
2f@=1-e
payse)=s(a)=203,

CET"

©
H 2

3) fa) = 2008 x= cos2x,[0; x};
1.10) = 26030 - 6080 =2= 1 = 1, fn) = 20051 — cos2R = 2 1 =
2.164) = -2sin x + 2sinds, £4) = 0; -2sinx(l ~ 2608 x) = 0,

ii 1 x
sinx=0,x=mmne Z, cosx=+2 | x=t%42mnneZ;
skate F+2mnez

SO = 0; 16% = 0, 6" = 1 = 6°, x = 0, A0) = 0 + 6”
CODE

3.08 [0im),me rn) Fe [0x],

6s

Krebse.
or) rom

95.1) f(e)= We ax ,x>0;
1 ri ve
rm AL leo Gn "+ XÁ.
om {T-)e Lio. 1 —+ +
=| — roux man A) =3- 122
2. f(x)=3x-2x¥e ,x>0, f'(x)= 3-30,
12)" 0; -Vr)=0, Vi =1,x=1,x=1, roa mar.
Keith A) =3-2=1. su nen

2946.1) x) = e = 3a (x) = 363,
SOHN 1) 0,0 = 1-2, 0,2 0 — roux min, 0 € (151),
AO) = 0-3-3 = 1; AA

2 Je Lena QD, Sa)

x= 1, x= 1 — rouxa min, 1 € (0/2), Malente

ot

1
USA na (0: 5),

x) Mx) 205%
“a =x) al “Wea

947. 1) fl
ES

S69) =0, MH 0 x 4, x = 4 — roues mar, 4 € (0:5),
als
S)=4.45-4=4; —

D JG) ,0:9, "(x)= Va + ey | note

ES
- NE 0,1 =3,x=3 —Tomaman,)e
£@)=0, Fred 0,x=3,x=3— Tous 3 € (0; 4),

66

IO) =3; +

3 x
D s(x) = YF (=a) 0:10,
ri LEN), aoa 23%
he = Fu x) y eas ay y
23% 2
16)-=0, MT TE] nO, x28, 2-3 — Towa max, 3e (ou).
2). [TV = =
ADRS sg x

Is =,
eS
2-4

10-0 -20,1=2,x=2—rowa min, 2€ (1:5),
ale ers) i

IO) =1 —

2 x
M 948. Tycrs au mupexeu Kaaıparu co CTOPONON x, TOFAA BLCOTA H ecTe x
Jane Tas cae oven

A =V = (a~2xXa~28)- = (a 24)? x= de = dax +42

Sand Bax + 120;

JD = 0: 126 ~ Bax + d = 0, D= 16a? ~ 12a? = 4a’,

lorie ce:
u 12 rs
Dela Lat 22 x pe (Se 2

CORDES

Orser: nucora ropotia soma Gum ©.
28949. Mycro BK = x, ro mucora peyrominnea BD=a+ B
Y Hafen ocnonanne AC. Tpeyronuionn ABC u PQB —
vosotros 242 our An 242,

ac =E+2)PO (x+a)a

Tomas:

Lac-ap 2e ig

Ormer amenazas naomaaı npu BK a
M 980. y = 3 xl — pac ato dyna cinonerpare ornocurenuno oy
Sr, nepumana npaoyronuanna GANT muero Op

B = (-x, yi 4 = (x, 0) C= (xy); D = (x, 0).

Ocnonare mpruoyromae pan 2x (> 0) w aicora y, mao, mos

Ax) S=2x- y= 20) x € (0: 3),

10-23 = 4) + 2x C21) = 6 26 2 4» 1-2),

GR) = 0: 6-2) =0,x=41, 1 e (0: 3)-1 € (0:3),

AD=2:1G-12)=2:2=4

Orser: nanonsuas nous panoyrommnxa panıca 4
951. flyer 210 rouxa B € xoopannarann (0),

Tora paceronnne 20 row A: aaa =P Man

P=/x)= (2) ( ag) = fear

1 ih -4)

aan!
4

404 +

ae ee
Are. Ts
ft

ae 1a dy | roux MAMADAS, y
Ormer: (1: 1) — Gnvoxattuian row

M 982. Myers a — umpmna nockn, 9 — yron, 0S O< 5
Toraa nnowaas nonepewnoro ceveimn xeno6s:

S(0)= dz a(acosgjino) +a(a-c0s0).
(6) =4°(Jsin29 cose)

tan nck mme htc)

$'= 02 cos2~ sing = 0 2 1 ~2sin'g~ sing = 0
68

mam sing 1

22 +1 1=050a
3
apn r= Ising ==> 9= 3 — nocropon kopen.

apuro Lounge L y Emo mn or con

sano: À

oven?
Fer je omen ja

$53 Bunykaocrs rpaduxa pynkunn, Tous mepernGa

9983. 19/14) = coso” = (2x cose - Pins) = (2x coso) - (sine) =
= 2008 x 2x sin x sine - cost = cost(2 - 1) - 4x sin xs
DS) = sinn)” = Grrsine + coso) = Hsima) + (cos) =
= 6x sin x + cour + 3 cos - sin = sinx(6x— 0) + cose,
3) SMa) = (8 420 (SR — 2e 200 124-2;
4) JDE (30 +5146)"= (40 - 942 +5)'s 120 —18x

M 954. DIO = (ix + Y= Ge + PY = 12 + D),
7197 0 mpu cex x # 1, mar, yen pu ncex x #1 naa o
DJ) Hat — 120) = 126 12,
peoneensacengensg ps Fe

1 1 x

pu x <1 wx > 1, ma 6 npouex ya Pysiayıa mam mu.
L7G) <Ompn= 1 <x< 1,na arom npowenyrxe munya mnepx;
II IH DEV = ax De + (P= 34+ ey =
ee mete rl) re De eG + 2-2)
Se)? 0,2 +x-2>0,

D=1+8=9,

pix <-2.x>1 — yn nunyaaa mun,
F 0950 npn -2 € x < 1 — dynes nunyaaa nnepx;

aroma G2 -óme-or= (64-8), x>0,

19>0.e-!}>o, dE, SEM 0,

pw x > 1 — Gym numa au,
FU) € 0 pu 0 < x < 1 — yan manga nnepx.

955, 1) Fx) = (cos x)” = (-sin x) = -c08 x, JU) = 0, -R<x <n,

“0s x = 0, cos x =0,

+mnez,
2

72
DS te) = (0 - 806)" = (Sx - 160x) = 20 - 160,
LU =0, 20? 8) 0,92. —_——

2 x
Tipu nepexane vepes x = 2/71) Mensersuax, ma,

x = 2— ro nepern6a;
DIU) = (120 = 240 + 120)” = (BG ~ 48x + 12) = 72x48

pu nepexone vepes x

» Je (sar- finde = (c08x—c0022)'=

sinx + 2sin 2x = 2sin2x~sinx,-m <x <,fUx) = 0,
sin x(4008 x= 1) =0, sin x = 0 x = m6 Zune (Air),

1 1
cosa raten. tan,

ande! mr wem

Ynpasenenus x znase IX
9956, 1) y= (20 +30 2) = 68 + 64, y >0, 6x68 +1)> 0,

+
a 0 7

mpu x < 1, > 0~ nospactact; y <Ompn-1 <x<0— yOunaer;
2 voor ares) a2e ana,
PRO 24-42 0,2 =-2-2>0,D=1 +829,

E BR
a

py < -1 x > 2 yann nonpacraer y < 02° x - 2 <0,

mp1 <x<2—younaer,

FPE

Y <O mpnx < 3 mx > 3 u yOunaer na IT mpomenyrsax.
0

M957. 1) y= (at = 4 80 + 1) = by? — 128 —16x,y = 0, Au — 3x — 4) 05,

Dane na Bed ne

Pao”
1 40=-,0=0

DNA ~ 20+ 3Y = 160 - 4x, = 0, A 1)=0,

1
[is 22% Key KES
fi 2-3

(542 Pireo y =
Dya(Eo2)-1-Bixeoy no, Eto,
2-36-0 = #6:

4) y = (cos2x + 2cos x)" = -2sin2x - 2sin x, y = 0, -2sin x (2cos x + 1) = 0,

sinx= 0 cs nez

DY = Gxt 40) = 120 - 122, y = 0, 126) = 0, x = ine,
x= 0—craumonapuas Tova, x = | — roux min,

Ie

A apes te yann co
1 0- roman f0)=0-0-26-3.102-rom i,

S(2)=

8960.1) ya

‘O6nacrs onpenenema — R,y = 2 + 6, y =0,x(x+ 6) =0,
x = 0; 23 =—6 — CTUDIONAPIO TOMA

1

= 32% $ [2720 0 FET]
Y E © = o +
» wn
Dr her.

O6nacrs onpenenema —R, Y == +21, y =0,
2) m0, = 0x» 2/2

(a

x>

a

| (vi) |e
aa D
1

il ea

IL. 1) y= 3x? 6x + 5 na (0; 3). OGnacrs onpeneaenns [0; 3],

Y= 6r~6 y= 0, 6¢= 1)=0 x = 1
——+——,

= 0 [m] T UE) 3
y = o +

» 5 2 ya 14

N

n

TE
ot

I ZENEZE

min, max min,

M 962. DA =P - 62 + 9 na [-2;2],-2) =-8- 6-4 +9=-23,
90) =8~6-4 +9 -7, f(x) = 3x = 128,109 = 0, Ar 4) = 0
x=0;13=4,0€ [-2; 2}: 46 (-2:2),4
Pays ()= £00) = 9. pin (3) =/(2)=
2) fa) =x! + 6x + Ox (A: O) AA) = 64 + 6 16 + 9 (4) = -4, £0) =0,
Hho) = 32+ 12449 F(a) =O. 32 +4x+3)=0,D/4=4-3=1,
Keine 36 [4:06 -1 € (4,0), (1) = -1 + 6-9-4,
AD=21+6:9-9-3=0,
aig (8) = /(-4)= I) =, pay (2) = /(-3)= /(0)=05
DAD = xt = 2 +3 [-4;3],A-4) = 256 2-16 + 3 = 227,

ADB -94 3775,10) = 40 — du. fG) =0, 48 — 1) = 0,
Le (-4:3]; Le (43% 0e (4:31.
“243=2,A0)=0+0+3%3,
FROH. gC) = (C4) = 275

4) fix) = x4 ~ 8x + 5 [-3; 2], A-3) = 81-8: 9+5= 14,
$2) = 16-824 +5=-11, 2) = 4 ~ 168,10) = 0, dx 4) = 0,

3;

B

#1 = 0; 425 = £2, 0 € [-3; 2]; 2 € [-3, 2]; -2e [-3; 2),
AO) = 04045" 5, f-2)=A2)=-1
ISCH IN. pa sla) = ders

M4 963. Tlycrs cropona mpamoyromuNKa pasha x, TOTAA Apyras CTOPONA pas-

LE »)
Torza wuarouans sun ea: OA)

Hecnexyem ary Gymuno na min

A =f fats 2 - pr | =
Zi = } (FE)

ÉD rio 0, + =0.40-p=0,
Aaron ape +E-m

À — aman, ro Knanpar co ro»

x= À: wropas cropona

il ra
NR 964, Myers x —omva #3 PABMAX CTOPON, Anauır apyras TOE x M ocnonane
(p~ 21), Toraa mucora panna:

Toraa AOS munca ax:

50-30-20 Ar talar,
mal PTT er zu 4 a).

=p

2 2 Ap’ =\2xp
= = (+49? ~l6px+ 4p" Rp) = 2
8V4px- p' ( ) rer
IA 2 — roummar,
res gr
Y

vcnomume p=20=p=22 =. Jo pamocropomul peyronss

965. yen cropona xaaapara pans x BUCOTO 4, TOA TOMAR nonepk-

nocmm pasa: p = 2 (x2 + xh + xh) = 600, + 2xh = 300, h= 2

Hazen rc VJ) came PEL =

Hada max Gym V = fe): (8) = 150-5

1°) = 0, 38° = 150,0 = 100, x = 410, no x> 0 (no yen),

966. y (2 Peras) state,

= 0,9 +T=0;

D = 49 - 252 <0, aunt O1 + 7> On y > 0 npu nee x € R, exen0-
snares Gynt BOSPATACT Ha nc OBAACTH ONPEAEAEHAE, LL.
20967. y= (xt Ded = 1 +3 0x, 1+3 0x >0,1x. vx > 0, caenonarenno
Y > 0 npn moan x € R, m ana, you sospacraer na nee oGnactu onpe-

Aeneuus, VTA.
20968. 1) y = (eine) = Inx+1,Y=0, Ine +1 =0, Ine =.

Inc = Ine",

Dy meaty met xem 6 (1 4 2), #2 0, € (1+) = 0x

160% 10 + 21) (12-1622 -10) |
(#=10x+21)°
„162° +1604 -336~ 2414120 + 324-1601 _ 16x° = 24x- 216

(e -105+21)" (e -10r+21) *
(2x? ~3x-27)
0, LID 29,2 1004219030 )(=7)=0
TT ea
9x#3,x47, 20-34-27 =0,D=9 +216" 225,
3415 9 „3-18
34158 ws,
472
x=-3 roma max, x=2 romamin. AA
2 3 9 x
7

2969. puc 148 a)

1) sonpagraer x € (xy 15) U (xy x4); YoumaeT x € (x, 29) U (27)
2) ma "018 a 9,5 3) 2 Xi

pue 148 6)

1) nospactaer x € (-10, -8)U(-4,-2) U(0, 4) (6,7);

Jou xe ci

Dm ==

4) U(-2, 0) U4, 6);
0; 6; 3)-10:-6;

ee
Ca [as
RE a
\ pain

oh
Dy=
der
2 Oénecn onpenenema R:
CET
oven =
Tae ea?
en
yo, 2 0,20,
Mm ES
E OY
vl BEA ES
i
y| 7 [iam | N

DyN

2) O6nacrs onpeaenenna R
Oÿ = (8) 2 Dex + 2)+ (IP = (x A e
= Gx +3)=3 (1 Ie + Di

2y=0,3-0- Deer =

ren

FA RE:

rl #

Ay = x= 1)
8) O6nacrs onpenenenns: R
6) yf = (x= 1) + Bx = 1) A 1430) =e 1 (1)

DY =OG- Deo, ind

Ta =
= 4 (0 ja
71 = Ca E
y 4
MIT DAN im tin nel Ef

1) OGmacrsonpenenennn (0; À. 9 = cour + 26052
9 f'e)=0, AeosetDeosde = 0; deos'rr2eosr-2 = 0,
2eosée + cose 1 = 0;

Da1+8 a9; ox In] Ea me 2;
4 72 3

xs Rime Z,

n

RO = 2sind “ano, (2) asin ind =-2 60-2,

43) sin Essia Et an,
PEN
peda) à po (Qee,

2) fs) = Roose + sin2x;
+60; ja) (x) = -2sinx + 2c082x,
Fa) = 0,-2sin + 2(1 ~2sin's) =0, 2sin'x + sine 1 = 0,

D=1+8=9,
143

sinx=

6) (0) = 20050 + sin0 = 2 + 0 = 2, iR) = 20061 + sin = -2 + 0 =-2,

LM CRE A

Cag ier aaa

paro) ES ES
PRE en CSA A,

AB= ver x VP -2x1,

Suse = Ir VP 2x

Hañaen nanGonpuice sHaveHne Sync: *

2 2
son adi enr). Pad BP

=
a) aa

Pear

Er red

tet
xe gr [Towa max,

3

7

2973, Myers AC = x, 1oraa CB = 40x.
oras nowaas wales no dopuyae:
st)=44c B= 1 (40-2) = 20
Mocaexyem Six) na max. ¿e
SG) = 20-15 » 0, »
20-x=0, x= 20, x =20—rowa max. AC = 20,

{CB = 40 - 20 = 20. Do panno6enperanuh AMOyTONSMKN peyronuamx,

2974 Nyons 48 = x = CD à BC = y= AD, voraa A a

ao- 47-20.
mac= iP +9? oe.) =
(eo » €
AC+BD= Ja? + y ~2aycosa +2 +3 + zone =a

¿ti? acosa rad + y 2aycona- Affe +") a yco a.
at 402 ja + 4G? + yy 40 +) — 160 cosa,
O DB + GES |
Bema 202 +) samen or mapanerpa € “
min 42 +) = apn cos = 0 = 90°, Toran 260 +) =

a

(0975.1 = 12-3
o
a2 rontanaperda
2. thy) +123"
BR

— roa nepern6a

4
20976. Myers AB =x, voran AD = 2 JR? =x? ,

$= AD: AB = 2K A rt

Me Sua max npu xe (0: RJ.
E RE

y AR
as

AR - 2)» 0;

220 roma min, x= E rouxa max,

Y
AR R
AD=2)R?-— =2- TR, Se aR=R?
2 A

or obs mps Y= 2h: Sq 12 — crono có

‘ew aanyenr roabKo OT nouiaan ocmonanın. HalineM ce max.

Tiyeru onnn karer ocnonanna x, roraa apyroll Vi6~2? . Toraa nnowans

St)= belie? Alien; xe 10:4)

S (0,

PRET TOO
220 roux mine 22 rosa mas, (V7) IEEE Les,

1
prié

82978. flyer paanye oxpyauoctH 1 ocnowanwn unnapa R = x, Tora Cora

a=(4-24) Gem pane P= Sg hc Rx 10: pl.

vte)=(2-21) ñ Ft,

Hecnesyen Ho) na max.
HG)» À pms 1226) = pra on?
F9) = dump - 69 =0,

AD _ AB

. AD AB AD = sk AB= |
AB s 2 ‘i 2% 4 ig
Save = AD: AB +25 ne +25440,0 ~ 7

25-104
Tak

108 + 244,(5k + 26) =25, 44,=

ks-m).

25-108?
DATE EL
a 7

Hecacayen Ya mas, Y = 308-208); -0, $@28-208*)=0,

8) O6nacrs onpeaenennn: + 3x + 2 #0;
D=9-8=1,

men DER
2 2
x 3) x? +31 + 2)- (0? 34 2x,
o y= Alerce) le anal,

Es]

2 #67 +4x- Ir? -9x- 6-21 + 6x? 4-3 + 9x6

Pad

gl:
+=)
+

m. 7

am 2 — roux min, x= V2 — rouxa max.

nom. y (NET:
2) OSes opos 251.
A +4x+ x 1 BEREITEN in

6) yaınarı
2 Wael Wert
À + 4x |
»y-0, 52 sé +410,
Weel
2431 23
Din=a+5=9 Bl, eh
s u
7 T
ne 1 [di
1} € ig) 3 Gi
AE = ° +
24/30.
rol NS | ns A

DA
1

2 DG)=R6)y= 0 mur =0, x= 35

Bere
DEE N Vise Fri

; = 8
Eu Mg

Irdx

1
y-0 =0, x= -L,mox>0.Henomowr.
Var 4
reo
ya re itér
” . oe Yay
lide

eae eee
A a

0)

0;

33

0982, nm son Huron aan ya:
Feosa= km -F sina)

F(a)= PE,
cosa +ksina

Hañaeu min Fla): Fla)

a
Toarkmaf i
F(a)=0, -sina+kcosa=0, kcosa=sina, tga=k, a= arcigk
ii

X rapa, Hurerpan
$ 54 Tlepnoo6pasnan

s
20389. 1) Fs) = SE = fs) => Fi) muros nepnoo6p A) Ra
2) FO = 4 0 = = fr) FU mueren nepnooöp Aa).

1

984.1) Fo) = a TELE oe sri

y We

Fix) annneren nepnooßp. Ae) npn x> 0.

9985.1) © — rep. (5) A

3

mer ana Fea) = À + Cs

à
DG)" Le nepnoo6p.. rx FU + É = 0 =

£
Dr 228 nga Fa 2 e
a
OGuunit ann: F(x) = 2:x 2 +C.

se

986. 1) Bee nepnooGp. yum fx) = x naxonarca no opmyae:
e
Poyo FC tx Fa)= fe,

Halten weno C, noncragua roux (-1; 3):

soi
3-3+6

3
2) an dun A) = Vi nepsooGp. nr mu Fa) = Ja +,
Aro alt C, noaeramm roury (9,10)

2 22
= Lars =-8, Fa) 22-8,
10- 5.2746, Er DE:

wur | =

= fle) — yuu npux € Ri

2) FQ)= (sin2x) =20082x= f(x) cy. npn xe R

$55 Ilpannaa naxomuenns nepnoo6pasnbıx
988. 1) x) = 28° — 34”. To TaGnnue murerpnponanna:

si
2) x)= Sat + 2, roraa Fix) = =

DADA voca A) = Ann ÊE 2
ope 3
> ae
DM = 60 — 44+ oran Ra) = SAE HE 202,
= 4
OA = AVE - 608 roma ri PE aXe aids
3. 2

989. 1) fx) = 3cos x~ 4sin x, roraa F(x) = 3sin x— 4(-c0s x) = 3sin x + 4008 x.
DAR) = Ssin x + 2c0s x, torna F(x) = 5 (-c08 x) + 2: sin x = 2in x — Seos x.
DRK) = € 2605 x, roraa Fix) = € — 2sin x.

4) fit) = 3e - sin x, toraa F(x) = 36 1 (6081) = 3e + cos x.
5) flt)= S-e* +3cos x, ora Fla) = Sx - (-1)e* + in x = Sx + €" + 3sinx
6) flt)= 1 + 3e*~ 4cos x, roraa F(x) = x + 36 Asin x

ss

DAN = Ve.

M

+30, voran

rue SP mare DV 2x +38 220
3
4,3

DAD" eze roma

1
=8/x +3inx+

ro SE +sinx-2 (21) 20.

2
1890.1) 40) = (e+ Df orang EN,

0-00 rains LE
df= Ez rro fa, 22
2
2
010 ron LÉ 2 har.
3
50) + deuil 2), rora AUD =In(e= 1) + din + 2, > 1,

6) Ax) = 5 -2sin x=), 08a
Fla) = in (x 3) ~2(-c0s (x= 1)) = 3ln (x ~ 3) + 2005 (x= 1),x>3.

0. 1 farsi Dro Fade (cos +3) ec a ie +0

DAR) = cos (3x + 4), voran Fla) = +fancea)ec
3)Ax) = cos ($ ~ 1), voraa Flo) =28in( = 1) + C.

4) fa) = sin] + 5) Torna Fla) = 4 cos (+ 5)+ C
DAD=e À roma A)= 2e 7 +C.
DA = roraa FD = Le +C.

86

DIO

1 linet
Zu Toma Fa) = Fine tC.

DA cor A) = En = D+C.

vn
MIN. 1) fix) = 2x +3, M(1; 2); a) Fx) = Besse
6)2=1+34C, C=-2, mau Fla) =x? +3x-2;
2) fix) = 4x1, MG-1; 3); a) FQ) = 4: Zescertaste
6)3=2+1+C, C=O, mau Fix) =20 -x
2 for MCE 55 a) Fie Lens + ©

1 Léo C= 2, mau Fo =
PS7 008 R+ Cm + C Ca Za Fee)

4) J = cos 3x, M(0;0)

1
= singe
ES
Lino +c= = 0, snawer F(x) = + sin 3x.
D0= 3 sin 0 +C=0+C,C=0,snaenr Fa) = sin 3e

20999. DA) = 2 co 3 voran Fa) = Let Find

2) fs) ed + sin 2, oran Fs) = dei Lens 25

x 5 28
5

f
DAN = Bsn Ese" Tora Fa) = —1000s

f
RO) = 3054203 rom A) = 2

502 fF +4silbe2) orm

mt Lo O oo

CE AAA
Ro (e =) Gua:

3 2 2
DA) =x- 3420 6m 2 Sx- 3, rorna
ESE
E ti
ro Pm 5
4) fa) = 4x + 66 - 6 - 9x = 6e À 6,Toraa
= se
ER rm
Fuy= ee Se
5
2

995. 1) fx) = 2x vx He storm Fla) = 4

2) Axy= Ic NX , roraa FU)

DAD=

ame y= bona ro Leza

DAN = sin (x 31) = =sin 2x, voran Al) =

3)

2; x,
orga Flo) = ~FeosSx-+ in + C

997. y = As) = sin Sx 3005:

‚Tora Fla) =x +3 ln (3),

Lara
(NE +2

DD 7

‘Torna F(x) = la (x +2);
DA cos? x= LE,

2x+sin2x

Lex + Loin 20e
tora RO = ¿(+ sin 29 = EE

RR

ie = Hn na

1 40082x~cos8r
wo ¿(+ }

1
Leos8x + Leo 2x
os8 + Feos m

$ 56 Maomaas xpnnoannelnoh Tpanenun m mrrerpaa

99. 1)

Ne 1000. 1)

ABCD wcxonas rpancuns; Supco = [Sade = Fl) Flo)

CCE

Toller

4) ABCD — nexoman tpaneuna

Sem DES ES

5) ABCD —wexomas pane

tn mtr

= rf
1001.1) y=4-2

9

ABC — wexowan rpaneuns
Dar = 0,x=42,0=-2,b=2

= 16-18 32-492,
3 3 3 3

ABC — nexoman rparneusn
BIER Er PET

ou |

3) yor

ABC = nexonas rpanewin
DP Hr IO dr 30D 43e 1
moins heel

Se = fox +4 3)ac

ABCD — nexowas pancita

2

:
Sanco = [ae “|,

D fe Ve iad bao

ABCD— nexowas ane
wf
Sanco = “hi dx =

A 1003. 1) b= 2; x)= ae

2
2(27-8)=
36

=2(6- mar

de
3

24
xs
38 :,2

Bun
3773

a) sx = 0,x(5 =x) = 0,x=0,x= 5
6) ABC — ncxomas rpaneuna

Sac forja de af

CRETE

23 3

25 ,16_60 27,1
5 6 6 2 135
2) b=3, fryer +20
De +27=0.x00.x0.2
© 04B — nexonas paneıuır

2) Su = [enana 9492
3) b=1, m
ajé-1=0, =e, =]

18.

py

re

E

3

© CAB — uexowas pane

: ,

Soup A mentee?
Sous = Je À

4) 6-2po-1-t

ait =0x-0

6) ABC — nexowax rpanews

» Sc» | Por =

=2-In2-1+0=1=In2

$ 57 Brruncaenne unrerpanon

2 1008. 1) din aff =ineint=1;
E
nee ll
i
3) eos ad = in af =sin2x~sin(-)=0-0=0;
A = cose +o0s(-2n)= 141 =2;
Es
N 1, a .
9 Jun Auen] = Hee:
4 1 1
0 cendre + inf -16-0-0

3
M 1006. 1) [(ex- kn -3u|), = 4-6-9-9=-20;
3 La

2) ]l6-4xhtr=sr-20 | $-2410+8=11;
al L
2) fl-se bie e-2 ff 2er 6

4 L

y ES ¡ 1 1 2
DES RTS
Hr nr she (0-28 +f 88410210

!

aan. leal tel. BE $68:

2
CAE 5

D 2x- leer? 6 =81-18-1+6=68;
i +} j
2

; =k he Tea] ne

(Oncwarea » orsere sagas).

81008. 1) [xl Mx-1kr= (alerts for? +5x2 ar jaca
a 3 2

jt tN |

CRE 3

fins _4in2 4,

pion. D as jee

d= Lx Lina

2) Jsin x cos ad = 12 sin 2xde

i

1
2

D a just ná
i

2

2 ont neun au fas? co ca il are
è dE
"d=ltcosar 1/3, cosár 3, sings |" _ In Ir
u Cher ar aa rar
> 3

9 ride | OS Freu 3645 - 888
° 4
4 :

6)
3

9 3
=8-8+in2- 246 Int = in
8+In2-F+6-Int =In2+>

201012. [(b—Ar}de = 2] = B25? 0420
L h

br -b+226-5b
4h +450; (6-275 0,210 sormomuo tomxo pn b = 2.

$ 58 Borwncaenne naomateli € nomoutsO nirrerpanon
\
1013.05 = (x? +4}

05- Visas
o

97

42, ye
95 = Bae=2insf =21n4-0=21n4
i

Ne 1014. 1) ABC — nexomas durypa,
D 1
+1 de eve =
b

Sasc =Saño + Sorc

2) ABC —wexowas éurypa

1 N
Sanc = Sano + Sonc = |x+2)dr+ sx
a i

3) 048 —nexonas durypa
AR eier P-50+4=0, x= SENBSIIE
Saget

Sou Src cn fee JcJ

ol se
a ES 1 16-8-441=61;

98

4) WP = 152445, 26-x-3=0
14424
elt 223

msn

: 2
Som Src Sew = a ara] | =

2 3
Fre

2) OAB — wexomas Qurypas x’ = 27-2

mer 44-290, 2 5-25.45

\
Sous = Souc + Scan = [Pes
Hy

“late
3 1

3

81016, 1) ABO— nexoman gurypa; a? + 3x= 0, x = 0x = 3
|

5 re Hand

2) P= 4x43=0;D4=4-3= 1,063,081

:
suscita
!

100

21017. 1) yee + linda

Primer P4x-2=0,

nn?

BCM— nexouas qurypa

ai
Sacu =Sasco -Sanuco = 1-2 Hs] $
L,

2 2

D y= (e+ 2
ABM — uexouan qurypa
Pearedert2, P 4304250
1.2 geet

Saro = Sane =Saue = + 2st fle 2Pae= Lea 7
EE

pt
a 1 1 8
aa aa) 22-2444 244 Lies
(5 2x “ ES 5

quen

m

101

D y= Ve iyex
(OMA — nexowan durypa

zx x30

Pox80, 120 y=

1.
Soma = Some -Soac = Nxdr- fra =

M 1018. 1) y= 60 A yo
6x) = (= 3) (r= 4), 7412
SP +7x-12=0; D= 894240 = 17
neds

x=
DAB wexonas qurypa

Sa Suc +Seu «joto frena +

102

2) y m4 y (2, y =0
a) 4- + 2

x=0 222

ABMC — nexoman @urypa
Fn
Kae |

Ne 1019. 1) Haiiaem ypamenne npanol
Gut ana: y= kx + b, moncramm TOOK:

0;0),0=k-0+b;6=0,

Jere ando yobs

O ft nn

2) OAB- wexomas qurypa

Sous = Saw + Sous = inate + eos « cos
:

103

9 1020.1) ye 6r iy
and, 40, aed, 2.1
BMD —wexowas rowan

Su Sur Scan = Jer Ja er ce
ei Ltrs

ce

=~ By 40-1644 S44 = 28-8
3 32 3

Att? Pt 200,

MIO) y= 2-2: ya
2-20, Pad, x92 reel
BCD — nexowan purypa
Teepeneces ce wa nexo (0; 2), roraa dyin pr mu
yaya

;
Saco Sn = San San = Jara e-que

4 2,2 aii
= freres Lib «E4204 d ade

2) ye li x= Oy = sing; 05x55

ABO — ucxoman purypa

=240-0-1=3-1
2 2

‘Ne 1022. 1) Hallen npauyo y = ke + b
(0;-3)-3=k-0+b,b=-3; (150);0=k-3,k=-3, y= dx 3
Hd x nm ae

ABC — nekomas dyurypa

Pacemorpum cnuserpmunyo eh durypy 418€.

h 1
Sane Save = Sone, "Sonn = 343) bes

Ban

Dyna y,

EEE LEN
408 — wexowan Qurypa
Paccmorpum cnMMerpnunyıo ei durypy 4\OB,

A "Bae etde=
408 = 3408, = 30481 mene” E +
pz
E EE
ages

ds

E
Dylan 12m tl
ABCD — nexoman @urypa, Sac” Sane

1 ay
stes 22] -
L

che)

2
3

D pme yat: x=-2

4BCO — nexouas urypa,
Saaco = Soaco* Sano,

Seco” Soato + Skoc Sooro™ 2 ts

1 ll
x 3
Sxoc = Sorcu ~Socu =1 Pas] Li

‘Teneps pacemorpux durypy, cuumerpusnyio ADO - A DO:

ee heul culs
£

3 3
Suco=2+ 244062
Sarco 2+ à z

107

1023. 1) y=x + 10:(0: 1).
Ypamenne kacarenanoh y= x +B
O1 =k:046,0= Lys ket 1
VS (Xo) + k(x — x), FAC Xo — TONKA Kacanın
ye xd 10-+ r= hry, sor d+ Le 2-4 104 kr
19 kag + 9 = 0, no k= fx) = 2x0
28-228 +9" 0,9-13 =0;x9=43
Te kat 6y=6r+ ly
ABCD — wexonan purypa.

Sanco = 2S sco = ASocow = Sonn) = de +10 les + da)

DORE a).
i

108

2) yo Liem hymna ao 22

1 1
CO CR 0)
ABC— wexonas durypa

1024.

yor Hoy O FE FEN

1) Ypamenne xacarensno: y =/(x) -/20) (1x0), = yo + 20 (x x)
yori do year;
2) OMND - wexomas rpaneuna

\
Sono = furet
Haïaeu wanGomuce auavenne yum na (0; 1).
I) Ar SG) = rt SD =0,2e-1=0,

2
1 1 1
3» E) et

241-0

$ 59 Tipnwenenne npomnonnol # wuterpana
K peulenmwo mpaxruveckwx IAB
Nr 1025. (0) = $ (0), s — nepaooGpasnan wi)

Dst)= Ibe he sb =60+4=68:
è

$
2602 fle? +1}

!
(Nr 1026. 1) 41) =0,41- P =0,1=0,0=4

20 ju iw hear «n-8-0.02

lo
(Ne 1027, 1) y=3x-20+C,2)y=20 4d +1+C;3) y=

area hanzercrainzerc.

5) y= 3: (-cos 2) + C=3cos x + C, 6) y=

Ne 1028. 1) y=-cos x + C: -cos 0 + C= 0, C= 1
2) y= sina + C2inn + C= 1, Ca Ly sin |
3) yaa +2 -x+ 142-1 + C=-2,C= A yn rer
4) ye RA CC ya dete 0 +2
D yet +Ge+C=1,C=l-e pre + 1e
ya + C1 + Cm 2 Cum et +3,

31029. = -Cyasin car + C;wcos tar; = -Cy@%e0s ar - Cyafsin an;
y + aly = -Cia?cos ar - Cin ax + 0 Cicos x + «Casino ar = 0;
0-0 - nepno mpu moGix Ci 1 Cy.

0.001 r

Na 1030. Cxopoers pacnasa m/(1) =

= 0,0001

107
mío) = km (0 perenne mie) = moe *

B nauen cnyuae m) = 0.0001 um = 1,1= 10,
m = 0,998, 0,999 = €

warm,
= 0999,-10k=1n0999, ER au",
10999. imo,5,1= 01093 1. 6928,
10 0999
1081. Fo ke, km = 222, pe 200

om 00
A= | 2002 =100%2|"" = 0009-0 = 0,09 Jos.
:

no

M1032. Pe ke, k=

“In

2300, F= 3006
vo: .

ao pos
A= [30xdi=150x°|, =0,96 ib
ü

Ynpaxenenus x zuase X
Ne 1033. 1) f(x) = cos x, roraa Flx) = sin x + C
(0; 2y-2=sin0+ CC = ARO sink 2
2/0 ‘sim x, roraa Fix) =-cos x + C
(515.0): 0 = —cos (-R)+C,C

D Fa) Zr voran Pay VE + €

(4:5): 5= 2/4 + C,C= 1; Fay Wet
4) f(a) = é, roraa Fla) = € + C
(0:2):2=14C,C= Fee +1

3) fla) =32 + À, roraa FU) = © + x + €
DZ 141 CA; Faye + x-4
6) fle) = 2~ 2x, roraa Fly) = rd + €
CRC P43,

1034. 1) Jade=29f, =4+2=6;
4

2 ef
3 been] 62062212;
Y

MIO 1) y VE; xml
ABCD — nerowan Qurypa

-0

|; Fla) =—cosx= 1.

12

RS

D y=cosx x

je Faye
OABC — nexomas (purypa;

5

ma} =sin sino = À;

3
Soanc = Jeosxde
5

Dry 20, nel,
EOA — noxoman durypa

Sa ane Su» en free fost nahn

Th 1
Sx + 15:26 = 0,58 + 1,5,

AP -x-3=0;D

3
$48=49,4 line,
8 = 49, = L ;

AOB — nexoman durypa,

S408 = Spanc~Sososc =

23) 26S alll

14) EM NT)

16-52

1° 2
(onexxrKa » ornere ranaura)

E
DOS laa,
=48-96-3+48=-3; ‘

9 Nereo a

oe Uf = sa.

ms» Pl ja

13

3) Pas kde = -1-cos(3x=6]? = ~cos(+3)+-cos(-3)=

=Hc0s3 +6083 20;

4) |Bcoslar-12)ar = 2sin(x—12]2 = A(sinO-sin(=12)=
3

= 2(0+sin12)= 2sin12.
241038,

1

D yo Liyotnantiy=o, I ade ataten eh,

OABC — nexouan qurypa

So So Sue = ates

1 tot
ed sint ints taint
Gon;

OABC— ncxomas gurypa
14

. ee ee en
Sou Sono ides bara latas

CI
D yep + leat ern
AMB — ucromas Qurypa

Sau" Souc-Soune dr fea Perro aja

yo

(a

!

I

|

I

I
a

4) yet +2 ym deed;
24202042. 20 x 0 re 2
AMB — neronan Grp
2 x
Sana = Souse -Souac = [ls 2 fe +2} =
3
2

He ee 4 nl

lo

pede
+=

M 1030, 1) y= 6099: y + dr +4 pe 0

= 6e +9 m2 + 4x +4, loe= S08 à ABC —nexoman durypa

z 3 2
0 + Spec = fle+2Pde+ Jude 420? + af, +
2 1

E

Sac

AO 13.9
3x7 49x) = — 4+ +24—-84+849-27427-— 4
al E Mtz

3

A A PORTER
atan

a

Dylan eed
CDN — nexowan pupa
116

3) prie 2V2x 46 = 2 2x ét = Br, £60 8) =0,4)= 2,23 0,
OMAN — nexoman durypa

2 3,
Sonn = Sonus —Sonas = PV dx fade = 3x - x
° en:

4) y= VE iu Mana y= RS
OAB— ncxomas dyurypa

sone + Scup = Vides Na Ball 2m)

3

1040.) y= -25 + 2x 1, roa nepecevennn pan ¢ Oy
y=0-2-0+2=2;(0,2)
WO) = 2; ¥ =2x-2,y(0)=2-0-2=-2,y=2-2(x-0) y =-2x+2,
ABC wexoune Qurypa
\
a
Heke

' \
Sane = Sousc -Souc = Je ac 2d ea

ay lines

ray yet at,
y=2=(=D)y "1 +4, DABC— norona durypa;

nl Fa
Spasc = Sxasc Sao = fdo [es cw anal + =

=4In6-4In2+8-16-2+8=4In3-2
ns

ABC — ncxoman Gurypa

Dye Sy lO x= 1.
ABCD — ncxowas urypa

:
Ses Soc “Sa =k 22° + fae=

De 2 sa =

+42

no

1082. y = à + px — napaGona, seren wanpannensi waepx. Bepuma
Es 2, E). nepecevenne e ocn: (-p 0) (00) Paccnorpio aa cyan
a)p > 0.y = kx + 1 mponomr nepes (0;

x D)
+ pr ka + ep lO, Da (ph +4
Towns nepecevew
k=p+JD
Eu

ne

s= Mera]

2p 7 2g
E (= pL 2
¿(EZ 2\s- elos), on ue VD
ere

2 laa tea 08) 37 (27287272772
Doo AD) = LID pP +2D4(-n -D)=

= Lob»? +0)

5-5 Lb DS Je PND JD =

O btel tt on)

1a. De(p-h} + 4,10
120

Va (Lie oP Zn) oma ra
lore) Lara lo? +4)

Hajiuem nanmensinee S(K)
Mon ph} + 4 = 1, SR Le. 1 14 +) St) — vonpacramuas
yx, ostomy Mae auauenne aoctnraeren np 1=4, (pk)? = 0, p
Op <0— or cya cmneruren a).
Bee aucnamcn re xe m orner: k= p.

XI Cana.
Kom6nnaropnka

$ 60 Tipannao npomsenennn

N 1043. 1) B ravecrne nepsoit undbpar moxer Ouro priGpana suo undpa #3 I,
2, 3 (re. n= 3). Bropoñ undpoi moxer Gum modus ws 1,2, 3 (re. m = 3). To
PAD MPONTICACIORA PAL ARJONA CA MONET Gr 3 3 = 9, Tx,
aca ICA € paru unfpanat, TO 1 9 ncen nano neo EAT,
22,33,16.9-3=6.

Omer: 6,

2) B xavectne nepnoh upp moxer Gurrs nuópana ;uoGas wpa #3 4, 5,6
(ce: n= 3). Bropoh untpol moxer Gurk mo6as xa 4, 9,6 (re. m = 3). Mo mpa-
muy nponneacnna paninunsix AY MMM uncen MORET Gum 3° 3 = 9. To,
nya UCR © passa LMŸpaM, TO. 9 CEA MAD HEATON uncaa
44,55, 6610.9-3=6. -

Omer: 6,

3) B xaveccrve nepnoh undpui oxer Gu muGpana 06a undpa xa 5,6, 7,
8 (xe. n= 4). Bropoh ungpolt momer Ort» mo6ax mo 5, 6,7, 8 (re. m = 4). lo
Ipanvuy npovanencnns PAIN ABY MAMI uncen MOT Gu 4 4 = 16,
Tix, my ncaa € pan upaun, TO 1 16 cen nano MEME
nena 55, 66, 77, 88, re, 16-4=12

‘Omer: 12.

4) B ravectne nepooit wd more ur muiGpana moßas wpa 10 6, 7, 8,
9 (re. n = 4). Bropoñ uuppoil woxer Gum moGa #1 6, 7, 8,9 (re. m = 4). Mo
"panty IPOMDOCASIOA PARIO: JOYA uncen MONET Gare 4 > 4 = 16.
Tax. naaa voca © past impera, TO 1 16 «cen nano HOMO
nena 66, 77,88, 99, re. 16-4= 12.

Omser: 12.

5) B xavectne nepnoR undpui moxer Gu nußpana modas ubpa #3 2, 4, 6
(re. n = 3). Bropoit uidpoit moxer Guro moGan # 0, 2, 4, 6 (1. m = 4). Mo

EN

nparury PONEN pass apyanaynıx uncen Mower Guo 3 4 = 12.
Tax. yaa ena € panama LÉ paMR, To 1 12 wcen MALO MEMO
‘wena 22, 4, 66,1. 12-39.

‘Omer: 9

6) B ravecree nepo unppu moxer Grm suGpana aaa undpa 10 3, 5,7
(re. n= 3), Bropoit wngpol woxer Gure 21068 13 0, 3, 5, 7 (Le. m= 4). Mo
pany npowseeaennx pazos aayanammux uncen Mower Eure 3: 4 = 12.
TX nya wicaa € paramo pan, TO 10 12 Hen Mago HEE OWT
vena 33, $5, 77, re 12-3 =9.

‘Omer: 9
1044. 1) B xavecroe neprot unfpu moner ure pana 060% unppa 3
2,3 (xe. n = 2), Bropoh undpoh woxer Gum moGa 10 2, 3 (ne. m=2). Tpe-
Tui IÓ Y x KAKAONY OÓPEJOBANMNOMY ABYINANNONY "NERY MONO NpHTHCATE
2 cnocobawn (re. = 2). Ho npannay npormnezenna payanunan rpexauux
Ancea moxer Gute (2-2): 2 = 8

‘Omer: 8

2) B ravecroe nepaolk unppus Moxer Gure BuGpana 210688 unfpa ın 8, 9
(re. n = 2). Bropoit undpoh Moxer Ours mo6an #3 8, 9 (ne. m = 2). Tperso
UY x Kanaonıy OGpmDOBaHHOMY AByaHASHOMY uncay MORO NpHAHCATD 2
nocoGamn (re. / = 2). To npannay nponmeaennn pavınunux Tpexanaunu
nez moxer Gure (22): 2 = 8

‘Omer: 8

3) B xavectbe nepoof undpu Moxer Gmb nuGpana Too wppa 2 (re
n = 1), Bropoñ uppoi mower Guru moGat ws 0, 2 (.c. m= 2), Tperuo undpy
AO) oGpasonaniony Y NOM NY MONO NpurHears 2 cnocoGe-
sun (ce. = 2), To npanury nponaneaenn paaayunx PEINE uncen MO-
er Gum (1°2):2=4

Omer: 4

4) B ravecroe nepnoh wdppu woxer Gure nusGpana Tomxo undpa 5 (1.
‘n= 1), Bropoñ ungpo mower Gare moGat 19 0, 5 (re. m = 2). Tperuo undpy
X KIA) o6pasonanvioMy ABysnaxnoMy urcay MOHO MpumneaTs 2 cnocoGs-
un (te. = 2), To npanvry npowsenenns PAM TPEXIMAMNNX ICA MO-
er Gurrs(1°2):2=4,

‘Omer: 4
MA 1045, 1) B rayectne nepaoW wipes Moxer Gur Spans moGas undppa wa
3,4, 5 (1.e.n = 3). Bropyo ungpy MOXNO BRiÓpar #3 oCraÑunaca Zu cnoco-
Gant (1.6. m = 2). ocneamoro undpy x racaomy oOpasonanowy anyanaıo-
‘My sucay moxno npumcar roxuxo Im cnocoGow (re. = 1) lo mpomay npo-
omens PARIO: rpex au uncen mower Gums (3-2) 1=6,

Omer: 6

2) B xavecrse nepboR undppu moxer Gurrs nupana ns wpa #3 7,8, 9
(re. n= 3). Bropyo wnppy momo par» ws ocranumıca 2un enocobanın
(re. m= 2) Tlocaeamon undpy x KaAOMY OpapOBANHOMY AByaHANHOMY WHe-
ay Moxwo mpnnacats TONO In enocoGou (re. > 1). To npasnay nporaseas-
sona pan rpexanasnnsx uncen Mower Gun (32) 1 = 6.

Omer: 6

12

3) Bxavecroe nepooi unpu woxer Gare muaa moGas da 13 5, 6, 7,8
(xe. n = 4). Bropyo ubpy moxwo suGpars 10 ocrananoxea Jun cnocoGan (re
Im = 3), Tperoo iwibpy x xLOMY OÉpasosatouy JUNIO "TY WORD
mpurtcans romueo BuiGpan wa ocranumıxca Zus cnoco6asor (re. /= 2). To paste
Y upovovenenw PAX: pere uncen moxer Gute (4-3) 2 = 24.

Omer: 24

4) Bxavecroe nepool pu moxer Gun muGpasa moGas aupa 10 1,2, 3,4
(ue. n = 4) Bropyo unppy mono bubpar» 19 ocrasuxca Jun cnoc0Ga (E.
Im = 3), Tperbo wibpy X anaony ofpasonsiniony IRYIMANNONY "EY MONDO
"pHMcaTs ToAKED BuOpas #9 ocranunıxca Zus enocoGaux (tc. /=2). To mpant-
y mponanenenn para spexanaunix acen momer Gis (4-3): 2 = 24.

Omer: 24
Me 1046, 1) Kaas m 4 Gyn cocrannseworo caona nocaeaonaremno mubwpaer-
<a 10 npeanoncenunon 2 6yxa. proven 4 pasa npasnno mpovmeenevs, axe
‘weno neevonwonanux 4x Gyxeninx enon, Cocranzenmnu x 2-x nani Gyr:

2:2:2:2=16

Omer: 16

2) Kansas 19 4 Gyxn cocranınemoro coma nocaeaonarensno BUGHACTER 10
peaioxetnix 2 Gyre. Tprocennn 4 pea npaaiso mponBeneno, nate co
seenoswoncox 4-x Gyxemiux eon, Cocranemtex 10 2-x ox By:

2-2-2-2=16

Oner: 16

3) Kansas 19 4 yx cocrannteworo coma nocaeaonaremsio BuGHpAETER 10
npemomemx 3 Gyr, Tipos 4 pana npamuno npourseneii, MAREN "eno
veevoswocax 4-x GyxneniX CON, COCTARENNOX 1 2-x aux yaa:

3:3:3-3=81

Omen. 81

4) Kansas 1 4 Öyen cocrannteworo c108a NOCAEXONATENIMO BMÓNPOETOA 10
npeaioxetox 2 Gy prosa 4 pana ıpaanno poro, ajeno
Rcesomonux 4-X GyrncHux 08, COCTAMIEINNOS HS 2-1 aan Gy

3-3-3-3=81

Omer: 81
1047. Bers 3 cnoco6a nonacrs ma A » B n 4 nocoGa nonacre 10 B » C, me-
‘unr, MIPUNEIN ABAJO npowsnenenns, HARIEM CNO DCEBOSMONIX CIOCO-
Gos 206parses ws 4 C:

3:4=12

(Omer: 12.
M 1048. Bere 4 enoco6a nonacrs wa Ma N #2 cnocoba nonacrs mo N» K, aua-
ur, UNI PARIO Npowonedenns, MAÑACM MACRO BEEBOMONIAR CHOCO.
Gon aoGparses ws Mu K:

4-2=8

ner: &
2% 1049. 1) Tomy, s0noryo meaanı moxer mobas no 32 rowan Cepe6px-
ny mesa MOXET nom MMOG 3 31 OMA, He NOY BUS 3020T}0
mx, Tipico PARO POI REUIE NOAH:

32:31 =992

Omer: 992.

123

2) Honyum sonore mena woner 110688 10 16 somanı. Cepeópanyro
Mena, MOXET NORYUITE 20688 #3 15 KOMANA, He nonywinuan JOAOT}WO Me-
nas. Tires npasin0 nporane eux HOY UAM:

16-15=240

Orner: 240.
N 1080. Tiepnum woxer Bus moGoï wa $ npeameron, propum moGoi u 4x
‘crasuuixes, mers JuoGoÍ w 3x ocranunacn, vernepruun MOGOÏ 3 2x 0c-
Tannen, marine moer Gut 101080 Ox ocranumen. Tipico panne
pownneaenus, OSONA:

5413212120.

Omer: 120
LM 1081. Tepauiw moxer Gure MoGOh ua 6 npenweron, mropus 21060Í a Sri
ocranusen, pers MOGOh um 4x ocranummen, versepru MoGOÏ Ha 3x 0c-
Tanunxes, ru 21000 13 2x OAI, ec ru MOET GU 10100 MI
ocranumfes. TIpyaennn npamao npowanenei, nonysse

65-43-2140

(Or: 720
M 1052. 1) Tepnun woner ncrark GO 9 6 yaauınca, prope Sol 10
Stu eramumacn, pers 10608 u3 4x ocranumca, neracprum 20601 10 3x
Octamumncn, ner mOGOh ja 2x OCTARUIAXGA, uccrum MOKEY Or» TOMBKO
am oeranuunica rauen. prenne IPD HOPE, non:

4:3:2:1=72,

Orner: 720

2) Tlepoust Mower Gus BATA 13 5 yrauoiren, sroput moGO m 4x 0c-
Tamixes, rer 060K 19 3x Ocranummaca, verneprum 060K #3 2x ocras-
Auen, UTA MOXET Ok TORK ON OCTADIIMA yauuıca. Fipaneno
aa npommnenenns, noayıan

5-4:3-2-1=120.

Orser: 120.
N 1089. Peuieune Janayn NE abc OY HagBANA IÓNPACMON 1OMNOCTI
Tiepayo aonanocrs moxer aati moßoh ma 18 yuauxcn, sropyio moGO u
Octanumscn 17 yrauxex, perso 106oh Wo ocranuumaca 16 yaauunnca. IIpn-
Mer PALIO pomme, NORM KOAMecTHO CNOCOSOn pacnpeacnktn
onanocnt

18-17-16 = 4896.

Orner: 4896.
LM 1054, Peuenne ana ne Janıcr OT Mecra M nopaaa naanancna ACKyp-
In. lepnun aeaypuine Moxer Guts 1060R 1 20 yaauunsca, top 1000
so ocranunoxen 19 ywaumxes, mers moGo un ocranumch 18 yyauunnca
Tipnxewnw npasno npowseeaenne, ays KOANNCCTEO cnocoGo® Pacmpene-
ts pepa:

20-19-18 = 6840.

Orner: 6840,
M 1055. 1) epayo Oyxay una moxcuo suGpans 10 cnocoGawn. Kaayto no-
cxcayouyo undpy mono suiGpars 10 cnocabaı (andbp or 0 20 9)» Taux
tunbp Oyaer 3. vas, npnmennn npannno nporseesenns, noaynN

10- 10-10-10 = 10000

Orser: 10000.

124

2) Tlepayio Gyxey umbpa mono BuGpare $ cnocoßann. Kaxayıo nocne-
apoyo unöpy MOXHO smépars 10 cnocoGas (umbpu or O 20 9) TAKA
unbp 6yaer 4. Suar, npnnciuen npana0 IPONDBEACIA, OM:

8. 10-10. 10: 10 = 80000

Orner: 80000.

281056, B uen BTOPoR u Nernepru paspuau MoxHO muGpans 06y1o und-
Py or 0.209. Barr ak ayro 1 HX Mono nupar 101 cnocoGanen,

'B naval paspan MOXNO nbiGpars 21060 mn 9 app (Tx. undpy 0 suGpare
nems). B permit paspan monuo auGparh mo6yo 19 9 ocranumaca undp
(8 ocranıımcn wip #3 cen or 1 10 9 60 unpa 0). B nepnuh paspan
MoxHo uÖparı 1106310 #3 8 ocranumınca (7 ocrabunxen undp M3 MCE or 1
20 9 an6o undpa 0). pen npanııno nponneachnn, ay:

10-10-9-9- 8 = 6480

Orser: 64800.
1057. B nenernsie nepauñ, rpernl u nara paspaan MOXNO priÓparo mo-
“Go unpy or 0.20 9, Znanınr kaayıo HO mx MOXHO nußpars 1010 cnocodanı.

B ecroh paspaa mono auiGpars 106 10 13 9 wp (Fx. undpy O mupara
nems). B ernepruh paspaa mono auGpari, MOGyIO 1) 9 ocramumcca undp
(8 ocramumaca wip ma uncen or 1 20 9 2x60 wpa 0). Bo wropoñ paspan
oxo nuiGpars 106310 m 8 ocranumıaca (7 0cranımocca Imp ma uncen or 1
20 9 ano wpa 0). pneus npannno npowaveaenns, nosy:

10-10: 10-99 B= 648000,

Orner: 648000.

291058. 1) B nepsuit paspax woxoio sanicare Tomo wicna 1,3, 5, 7 um 9. Te.
$ napnairtos, Bo wropoh paopxa mono sarncars uncaa oT 0.20 9, re. 10 papu
on. B peral paspaaus MOXNO Jamicaro uncaa O7 | no 9,7. 9 napnaumon. Ipn-
Nena npani0 MPOHAE ACIER, HAÑACM HCHO TPERAHAUNL MEET CCA

$:10-9 = 450

Orner: 450.

2) HroGha nomentoe wncno Gino NENETHAM, 8 EPA paspaa MOXHO Bot
Gupars romo wpa 1, 3 un 5, te. cymecraÿer 3 napnaurr. B uersepruk
Papa mono Sanare moGy He ocranunsca undp 1-5 (0 me moxer croxte
"a nepnon Mecre), re. cyuecrayer 4 bapuarra. B rpernÄ paspan mono nu“
paro undpy Ava cnocoGaun (3 crane ungp #3 uncen or 1 0 5 ao
una 0). Bo #ropoñ paspax Mono muÖpat» unBpy Jun cnocoSau (2 ocran-
meca bi 13 wncen or 1.20 $ ano undpa 0). Tipnwenuns paso nporiee-
a, nalen KonivecTBO napnanon:

34:4. 3-14

Ommer: 144,

$ 61 Mlepecranonxu
20
5040

8= 40320
Ne 1060. 3anava cnoa LO EH uncna nepecTanODOK #3 À anemeirron
Tro Gopsryne max ox

Panál=1-2-3:4=24

1:2:3:4=24

Orser: 24

125

AA 1061, Java esoxren K naxonten WA NEPOCTANOROK 2 $ anemeiron,
To popugnenaxom:

52312 1:2:3-4:5=120

Omen: 120
9.1062. 1) 3anava CRONICA x naxoxento nena nepecranonex 197 amen
Tos, To dopmyne naxoamm:

Pin Tn 1223 4082607 3040

Omer: 5040

2) Bazava CIO K maxoxIeMNO Ya NPECTANOBOX 10 9 anewenTOR
To dopmyne naxoamm:

22912 1.2:3°4:5:6:7:8:9= 362880

Orner: 362880
2841063. 1) Tx nocneanek nome Grm, wip 3, To Janava CRONIES K naxo-
nenne NCAA nepecranonon wa À ocranımen wp

Pand= 1.23 4m 2

Omer: 24

2) Ta. nepnoh nonasta Guo wpa 4, 10 Jana HONTE K HAXOXIEMNO
sea nepecranonon m 4 ocranmaca inp

Bunte 1234-28

Omen: 24

3) Tx, nepno noma Gus wpa, a eropolt — up, 10 aaa cno-
ren K ANONIMO sea NEPEETANOBOK 1 3 orranumsch LMP:

,=31=123=6

Omen: 6

4) Tx nepnof nom Gure undpa 2, a nocneanel — undpa 4, o 2azasa
ROJO x naxonctenio MAA NEPECTANOBOK 1 3 ocranumnch und:

P=312123=6

Omer: 6

5) T.x. nepauumn aomxH Gun, umhpi 3 M 4, pacnonoxennuie 8 11060M NO-
pane, 10 ARANA PACNOAOAHTL OCTAMINCA MACAA CROATA K NAXORAEHND
"ira nepecranonox 3 wn

Ps 123-66

Tpomsonsnocrs nopazxa pacnosomenm 3 u 4 aer vas cue no 2 naan
Ta pacnonoxure acex unp. Flpnmenns npasiio npomspenenna, NOAYUHM:

62=12

Omen: 12

6) Tx. nocacauman noma Gum tus 1 2, pacnonoxenue à 060%
OPINE, TO aaa PACNONOAITA OCTARUIECR WACH CRORHTER K NAROKAENNO
nena nepectanosox M3 3 wap:

Pate 12326

Tipornonsmocr noparsa pacnonomenna 3 n 4 aaer a ete no 2 spa
a paca acex LP. PINCHO npanko NPONIBE EME, RYU:

62=12

Orser: 12
Ne 1064. 1) 7! a
Dis 412
Dan! ok
Dam Dr:

126

9) = AR 3(k—2)= (4-2)!
10) = DE IA 2) = (k= 1)!

2 1065, 1) 26 232
DNS 132 21413 = 182
43:21 3
27
11:10
7
(nt
(mst (m+3)!
fort ES y me
MI CES
1067. B xaumol sanas MOXET Gr TOO NOAOKTENKILN HEAD.
mot ze
Dana Dres
mola m3
n=3
Omerin=3 Omer: n=3
m 1
In men 2
3 CR ET
Omer:n=4 Omern=3

Me 1068. 1) B cone «rumorenyaan 10 pa Gyxa, Maur sana cojo
a « axoaciino sera nepecranionox u 10 pazos aneMerro8.

Pro = 10! = 3628800.

Orser: 3628800 caos.

2) B enone «xpeyrozsno 11 paar Gyxa. Suave, aanaya cmogren K
axon "NCAA nepecravionox wa 1] paraa MEMCITO8.

Pu = 11! = 39916800.

Orser: 39916800 caon.
1069. Tx. uncnn nom Gur xpam 5, 10 nocaeanan undpa » WHERE
nomena Gurt» 5. Ocranocs pacnpenenure ocrapumeca $ undp no paspanam. Dro.
ALMA MAXOMACNAA wea NEPETANOBOK a 5 Pad MMEMENTON.

Pym St 120

Orser: 120 nee.
2 1070. Boenomayenca NPHINAKOM ACAHMOCTH na 4: uncao ACAUTEA na À 10-
"a h TombKO Toraa,Kocaa ADC CTO HOEAEANNE PU COSTA NAO, KOTO:
poe aemirex na 4. Cpean sea 1) ycaomnf ras Morye Gus TOMO 1H 6
Ja 3 6 mn In 2 nam 2 W4 man SH 6. Bnanır, ERO AK ORaNUNBaTLCH
a 12, 16, 24, 36 man 56. Ocranoce paenpeaenirsocranuinecs 4 up no pas-
PAU (TO aanasa MAXOMAEIIA "MERA NepecTaNonOK 1 À PARANA AMEN:
Ton) YAnOxOrTONYUEIAN peayasrar ha 5.

SP =P =S1=120

Orser: 120 wem.

127

M 1071. 1) Tx. Kamırn onoro asTOpa AOIAMM CTONTD PAAOM, TO MONO Cu
‘Tate ARYATOMINK onnoro ANTOPA 3a ony kuury. Tora MyxuO nad Kose
creo paru BOPHANTOS PaCHONOKHTI 7 KUNI HOAYUEHMAÍ peayasTar ys-
HOKHITE Ma KOMMecTBO BAPMHANTOR pacnonoxarT> 2 KHMTH PAOLA
cnocoGaun. Dro sanaya MAXOKACHNA NENA NICPECTANODOK H 7 PARANNHIX 2e-
MENTOR u 4 2 pazo aneMeHTo.

P,P, = 21712 2: 5040 = 10080

Onver: 10080.

2) Tk. KHKEH OAMOTO ABTOPA AOMKHKL CTORTE PROM, TO MONO cuHTaTD
TpeXTOMNNK OANOrO aBropa 3a oany Kunry. Toraa MyxNO Main Koanuccrno
Paix DADHANTOD PACNONOXTE 6 hir H NONVEMMMA PEIVITAT yano-
rh na KONNACCTBO BAPMANTOS PACHIONOXITD 3 KATA Pacman ENOCOGa
MH, DTO JARAMA MAXOKACHKA WCAA NCPCCTANOROK #3 6 PAIE IMeMEHTOR H
10 3 pasmmunux Jnemenror

BP, = 3161= 6.720 = 4320

Orser: 4320,

§ 62 Pasmemenna

M1072.1)4

ns

55-420

443-2

3)7:6:5:4:3:2:125040

6)6:5-4:3:2:1=720

7)10:9-8=720

98:7:6-336
M 1073. 1) B ycnom aan $ npeameron, np JTOM 5 oa Mb A02u0
Gus 5 pa npeaseron n nopanox Meet Maeune. Mosrony sata cn0-
TC x waxoxaenno VIA paseutenni 138 105, Haxo a
Ai =8:7:6:5:4=6720
Orwer: 6720.

2) B yeoonn satay $ npeaweTos, PA TOM w OA ACME AOAKHO Gare
{6 pan npeaneron nopauox weer maenne. Hozromy sata cnoauren K
axons was paaweuiennt 1 8 n0 6. Haxoamw:

Al =8-7:6:5-4-3=20160

Orser: 20160.
1074. 1) B yenom satan 6 Gyn, np ro a erarp&xyronkunce noma Cam,
mare 4 sepamos pax Öycnaın, n nopaaox mer anat. Ho
TONY A CROJOTCAX HAN AO uncna peo ete 1 6 no 4 Haxon:

Al=6-5-4-3=360

Orser: 360

2) B yenosun sanan 6 6yxa, np row » rpeyronmnxe noma Gum 000-
nasa 3 puns passos Gran, H NOpRAOK Meet nanenne, To-
TONY aasava COOIUTCAK HAXOKAEHNO NEA parmeuLem 13 6103. Haxonn:

4 =6:5:4=120

Orver: 120.

128

1075. 1) B yenosnn sanasn 20 senonex, pH 9TOM noms Our spannt
2 passe AOMNOCTH, y nopaaox meer ave. [o>ToMy 342048 CROANT-
a waxoxanmo waa paswenteuni 10 20 no 2. HaxO x:

Al = 20-19 = 380

Onver: 380

2) B ycnooın aaaavn 20 Nenovex, np 270M noms Gure mupans 3 pao-
ne JONAMHOCTA, H NOPRAOK MEET ave. ToDTOMY sanava cHOMTEN x
naxoxaemno sea paowenten 1 20 no 3. Haxoyuns:

Ah = 20.19.18 = 6840

Orner: 6840.

15!_15!

9
a

ya? gen
Esser]
E

slo
o 0121 10-2. 10
m _51021 102,10
Ten
a
1877. anno anse m Mor A
D) mm Da 7 m=9
2) m:(m=1) = 56; m=8
3) m-(m-1)-(m-2)= 12m; (m-1)-(m-2)=12; m=5
4) m-(m-1)-(m-2)=20m; (m-1)-(m-2) = 20;
5) (mehom=110, m=10
© (m+2):(m+1)=90; m=8

¢ (m

7 18 mom ig
na CETTE
en, 18: m-(m=1) =18-(m~3)

m—m=18m-90; m’ -19m+90=0
(m-9Xm=10) = 0; m = 95m, =10

CE

(m-) m! (m=5)
mm dm)

8) (m=4)

21m

129

mi(m-6)

22% mim-1)=21:(m=5)

hm
m = m = 2m105, m -22m+105=0
(m= Tn =15) =O, m = 7 m,=15

LM 1079. 1) B yexonun ana a Typunpe mpaauimaor yuactue $ uenomex, pu
row AKI Ge BUGPAI 2 payınnlx MECTA ana 2x Acnyulck, W NOPRAOK
cer 2uauenne. FIODTONy aaaava enosiTex K HACK AIO uncaa Pare
108102, Haxown: A} =8-7=56.

Omer: 56,

2) B yeaonv 28204 TIPUNPE MPMILAMALOT ywactue 8 enosek, pH TOM
OKA Ou abiGpan 3 pasamtux MecTa UA 3x ACBYUNCK, W NOPAAOK MEET
Snavene, FOJTOMy sauna CHOMITER x HAXOKACHHID "NCAA panmeuennh u 8
103. Haxomos: A) =8:7:6=336

Orver: 336.

$ 63 Coveranus m mx cnolicraa

MEET
a3 32
Jo

2 1081. 1) BuGop rpowx crynenron ana yacrux à xondepemoi 3 9 venober
es yuera mopaaxa oSpasyor coueramea 139 no 3, Flo popuyae naxoamın:
9
Su
Ormer: $4.
2) BuGop poux eryacıron Jus yuacrua m Konfepemuum un 9 senonex Ge
era mopazxa oßpasyıor coverau #9 9 no 3. To dopnyne naxoamı:

Orser: 126.
Ne 1082. 1) BuGop 4x 3ayxo8 vo 12 mas Ges yuera nopazua o6pasyior come
ax mo 12 no 4. To opmyne maxozıme:

12-11-10-9

2.495.
432

Orver: 495
2) BuGop 3x s0yxon Ha 12 xn Ges yuera nopanea Ofpanyior comerainix
49 12103. Mo dopuyne uaxomı:
91! At 2110
A
‘Omer: 220.
JM 1083, 1) BuGop 15 nava vo 16 nonmonamux Ger yuera nopasxa oßpasyıor co-
vieraw m 16 no 15. io gopuyne naxozvos
16! 16
Cpa tt lenis,
NET ws
Omer: 16
2) Buop 14 mann ws 16 vomonamex Ges yuera hope ofpasyıor covers:
ous 1 16.0 14. lo opuryae naxozum:
16 160
E
Omer: 120.
M 1084, 1) BuGop 2x rovex Ju nocrpoenwa orpena 1016 Bonmonmnun Des
vera nopanxa o6pasyıor coscranma 12 16 no 2. [lo dopuyae naxoruos:
Ge ge EIS 0,

=20.

Orser: 120.
2) BuGop 2x rovex ¿un nocrpoemna orpesxa na 13 nosmoxux Ges yuera
nopaaca o6pasyior comeras sa 13 no 2. Tlo popuye naxoan.

131

2 108, 1) BuGop 3x rovex ann nocrpoc peyromanca 13 10 sono
Ges yuera nopaaka o6pasyior coveranna m3 10 no 3. [lo dopmyne naxoanm:
y 10! 10! 10.98
c 2
“0-32 q
Omer. 120.
2) BuSop 3x rovex aan nocrpoeuun rpeyromuna 10 12 voswonmax Ges
era nopnaka oGpasyor coveramna 1 12 10 3. lo dopuyae maxi
12 1 120.10
=20
MIA 32
Orner: 220,
2 1086 1) Bop 4x rover a nocrpocuux verupesyronunsa 137 som
aux 6s era napnaka oöpaayıor conerana 37 no 4. To Gopmyae tom
7:6

Omer: 35.
2) Bu6op 4x toux Ann nocrpoenns weruipexyromamka in À ROUX
6 yuera nopaana oÖpasyor cometan in 8 no 4. lo popuyac avoue:
87:68
Gen er ee
a) 432
Omer: 70.
N+ 1087. 1) B xonone so 36 ancron no 9 apt xaxaof wacrn. BuGop 3 xapt
6y6nonoh sacri n 1 xapru rpegonoit Ger yuera nopaaka oöpaıyer coveranit
19 no 3019 no | coorserernenmno,
sd A E 87,0.
ARRET ETE EIN
Orner: 756.
2) B sonoae un 36 nucron no 9 xapr Kal actu. BuGop | xapru nuxo-
soft acti 2 apr scpnonoH Ge yuera nopnaka oöpasyer coverann ma 9 n0 À
#139 no 2 coomereraeno.

Omer: 324
1088. 1) BuGop 3x riomsnanion wa $ 2x napunccon un 6 Ge yuera nopsaxa
‘6panyer coseranm m 5 no 311162 coommererncnn
Ss a _s 6 s46s
q A so,
IEEE EEE

Orner: 150

2) BuGop 2x tronos sa $ u 3x napunccon un 6 Ges yuera nopsaa 0Gp
ayer coverani in $ no 2 150.610 3 cooraercrocnno.

29.1089. 1) BuGop Srn aenosen wo 7H 2x mamon 10 4 Ge» yuera nopaaa
‘Spasyer coseranna ws 7 no S 10 4 n0 2 coornerersenno.

ae. 76 43

ET CETTE TT ee SEDI Beal

Orser: 126.

2) BuGop x aenonex m In 3x maison wa 4 Ges yuera nopaaka oßpasyer
coverans 13 7 no 4 1 19 4 no 3 coornerernenne.

eq 4 14

TS

=126.

15:54
1

Orser: 140.

Ma
32

3) Cu + Ci - Gi = Ca

4) Cha Ca

Ja Ol,

3) +

6) Ch+0,-C

Ne 1091. Tipn pere nano yWNTMBATD, WTO 8 CONETANKAX HO m NOM, ecrt 0r-
Panuenne: mn 20

proa
Cant
ra ed
Mar-
Eike De AQU Kara
(rare oO
Owen: 1-5
2)x-120=>x21
=)

=)

(x= 6x4 4) =

133

4 a

Gene erden
Y 12043;

28 432
20(2=2)= (0420 +1, 205 40= 43042
Y =17x+42=0,(1-lNa=3)=0

DES
Omer: x, = 14e 3, =3;

93-1208 x24
3

6) 2120-3224
2

ery! Gert Gta 4g
A
AT

4

xt Dee 36,20 +2-3620 x, = EMS
18

AS:

$ 64 Bunom Heorona
1092. 1) 1483-4280 4560 + Ou 4 56 +28 +847 +
DATEI #38 4350-4210 Hr
3) d'-9u' + 36a" -84a* + 126126 + 8a? 360? +90=1
4) y" =10y" #453 120) +210) —252ÿ +210)" -120p +45)" —10y +1

14

5) Qn} +5 Qu +109) BAT BER EEE
32 480s" +800 en

HD 2420-22 415-22 2460-2 42 =
PH IZ + 60x +1602 +2400 + 1923+ 64

DO +4-Gx)-246-Gn) 2 44-3e-2 47 =
Slr «2160 +2160 + 961216

8) Ga) +5: (24) -3+10-(2a) «3 +10-(2a)" «3° +5-(2a).3 +3 =
320° 424001 +7200 410800) + 100% 243

9) (a) -5.(2)*-2+10-(20) «E 10-20) «(D +52 =

5,1
32a’ - 40a" + 204 - Sa? +20
ag

a ra ya
10) 094-093 HR 4 Se GY
Bit +60 Se
1093. 1) 1° +6./2 +15: (V3)? +20- (V3) +15-(V3)" + +3)" =
DCE EP TO

2 ee iy ET

Brası

y Me dy +350

30

27 CONTE ET:
nw EIER: rest

ee te
M 1094. Yerveprut Fee meer ana: LC
AIO 29 po
Dar do E
Ae EU] y — 22033
RITA PN} I! 3_ 1413-12 Ce >
Er ie au
Da et BE a oué

sab A

138
Tags