Banava 4. Hna yen 2 nat anyıo nopnooGpaanyo u
mpomexyrKe x>0, rpaduts Koropoñ npoxogur sepes Towsy (1; 3)
[> Bee nepsooGpasume ana Pym = Haxogsres no popryar
PR can wan 1 veal
un y= F(x) npoxonun vepes rouxy (1; 3), 7- e. Bocnonsayenes
yexomuen F(1)=3. Orewna —1+C=3, C=4. Cnenonarenm,
[email protected]
Ynpawnenua
1. Hloxasarı, wro ymes F(z) annnercn neprooGpaanoñ am
Gym f(x) na sceh uncnonoh mpanolt:
P(x) = 4x85 2) Fl)=1-5 (ee
1) Fo)
BFH, 1) 4) F9=3e*, 10)
5) F(: 2+sindx, f(x)=4c084x;
6) F(x)=cos8x-5, f(x)=-3sin3x.
2. Tlokasars, uro bynenas F(x) annaerca nepnooGpasnoit are
Gym f(x) npu x>
D F5, Nam; 2) F(x)~
3. Haltru nee nepnooßpaansıe ans Hymn
aie 02:
Yas Da 8)
4. Ana bye f(x) unlit nepnooGpnanye, rpadix Korogoi
npoxomur uepes rouky M:
1) fR)=2, M(L 2% 2) f(x)=x, M(-1; 3);
=, MU; 4 f()=Vx, M(9; 10).
§ 2. Mpasuna naxoxgenna nepsoo6paanbıx
Ma raapu II msecruo, “TO omepaumio HAXOKAENIA mponaner
nok ana sagannoh Hymn nasuisaior Audeepenmuponauen
O6paruyıo onepamtio naxommenun mepnooöpasmoh AAA naxR
dymenum nasınaor unmepuposanuen.
TIpanına unTerpHpoBaANa NOKHO MOXYINTE € HOMO npe
nun auddepennupopasus. Hanomaın npaniixa audepenmupot
mua
134 rave ıv
Tiepsooßpasnan m wiTerpan