17 integrals of rational functions x

math266 602 views 64 slides Jan 30, 2019
Slide 1
Slide 1 of 64
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64

About This Presentation

Integrals of Rational Functions


Slide Content

In this section we will show how to integrate rational functions, that is, functions of the form P(x) Q(x) where P and Q are polynomials. Integrals of Rational Functions

In this section we will show how to integrate rational functions, that is, functions of the form P(x) Q(x) where P and Q are polynomials. Rational Decomposition Theorem Given reduced P/Q where deg P < deg Q, then P/Q = F 1 + F 2 + .. + F n where F i = or A (ax + b) k Ax + B (ax 2 + bx + c) k and that (ax + b) k or (ax 2 + bx + c) k are factors of Q(x). Integrals of Rational Functions

Therefore finding the integrals of rational functions is reduced to finding integrals of or A (ax + b) k Ax + B (ax 2 + bx + c) k Integrals of Rational Functions

Therefore finding the integrals of rational functions is reduced to finding integrals of or A (ax + b) k Ax + B (ax 2 + bx + c) k Integrals of Rational Functions The integrals ∫ are straight forward with the substitution method by setting u = ax + b. dx (ax + b) k

Therefore finding the integrals of rational functions is reduced to finding integrals of or A (ax + b) k Ax + B (ax 2 + bx + c) k Integrals of Rational Functions The integrals ∫ are straight forward with the substitution method by setting u = ax + b. dx (ax + b) k To integrate ∫ dx , we need to complete the square of the denominator. Ax + B (ax 2 + bx + c) k

Integrals of Rational Functions x x 2 + 6x + 10 Example A. Find ∫ dx

Complete the square of x 2 + 6x + 10 – it’s irreducible. Integrals of Rational Functions x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x ) + 10 Integrals of Rational Functions Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x + 9 ) + 10 – 9 Integrals of Rational Functions Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x + 9 ) + 10 – 9 = (x + 3) 2 + 1 Integrals of Rational Functions Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x + 9 ) + 10 – 9 = (x + 3) 2 + 1 x x 2 + 6x + 10 ∫ dx = ∫ x (x + 3) 2 + 1 dx Hence Integrals of Rational Functions Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x + 9 ) + 10 – 9 = (x + 3) 2 + 1 x x 2 + 6x + 10 ∫ dx Set u = x + 3 = ∫ x (x + 3) 2 + 1 dx substitution Hence Integrals of Rational Functions Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x + 9 ) + 10 – 9 = (x + 3) 2 + 1 x x 2 + 6x + 10 ∫ dx Set u = x + 3 x = u – 3 dx = du = ∫ x (x + 3) 2 + 1 dx substitution Hence Integrals of Rational Functions Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x + 9 ) + 10 – 9 = (x + 3) 2 + 1 x x 2 + 6x + 10 ∫ dx Set u = x + 3 x = u – 3 dx = du = ∫ x (x + 3) 2 + 1 dx substitution = ∫ u – 3 u 2 + 1 du Hence Integrals of Rational Functions Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x + 9 ) + 10 – 9 = (x + 3) 2 + 1 x x 2 + 6x + 10 ∫ dx Set u = x + 3 x = u – 3 dx = du = ∫ x (x + 3) 2 + 1 dx substitution = ∫ u – 3 u 2 + 1 du = ∫ u u 2 + 1 du – 3 ∫ 1 u 2 + 1 du Hence Integrals of Rational Functions Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

x 2 + 6x + 10 = (x 2 + 6x + 9 ) + 10 – 9 = (x + 3) 2 + 1 x x 2 + 6x + 10 ∫ dx Set u = x + 3 x = u – 3 dx = du = ∫ x (x + 3) 2 + 1 dx substitution = ∫ u – 3 u 2 + 1 du = ∫ u u 2 + 1 du – 3 ∫ 1 u 2 + 1 du Hence Integrals of Rational Functions Set w = u 2 + 1 substitution Complete the square of x 2 + 6x + 10 – it’s irreducible. x x 2 + 6x + 10 Example A. Find ∫ dx

Set w = u 2 + 1 = 2u substitution dw du Integrals of Rational Functions = ∫ u u 2 + 1 du – 3 ∫ 1 u 2 + 1 du Set w = u 2 + 1

Set w = u 2 + 1 = 2u substitution dw du du = dw 2u Integrals of Rational Functions = ∫ u u 2 + 1 du – 3 ∫ 1 u 2 + 1 du Set w = u 2 + 1

Set w = u 2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u 2 + 1 du dw 2u Integrals of Rational Functions = ∫ u u 2 + 1 du – 3 ∫ 1 u 2 + 1 du Set w = u 2 + 1

Set w = u 2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u 2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan -1 (u) + c dw Integrals of Rational Functions

Set w = u 2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u 2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan -1 (u) + c dw = ½ Ln(w) – 3 tan -1 (x + 3) + c Integrals of Rational Functions

Set w = u 2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u 2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan -1 (u) + c dw = ½ Ln( lwl ) – 3 tan -1 (x + 3) + c = ½ Ln((x + 3) 2 + 1) – 3 tan -1 (x + 3) + c Integrals of Rational Functions

Set w = u 2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u 2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan -1 (u) + c dw = ½ Ln( lwl ) – 3 tan -1 (x + 3) + c = ½ Ln((x + 3) 2 + 1) – 3 tan -1 (x + 3) + c Integrals of Rational Functions 3x x 2 + 7x + 10 Example: Find ∫ dx

Set w = u 2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u 2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan -1 (u) + c dw = ½ Ln( lwl ) – 3 tan -1 (x + 3) + c = ½ Ln((x + 3) 2 + 1) – 3 tan -1 (x + 3) + c Integrals of Rational Functions Since x 2 + 7x + 10 = (x + 2)(x + 5), we can decompose the rational expression. 3x x 2 + 7x + 10 Example: Find ∫ dx

Set w = u 2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u 2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan -1 (u ) + c dw = ½ Ln( lwl ) – 3 tan -1 (x + 3) + c = ½ Ln((x + 3) 2 + 1) – 3 tan -1 (x + 3) + c Integrals of Rational Functions 3x x 2 + 7x + 10 Example: Find ∫ dx Since x 2 + 7x + 10 = (x + 2)(x + 5), we can decompose the rational expression. Specifically 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions Hence 3x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x 2 + 7x + 10 So ∫ dx Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x 2 + 7x + 10 So ∫ dx = ∫ dx -2 (x + 2) + 5 (x + 5) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x 2 + 7x + 10 So ∫ dx = - 2Ln(lx + 2l) + 5Ln(lx + 5l) + c = ∫ dx -2 (x + 2) + 5 (x + 5) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)

Integrals of Rational Functions 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x Example: Find ∫ dx 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 There is no x 4 -term, 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 There is no x 4 -term, hence Ax 4 + x 4 = 0, 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 There is no x 4 -term, hence Ax 4 + x 4 = 0, so A = -1 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 There is no x 4 -term, hence Ax 4 + x 4 = 0, so A = -1 There is no x 3 -term, 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 There is no x 4 -term, hence Ax 4 + x 4 = 0, so A = -1 There is no x 3 -term, hence Bx 3 = 0, 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 There is no x 4 -term, hence Ax 4 + x 4 = 0, so A = -1 There is no x 3 -term, hence Bx 3 = 0, so B = 0 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions 1 (x 2 + 1) 2 x = Ax + B (x 2 + 1) + Cx + D (x 2 + 1) 2 + E x Clear denominators 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + E (x 2 + 1) 2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B) (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 There is no x 4 -term, hence Ax 4 + x 4 = 0, so A = -1 There is no x 3 -term, hence Bx 3 = 0, so B = 0 So we've 1 = -x (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 1 (x 2 + 1) 2 x Example: Find ∫ dx

Integrals of Rational Functions There is no x-term in 1 = -x (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2

Integrals of Rational Functions There is no x-term in 1 = -x (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 Hence Dx = 0, or D = 0.

Integrals of Rational Functions There is no x-term in 1 = -x (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 Hence Dx = 0, or D = 0. So the expression is 1 = -x 2 (x 2 + 1) + Cx 2 + 1 (x 2 + 1) 2

Integrals of Rational Functions There is no x-term in 1 = -x (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 Hence Dx = 0, or D = 0. So the expression is 1 = -x 2 (x 2 + 1) + Cx 2 + 1 (x 2 + 1) 2 Expand this

Integrals of Rational Functions There is no x-term in 1 = -x (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 Hence Dx = 0, or D = 0. So the expression is 1 = -x 2 (x 2 + 1) + Cx 2 + 1 (x 2 + 1) 2 Expand this 1 = -x 4 – x 2 Cx 2 + x 4 + 2x 2 + 1 +

Integrals of Rational Functions There is no x-term in 1 = -x (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 Hence Dx = 0, or D = 0. So the expression is 1 = -x 2 (x 2 + 1) + Cx 2 + 1 (x 2 + 1) 2 Expand this 1 = -x 4 – x 2 Cx 2 + x 4 + 2x 2 + 1 + Hence Cx 2 + x 2 = 0 or C = -1

Integrals of Rational Functions There is no x-term in 1 = -x (x 2 + 1) x + (Cx + D) x + 1 (x 2 + 1) 2 Hence Dx = 0, or D = 0. So the expression is 1 = -x 2 (x 2 + 1) + Cx 2 + 1 (x 2 + 1) 2 Expand this 1 = -x 4 – x 2 Cx 2 + x 4 + 2x 2 + 1 + Hence Cx 2 + x 2 = 0 or C = -1 Put it all together 1 (x 2 + 1) 2 x = -x (x 2 + 1) + -x (x 2 + 1) 2 + 1 x

Integrals of Rational Functions 1 (x 2 + 1) 2 x Therefore ∫ dx = ∫ -x dx (x 2 + 1) + -x dx (x 2 + 1) 2 + dx x ∫ ∫

Integrals of Rational Functions 1 (x 2 + 1) 2 x Therefore ∫ dx = ∫ -x dx (x 2 + 1) + -x dx (x 2 + 1) 2 + dx x ∫ ∫ substitution set u = x 2 + 1

Integrals of Rational Functions 1 (x 2 + 1) 2 x Therefore ∫ dx = ∫ -x dx (x 2 + 1) + -x dx (x 2 + 1) 2 + dx x ∫ ∫ substitution set u = x 2 + 1 du dx = 2x

Integrals of Rational Functions 1 (x 2 + 1) 2 x Therefore ∫ dx = ∫ -x dx (x 2 + 1) + -x dx (x 2 + 1) 2 + dx x ∫ ∫ substitution set u = x 2 + 1 du dx = 2x du 2x dx =

Integrals of Rational Functions absolute value arguments for Ln: P - 22,36,61-64

Integrals of Rational Functions 1 (x 2 + 1) 2 x Therefore ∫ dx = ∫ -x dx (x 2 + 1) + -x dx (x 2 + 1) 2 + dx x ∫ ∫ substitution set u = x 2 + 1 du dx = 2x du 2x dx = = ∫ -x u du 2x + ∫ -x u 2 du 2x + Ln( lxl )

Integrals of Rational Functions 1 (x 2 + 1) 2 x Therefore ∫ dx = ∫ -x dx (x 2 + 1) + -x dx (x 2 + 1) 2 + dx x ∫ ∫ substitution set u = x 2 + 1 du dx = 2x du 2x dx = = ∫ -x u du 2x + ∫ -x u 2 du 2x + Ln( lxl ) = - ½ ∫ du u + Ln( lxl ) ½ ∫ du u 2 –

Integrals of Rational Functions 1 (x 2 + 1) 2 x Therefore ∫ dx = ∫ -x dx (x 2 + 1) + -x dx (x 2 + 1) 2 + dx x ∫ ∫ substitution set u = x 2 + 1 du dx = 2x du 2x dx = = ∫ -x u du 2x + ∫ -x u 2 du 2x + Ln(x) = - ½ ∫ du u + Ln(x) ½ ∫ du u 2 – = - ½ Ln(u) + ½ u -1 + Ln(x) + c

Integrals of Rational Functions 1 (x 2 + 1) 2 x Therefore ∫ dx = ∫ -x dx (x 2 + 1) + -x dx (x 2 + 1) 2 + dx x ∫ ∫ substitution set u = x 2 + 1 du dx = 2x du 2x dx = = ∫ -x u du 2x + ∫ -x u 2 du 2x + Ln(x) = - ½ ∫ du u + Ln(x) ½ ∫ du u 2 – = - ½ Ln(u) + ½ u -1 + Ln(x) + c = - ½ Ln(x 2 + 1) + + Ln(x) + c 1 2(x 2 + 1)
Tags