19_06_12.html.ppt nnn nbv ,lkj kll kjh kj

HaroonRashid107275 8 views 28 slides Jul 28, 2024
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

mn


Slide Content

19.6
Substituents and Acid Strength

standard of comparison is acetic acid (X= H)
Substituent Effects on Acidity
XCH
2COH
O
K
a= 1.8 x 10
-5
pK
a= 4.7

Substituent Effects on Acidity
alkyl substituents have negligible effect
XCH
2COH
O
X K
a pK
a
H
CH
3
CH
3(CH
2)
5
1.8 x 10
-5
4.7
1.3 x 10
-5
4.9
1.3 x 10
-5
4.9

Substituent Effects on Acidity
electronegative substituents increase acidity
XCH
2COH
O
X K
a pK
a
H
F
Cl
1.8 x 10
-5
4.7
2.5 x 10
-3
2.6
1.4 x 10
-3
2.9

Substituent Effects on Acidity
electronegative substituents withdraw
electrons from carboxyl group; increase Kfor
loss of H
+
XCH
2COH
O

Substituent Effects on Acidity
effect of electronegative substituent decreases as number of
bonds between Xand carboxyl group increases
XCH
2COH
O
X K
a pK
a
H 1.8 x 10
-5
4.7
1.4 x 10
-3
2.9
1.0 x 10
-4
4.0ClCH
2
Cl
3.0 x 10
-5
4.5ClCH
2CH
2

19.7
Ionization of
Substituted Benzoic Acids

Hybridization Effect
K
a pK
a
6.3 x 10
-5
4.2
5.5 x 10
-5
4.3
1.4 x 10
-2
1.8
COH
O
H
2CCHCOH
O
COH
O
HCC
sp
2
-hybridized carbon is more electron-
withdrawing than sp
3
, and spis more
electron-withdrawing than sp
2

pK
a
Substituentortho metapara
H 4.2 4.2 4.2
CH
3 3.9 4.3 4.4
F 3.3 3.9 4.1
Cl 2.9 3.8 4.0
CH
3O 4.1 4.1 4.5
NO
2 2.2 3.5 3.4
Table 19.3 Ionization of Substituted Benzoic Acids
COH
O
X
effect is small unless X is
electronegative; effect is
largest for ortho substituent

19.8
Dicarboxylic Acids

Dicarboxylic Acids
one carboxyl group acts as an electron-
withdrawing group toward the other; effect
decreases with increasing separation
Oxalic acid
Malonic acid
Heptanedioic acid
1.2
2.8
4.3
COH
O
HOC
O
pK
a
HOCCH
2COH
OO
HOC(CH
2)
5COH
O O

19.9
Carbonic Acid

Carbonic Acid
HOCOH
O
CO
2
+H
2O
99.7% 0.3%

Carbonic Acid
HOCOH
O
CO
2
+H
2O HOCO

O
H
++

Carbonic Acid
HOCOH
O
CO
2
+H
2O HOCO

O
H
++
overall Kfor these two steps = 4.3 x 10
-7
CO
2is major species present in a solution of
"carbonic acid" in acidic media

Carbonic Acid
HOCO

O

OCO

O
H
++
K
a= 5.6 x 10
-11
Second ionization constant:

19.10
Sources of Carboxylic Acids

side-chain oxidation of alkylbenzenes (Section 11.13)
oxidation of primary alcohols (Section 15.10)
oxidation of aldehydes (Section 17.15)
Synthesis of Carboxylic Acids: Review

19.11
Synthesis of Carboxylic Acids by the
Carboxylation of Grignard Reagents

Carboxylation of Grignard Reagents
RX
Mg
diethyl
ether
RMgX
CO
2
H
3O
+
RCOMgX
O
RCOH
O
converts an alkyl (or
aryl) halide to a
carboxylic acid having
one more carbon atom
than the starting halide

R
MgX
C
O
••


MgX
+
d–
H
3O
+
diethyl
ether
O


••

RC
O
••




O


••
RC
OH
••


O


••
Carboxylation of Grignard Reagents

Example: Alkyl Halide
CH
3CHCH
2CH
3
(76-86%)
1. Mg,
diethyl ether
2. CO
2
3. H
3O
+
CH
3CHCH
2CH
3
Cl CO
2H

Example: Aryl Halide
(82%)
1. Mg,
diethyl
ether
2. CO
2
3. H
3O
+ CH
3
CO
2HBr
CH
3

19.12
Synthesis of Carboxylic Acids
by the
Preparation and Hydrolysis of Nitriles

Preparation and Hydrolysis of Nitriles
RX RCOH
O
converts an alkyl halide to a carboxylic acid
having one more carbon atom than the
starting halide
limitation is that the halide must be reactive
toward substitution by S
N
2 mechanism




•CN
RC •
•N
S
N
2
H
3O
+
heat
+ NH
4
+

Example
NaCN
DMSO
(77%)
H
2O
H
2SO
4
heat
(92%)
CH
2Cl CH
2CN
CH
2COH
O

Example: Dicarboxylic Acid
BrCH
2CH
2CH
2Br
NaCNH
2O
H
2O, HClheat
(77-86%)NCCH
2CH
2CH
2CN
(83-85%)HOCCH
2CH
2CH
2COH
OO

via Cyanohydrin
1. NaCN
2. H
+
(60% from 2-pentanone)
H
2O
HCl, heat
CH
3CCH
2CH
2CH
3
O
CH
3CCH
2CH
2CH
3
OH
CN
CH
3CCH
2CH
2CH
3
OH
CO
2H
Tags