2.8A Function Operations

smiller5 463 views 17 slides Dec 03, 2020
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

Arithmetic operations on functions


Slide Content

2.8A Function Operations
Chapter 2 Graphs and Functions

Concepts and Objectives
Function operations
Arithmetic operations on functions

Operations on Functions
Given two functions fand g, then for all values of xfor
which both fxand gxare defined, we can also define
the following:
Sum
Difference
Product
Quotient fgxfxgx  fgxfxgx fgxfxgx 


, 0
fxf
xgx
ggx





Operations on Functions (cont.)
Example: Let and . Find each
of the following:
a)
b)
c)
d)
2
1fxx 35gxx  1fg  3fg 5fg 0
f
g




Operations on Functions (cont.)
Example: Let and . Find each
of the following:
a)
b)
c)
d)
2
1fxx 35gxx  1fg 1 1gf 
2
51 113  02 18  3fg 5fg 0
f
g




Operations on Functions (cont.)
Example: Let and . Find each
of the following:
a)
b)
c)
d)
2
1fxx 35gxx  1fg 1 1gf 
2
51 113  02 18  3fg  
2
353 31

 410 14 5fg 0
f
g




Operations on Functions (cont.)
Example: Let and . Find each
of the following:
a)
b)
c)
d)
2
1fxx 35gxx  1fg 1 1gf 
2
51 113  02 18  3fg  
2
353 31

 410 14 5fg  
2
35551

 02026 52 0
f
g




Operations on Functions (cont.)
Example: Let and . Find each
of the following:
a)
b)
c)
d)
2
1fxx 35gxx  1fg 1 1gf 
2
51 113  02 18  3fg  
2
353 31

 410 14 5fg  
2
35551

 02026 52 0
f
g


 
2
5
01
30


 5
1

Operations on Functions (cont.)
Example: Let and . Find
each of the following:
a)
b)
c)
d) 89fxx 21gxx  fgx  fgx fgx 
f
x
g




Operations on Functions (cont.)
Example: Let and . Find
each of the following:
a)
b)
c)
d) 89fxx 21gxx  fgx 8921xx  fgx fgx 
f
x
g




Operations on Functions (cont.)
Example: Let and . Find
each of the following:
a)
b)
c)
d) 89fxx 21gxx  fgx 8921xx  fgx 8921xx fgx 
f
x
g




Operations on Functions (cont.)
Example: Let and . Find
each of the following:
a)
b)
c)
d) 89fxx 21gxx  fgx 8921xx  fgx 8921xx fgx  8921xx 
f
x
g




Operations on Functions (cont.)
Example: Let and . Find
each of the following:
a)
b)
c)
d) 89fxx 21gxx  fgx 8921xx  fgx 8921xx fgx  8921xx 
f
x
g


 89
21
x
x


Operations on Functions (cont.)
Example: Let and . Find
each of the following:
e) What restrictions are on the domain?89fxx 21gxx

Operations on Functions (cont.)
Example: Let and . Find
each of the following:
e) What restrictions are on the domain?
There are two cases that need restrictions: taking the
square root of a negative number and dividing by zero. 89fxx 21gxx

Operations on Functions (cont.)
Example: Let and . Find
each of the following:
e) What restrictions are on the domain?
There are two cases that need restrictions: taking the
square root of a negative number and dividing by zero.
We address these by making sure the inside of gx> 0:89fxx 21gxx 210
21
1
2
x
x
x



So the domain must be 11
or ,
22
x





Classwork
2.8 Assignment (College Algebra)
2.8 –pg. 282: 2-14 (even); 2.7 –pg. 271: 24-36
(even); 2.6 –pg. 257: 48-52, 56 (even)
Classwork Check 2.8
Quiz 2.7
Tags