2 Bijih Besi dan Aglomerisasi konsentrat

Be2workftui 12 views 54 slides Mar 03, 2025
Slide 1
Slide 1 of 54
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54

About This Presentation

2 Bijih Besi dan Aglomerisasi konsentrat


Slide Content

Metallurgy and Materials Engineering Department
University of Indonesia
BIJIH BESI & AGLOMERISASI
Prof. Dr.-Ing. Bambang Suharno
Dr. Dwi Marta Nurjaya, ST, MT
Kuliah 2 Pembuatan Besi Baja

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Materi Kuliah
Bahan Baku Pembuatan Baja
Bijih Besi (Iron Ore)
Benefiasiasi Bijih Besi
Proses Pelletasi
Proses Sinter

University of
Indonesia
Metallurgy and Materials Engineering Department UI

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Bahan Baku Proses Pembuatan Besi
Baja
Iron Ore (Bijih Besi)
Reduktor
Coke (Blast Furnace)
Coal (Reduksi Langsung dan Smelting
Reduction)
Natural Gas (CH4) (Reduksi Langsung)
Scrap (Baja Bekas)
Additive (Flux): CaO (Batu Kapur)

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Jenis Bijih Besi (Iron Ore)
 Jenis oksida (terbanyak)
(Fe
3
O
4
= Magnetit  Fe ≈ 72,4 %
Fe
2
O
3
= Hematit Fe ≈ 70 %
 Jenis Hidroksida  Fe ≈ 50 % - 55 %
Fe
2
O
3
.nH
2
O = Hydrohematite/Laterit
Fe
2
O
3
*H
2
O = Goethit
Fe
2
O
3*
3 H
2
O = Limonit
 Jenis karbonat
FeCO
3
= Siderit  Fe ≈ 48,2 %
 Jenis Titanious Ferrous
FeO.TiO
2
= Pasir Besi/Ilmenit  Fe ≈ 36,8 %, Ti ≈ 5-13 %
 Jenis Sulfit
(FeS
2 = Sulfit  Fe ≈ 46,7 %

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Jenis Bijih Besi
Goethite
Limonite Magnetite
Hematite Hematite Hematite

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Chemicals composition of iron ores
from various countries (wt %)

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Karakteristik Mineral Iron Ores

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Iron Ore Mining (Brazil) High Grade

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Iron Ore Mining in Australia High
Grade

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Australia was by far the country exporting the largest
amount of iron ore worldwide in 2022. Some 56 percent
of global iron ore exports came from Australia, worth
87.7 billion U.S. dollars that year. Australia is able to
export the most iron ore worldwide due to the fact that
it also has the world's largest reserves of iron ore.

University of
Indonesia
Metallurgy and Materials Engineering Department UI

University of
Indonesia
Metallurgy and Materials Engineering Department UI

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Lateritic Iron Ore (Indonesia)

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Iron Sand (Pasir Besi) Indonesia
Dialam
Konsentrat

University of
Indonesia
Metallurgy and Materials Engineering Department UI
IRON ROCK

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Persyaratan Bijih Besi
High Iron content
Minimum impurities (S, P, As, Zn, Pb, Na, K,)
High content of basic oxides in gangue (self fluxing
ore), CaO, MgO
Minimum derivation in chemicals composition
High reduceability
High strength
Minimum of fines and narrow size distribution (for a
uniform gas flow)

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Sebaran Bijih Besi Lokal

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Jenis Deposit Bijih
Besi
Sumber Daya Terukur
Ton Lokasi
Methasomatic Ore
(Besi Primer)
320.462.611
Lampung, West of Sumatera,
Belitung, west of Kalimantan,
Tanalang, Plaihari, dll.
Lateritic 1.391.246.630
South of Kalimantan, Pomalaa,
Halmahera, dll.
Iron Sand 382.000.000
South of Java Island Coast,
Sumbar, Bengkulu, NTB, Sulsel
dll.
19
Sumber : Direktorat Mineral Batubara ESDM
Deposit Bijih Besi Indonesia

University of
Indonesia
Metallurgy and Materials Engineering Department UI

University of
Indonesia
Metallurgy and Materials Engineering Department UI
POTENSI BIJIH DI INDONESIA DAN
TEKNOLOGI PROSES
Bijih besi Teknologi
Bijih besi primer (hematit,
magnetit)
Blast furnace, Direct reduction (rotary
kiln)
Bijih besi laterit Direct reduction (rotary kiln)
Pasir besi Direct reduction (rotary kiln / fluidized
bed)

University of
Indonesia
Metallurgy and Materials Engineering Department UI
0
100
200
300
400
500
600
700
800
1 2 3 4 5 6
$

/

T
O
N
PENINGKATAN NILAI JUAL MULAI BAHAN BAKU SAMPAI PRODUK JADI PADA
INDUSTRI BESI BAJA
ORE
KONS
PELET
PIG IRON
SLAB
HRC
PT KRAKATAU STEEL

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Bijih besi
Fe tinggi
> 6 mm
Blast Furnace = Pig Iron (Hot Metal)
Reduksi Langsung = Sponge Iron
Fe rendah
Pemurnian
konsentrat ( Fe tinggi )
ukuran rendah
Aglomerisasi (Pellet , Sinter)
> 6 mm
< 6 mm
Ukuran 6 mm  batas undersize yang masih dapat diolah
Umumnya berukuran 12 – 30 mm
Export
Lump ore
Pellet
Sinter

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Proses pemurnian Bijih Besi
Meningkatkan kandungan Fe pada ‘low grade raw ore”
Memisahkan senyawa yang tidak diinginkan
Penghalusan ukuran bijih besi (< 2 mm) untuk dapat
dibuat pellet
Proses yang dilakukan antara lain:
Washing of ore
Crushing/ grinding
Gravimetry (Classifier)
Magnetic separator
Flotation
Iron ore yang sudah dimurnikan disebut
“KONSENTRAT”

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Crushing dan Screening

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Milling dan Spiral Classifier

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Magnetic Separator Process

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Bahan Baku Pasir Besi (Raw
Material)
•Sumber bahan baku Cipatujah, Tasikmalaya berada di
lokasi: Cidadap, Ciheras, Cimanuk, Cikaung Gading.
CiherasCidadap
Cikaung GadingCimanuk
•Kandungan
•Fe = 35-40%
•TiO2 = 5 – 15%

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Konsentrat Pasir Besi (Ore
Treatment)
Magnetic Separator
Pasir Besi
Konsentrat
CMPFA Metalurgi UI

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Spiral
Classifier

University of
Indonesia
Metallurgy and Materials Engineering Department UILATERITE IRON ORE

University of
Indonesia
Metallurgy and Materials Engineering Department UI
IRON ROCK

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Tidak semua bijih besi memiliki kadar Fe
tinggi untuk diolah di tanur tinggi atau tanur
lainnya
Ukuran yang seragam diperlukan agar :
optimum rate of gas flow
uniform gas flow , with a minimum of
channeling
Ukuran partikel kecil , menyebabkan adanya
sejumlah fine material yang keluar tanur dan
masuk ke ‘gas recovery’ system
Alasan Aglomerisasi

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Proses Aglomerisasi
Kriteria pemilihan
ukuran partikel > 2 mm 
sinter
ukuran partikel < 0,2 mm 
pellet
Lokasi Pembuatan
Sinter  biasanya dekat TT
Pellet  biasanya dekat
penambangan

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Penggunaan Pellet dan Sinter
Europa Union : 65% sinter, 24% pellet, 13% lump ore
Brazil, Japan, Korea Selatan: > 70% sinter
Canada, USA: 91 dan 81% pellets
Penggunaan Lump ore pada blast furnace dibatasi
tak lebih dari 10 – 15%
Pada blast furnace sebetulnya memungkinkan untuk
mengolah bijih besi dengan berbagai kadar Fe.
Namun semakin tinggi kadar Fe akan semakin
ekonomis

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Proses Pembuatan Pellet
Dikembangkan dalam rangka pemanfaatan bijih besi
yang halus
Green pellet (pellet mentah)
Partikel bijih besi halus yang dicampur oleh air dan
bentonit, digumpalkan melalui proses rotasi sehingga
terjadi bola-bola aglomerat (kekuatan 20 – 50 N/ pellet)
Burn pellet (pellet bakar)
bola-bola aglomerat dikeraskan dengan cara dibakar
pada: conveyor belt, grate kiln atau shaft furnace
(kekuatan hingga 2500 N/ pellet)

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Pellet Mentah (Green Pellet)
Bijih besi halus dengan campuran
Bentonit: 8,3 - 10 kg/ ton of feed
% air : (4-7%)
β
ukuran pellet : ± 8 – 30 mm
 biasanya 10 – 15 mm
Kekuatan Green pellet :
20 – 50 N / pellet

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Pelletasi
 jika kekuatan green pellet rendah  dibakar (T = 1000
o
C)
 agar kekuatan : 2500 N/pellet
 Alat :Shaft furnace
Grate kiln
Traveling gate / conveyor belt
Faktor penentu
 kadar air harus optimal
 kehalusan partikel
 penambahan bentonit
 kadar bahan sampingan
 diameter , kecepatan piringan

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Proses Pelletasi

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Parameters of the discs for
production of green pellet

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Pellet Bakar (Burn Pellet)
Dibakar 1000
O
C, kekuatan : 2500 N/pellet
Traveling gate / conveyor belt
Grate Kiln
Shaft Furnace

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Pembakaran Pellet

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Properties of Iron Ore Pellets

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Campuran Sinter
Iron bearing fines ( 50-60% of raw mix, grain sixe 0-
10 mm, incl. 70%> 0,2mm)
Solid fuel (3-4% coke breeze 0-3mm)
Flux (10-15%, grain size <3mm, limestone, lime,
dolomite)
Circulating materials (4.5 – 5%, mill scale, BF and
BOF dusts)
Return sinter fines (25-35%, grain size < 6.3 mm)
Moisture (water 5-9%)

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Proses Sinter
Dalam proses ini bijih besi < 5 mm dicampur dengan
cokes breeze: 8 % (bahan bakar)
air : 5-9 % (kemampuan ikat Fe tinggi)
Bahan sirkulasi : 25 – 35 %
Additiv : 10-15 % (CaO , Dolomit)
Dicampur (mixing drum)
Sinter machine
( lebar: ± 4 m )kecepatan : 5 – 9 m/menit
(panjang: ± 100 m)

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Sinter Machine

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Proses Sinter

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Mesin Sinter

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Produk Sinter

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Requirements on physical and
metallurgical properties of sinter

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Operation Data of Sinter Plant in
Germany

University of
Indonesia
Metallurgy and Materials Engineering Department UI
European
sinter plants

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Proses Sinter
Umpan sinter diletakkan dalam alat panggang & dibakar
permukaannya (1300 – 1480
o
C)
Setelah terbakar  udara panas dihisap dari atas ke bawah
zona pembakaran bergerak dari atas ke bawah
dihisap
h = 40-45 cm
Terbentuk sinter  pemecah  ukuran 6 – 25 mm (didinginkan)
< 6 mm  disirkulasikan

University of
Indonesia
Metallurgy and Materials Engineering Department UI
Proses Sinter
Tags