2019_CompressibleFlow_Part03_Set0123.ppt

RamPur3 0 views 21 slides Oct 29, 2025
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

compressible flow


Slide Content

CP502
Advanced Fluid Mechanics
Compressible Flow
Part 03_Set 01:
Stationary normal shock in variable area ducts

R. Shanthini
21 July 2019
Isentropic
upstream;
s = s
x
Isentropic
downstream;
s = s
y
> s
x
M
x
> 1M
y
< 1
Thin
normal
shock
Flow through a stationary normal shock wave:Flow through a stationary normal shock wave:
Mass, momentum and energy are conserved
through a normal shock.
Entropy increases across a normal shock.

R. Shanthini
21 July 2019
RTApMRTMRTpAuAdtdm /)/(/  
eee
TMpTp /12/1
**

R. Shanthini
21 July 2019
Isentropic
upstream;
s = s
x
Isentropic
downstream;
s = s
y
> s
x
M
x
> 1M
y
< 1
Control
volume
Flow through a stationary normal shock wave:Flow through a stationary normal shock wave:
Let us write the balances over the control
volume shown, assuming the cross-sectional
areas are nearly the same.

Balances across a stationary normal shock waveBalances across a stationary normal shock wave
(Rankine-Hugoniot relations):(Rankine-Hugoniot relations):
ρ
x u
x = ρ
y u
y = constant
= constant
= constant
22
22
y
y
x
x
u
h
u
h 
22
yyyxxx upup  
(3.1)
(3.2)
(3.3)
Assuming steady flow across a normal shock assumed to be adiabatic,
we get
R. Shanthini
09 March 2015
  asrewritten becan (3.2)equation , Using
yxpyx
TTChh 
22
22
y
yp
x
xp
u
TC
u
TC 
(3.4)
R. Shanthini
21 July 2019

R. Shanthini
21 July 2019
Unknowns are: Tup and , ,
We require one more equation:
R
T
p
T
p
yy
y
xx
x


(3.5)
Balances across a stationary normal shock waveBalances across a stationary normal shock wave
(Rankine-Hugoniot relations):(Rankine-Hugoniot relations):

Pressure change across stationary normal shock wave:Pressure change across stationary normal shock wave:
Combining (3.3) and (3.5):
(3.6)
Using in the above:
2
2
1
1
y
x
x
y
M
M
p
p





22
y
y
y
yx
x
x
x u
RT
p
pu
RT
p
p 
RTMu    
22
1 1
yyxx MpMp  
Rearranging:
R. Shanthini
21 July 2019

R. Shanthini
21 July 2019
Temperature change across stationary normal shock wave:Temperature change across stationary normal shock wave:
(3.7)
 
yxp
xxyy
TTC
RTMRTM

2

2

22

Substituting for in (3.4):
x
x
py
y
p
T
RM
CT
RM
C


















2

2

22

Rearranging:
2
2
2
1
1
2
1
1
y
x
x
y
M
M
T
T







Substituting and rearranging:)1/(RC
p
RTMu 

(3.8)
y
x
x
y
u
u



From (3.1):
Using in the above:RTMu 
y
x
y
x
yy
xx
x
y
T
T
M
M
RTM
RTM





Using (3.7) in the above:
2
2
2
1
1
2
1
1
x
y
y
x
x
y
M
M
M
M









Density change across stationary normal shock wave:Density change across stationary normal shock wave:
R. Shanthini
21 July 2019

R. Shanthini
21 July 2019
Mach number change across stationary normal shock wave:Mach number change across stationary normal shock wave:
Rearranging (3.5):


2
2
22
2
2
12
12
1
1
y
x
y
x
y
x
M
M
M
M
M
M

























x
y
x
y
x
y
T
T
p
p





42
42
422
422
12
12
21
21
yy
xx
yy
xx
MM
MM
MM
MM









Substituting from (3.6), (3.7) and (3.8) in the above:
  
  
42242
42242
21 12
21 12
yyxx
xxyy
MMMM
MMMM





R. Shanthini
21 July 2019
  
  
  
  
442244
422222
442424
242222
42244222
42244222
1 121
2 42
1 121
2 42
211 212
211 212
yxyxx
yxyxx
yxyxy
yxyxy
yyxyyx
xxyxxy
MMMMM
MMMMM
MMMMM
MMMMM
MMMMMM
MMMMMM












Mach number change across stationary normal shock wave:Mach number change across stationary normal shock wave:

R. Shanthini
21 July 2019
 
    
   0 212
0 212
212 212
222222
22224422
24424242



yxxyxy
xyyxxyxy
yxxxyxyy
MMMMMM
MMMMMMMM
MMMMMMMM



Mach number change across stationary normal shock wave:Mach number change across stationary normal shock wave:

R. Shanthini
21 July 2019
  0 212or
:follows as isSolution
2222

yxxyxy MMMMMM 
2
1

2
1
1
2
2
2








x
x
y
M
M
M
Since is a trivial solution, the shock solution is
(3.9)

xyMM
Mach number change across stationary normal shock wave:Mach number change across stationary normal shock wave:
2
1

2
11
2
2








x
x
x
y
M
M
M
M

R. Shanthini
21 July 2019
Summary of relationships across stationary normal shock:Summary of relationships across stationary normal shock:
(3.9)
(3.8)
(3.7)
(3.6)
2
2
1
1
y
x
x
y
M
M
p
p





2
2
2
1
1
2
1
1
y
x
x
y
M
M
T
T







2
2
2
1
1
2
1
1
x
y
y
x
x
y
M
M
M
M









2
1

2
1
1
2
2
2








x
x
y
M
M
M

R. Shanthini
21 July 2019
Pressure ratio in terms of Pressure ratio in terms of MM
xx::
(3.10)


   
 
   
 



1
1 2


11
1 2 1

12 1 2
1 2 1

1 2
12
1
1
1
1
2
2
22
22
22
2
2
2
2
2





























x
x
xx
xx
xx
x
x
x
y
x
x
y
M
M
MM
MM
MM
M
M
M
M
M
p
p
Combining (3.6) and (3.9):

R. Shanthini
21 July 2019
Temperature ratio in terms of Temperature ratio in terms of MM
xx::
(3.11)


 


 


2
1

1 2
2
1
1



2
1
1 1 2
1 2
2
1
1

1 2
12

2
1
1
2
1
1

2
1
1
2
1
1
2
2
22
2
2
2
22
2
2
2
2
2
x
xx
xx
xx
x
x
x
y
x
x
y
M
MM
MM
MM
M
M
M
M
M
T
T






 









 

























Combining (3.7) and (3.9):

Density ratio in terms of Density ratio in terms of MM
xx::
(3.12)

 



2
1
1
2
1

1
1 2

1 2
2
1
1
2
1


2
2
2
22
2
2
x
x
x
xx
x
x
y
y
x
x
y
M
M
M
MM
M
p
p
T
T











 













Combining (3.5), (3.10) and (3.11):
R. Shanthini
09 March 2015
R. Shanthini
21 July 2019

R. Shanthini
21 July 2019
Summary of relationships across stationary normal shock:Summary of relationships across stationary normal shock:
(3.9)
(3.8 & 3.12)
(3.7 & 3.11)
(3.6 & 3.10)

1
1 2

1
1
2
2
2










x
y
x
x
y M
M
M
p
p
 
 2
2
22
2
2
2
1

1 2
2
1
1

2
1
1
2
1
1
x
xx
y
x
x
y
M
MM
M
M
T
T






 












2
2
2
2

2
1
1
2
1

2
1
1
2
1
1
x
x
x
y
y
x
x
y
M
M
M
M
M
M















2
1

2
1
1
2
2
2








x
x
y
M
M
M

R. Shanthini
21 July 2019
Stagnation temperature change across stationary normal Stagnation temperature change across stationary normal
shock wave:shock wave:
(3.7)
2
2
2
1
1
2
1
1
y
x
x
y
M
M
T
T







Equation (3.7) gives the relationship of the temperature change
across the shock:
(2.6)
20
2
1
1 M
T
T 


Equation (2.6) relates the temperature to stagnation temperature:
Combining the two:
(3.13)yx
TT
00

(3.6)

1
1 2
2





x
x
y M
p
p
Equation (3.6) gives the relationship of the pressure change across
the shock:
Stagnation pressure change across stationary normal Stagnation pressure change across stationary normal
shock wave:shock wave:
Equation (2.7) relates the temperature to stagnation temperature:
Combining the two:
120
2
1
1











M
p
p
(2.7)

1
1 2
2
1
1
2
1
1
2
12
0
12
0



























x
xx
yy
M
Mp
Mp
R. Shanthini
21 July 2019

Stagnation pressure change across stationary normal Stagnation pressure change across stationary normal
shock wave:shock wave:
(3.14)



1
2
2
1
1
2
12
12
2
0
0

2
1
1
2
1
1
1 2

2
1
1
2
1
1
1
1 2































































x
x
x
x
y
x
x
y
M
M
M
M
M
M
p
p
R. Shanthini
21 July 2019
Tags