3 - Distribution and survival function.pdf

rajamahma2005 8 views 12 slides Sep 09, 2025
Slide 1
Slide 1 of 12
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12

About This Presentation

enjoy


Slide Content

1
Program StudiMatematika
FakultasMatematikadan IlmuPengetahuanAlam
Materi3. FungsiDistribusidan Kesintasan
FungsiKesintasandan
Hazard
MA3181 –TeoriPeluang
Dr. Utriweni Mukhaiyar

FungsiDistribusi
Misal peubah acak Xdengan fungsi distribusi F(x) :
??????
��=??????�≤�
=??????�∈(−∞,�]
oJika �peubahacakdiskritdenganfungsipeluang??????(�=
�)atau�kontinudenganfungsipeluang�(�), maka:
??????
��=

??????≤??????
??????�=??????,��������

−∞
??????
����,��������
2
Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –
ITB
Sifat fungsidistribusi:
1. Monotontidakturun
Jika&#3627408485;<&#3627408486;, maka
??????
&#3627408459;&#3627408485;≤??????
&#3627408459;&#3627408486;
2. KontinuKanan
lim
??????→??????
+
??????
&#3627408459;(&#3627408485;)=??????
&#3627408459;(??????)
3. lim
??????→∞
??????
&#3627408459;(&#3627408485;)=1dan
lim
??????→−∞
??????
&#3627408459;(&#3627408485;)=0

3
3
Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –ITB
FungsipeluangdariFungsi
Distribusi
•Misal peubah acak Xdengan fungsi distribusi ??????
&#3627408459;&#3627408485;.
•FungsipeluangX:
•Jika X kontinu
&#3627408467;
&#3627408459;&#3627408485;=
&#3627408465;??????
&#3627408459;(&#3627408485;)
&#3627408465;&#3627408485;
•Jika X diskrit
??????&#3627408459;=&#3627408485;=??????
&#3627408459;&#3627408485;−??????
&#3627408459;&#3627408485;

=??????&#3627408459;≤&#3627408485;−??????(&#3627408459;<&#3627408485;)

FungsiKesintasan
&#3627408454;&#3627408485;=ത??????
&#3627408459;&#3627408485;=1−??????
&#3627408459;(&#3627408485;)=??????(&#3627408459;>&#3627408485;)
4
Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –ITB
Sifat-sifat :
1. Monotontidaknaik
Jika&#3627408485;<&#3627408486;, maka&#3627408454;
&#3627408459;&#3627408485;≥&#3627408454;
&#3627408459;&#3627408485;
2. KontinuKanan
lim
??????→??????
+
&#3627408454;
&#3627408459;(&#3627408485;)=&#3627408454;
&#3627408459;(??????)
3. lim
??????→∞
&#3627408454;
&#3627408459;(&#3627408485;)=0dan lim
??????→−∞
&#3627408454;
&#3627408459;(&#3627408485;)=1
Fungsikesintasandikenaljuga
sebagaifungsiReliabilitas,
&#3627408453;&#3627408485;=&#3627408454;&#3627408485;

Fungsi Laju Hazard
•Fungsi lajuhazard(fungsilajukegagalan) untuk
peubahacak&#3627408459;:
&#3627409158;&#3627408481;=
&#3627408467;(&#3627408481;)
&#3627408454;(&#3627408481;)
=
&#3627408467;(&#3627408481;)
ത??????(&#3627408481;)
Misalkan p.a. &#3627408459;menyatakan waktuhidup, maka&#3627409158;&#3627408481;adalahpeluang
seseoranghidupsampaiwaktu&#3627408481;dan meninggaldalamselangwaktu(&#3627408481;,
&#3627408481;+&#3627408465;&#3627408481;).
Dapat ditulis:
??????&#3627408459;∈&#3627408481;,&#3627408481;+&#3627408465;&#3627408481;&#3627408459;>&#3627408481;)=
??????(&#3627408459;∈&#3627408481;,&#3627408481;+&#3627408465;&#3627408481;,&#3627408459;>&#3627408481;)
??????&#3627408459;>&#3627408481;
=
??????(&#3627408459;∈&#3627408481;,&#3627408481;+&#3627408465;&#3627408481;)
??????(&#3627408459;>&#3627408481;)

&#3627408467;&#3627408481;&#3627408465;&#3627408481;
&#3627408454;(&#3627408481;)
=
&#3627408467;&#3627408481;&#3627408465;&#3627408481;
ത??????(&#3627408481;)
=&#3627409158;&#3627408481;&#3627408465;&#3627408481;

FungsiHazard
•Misalkan:
Λ&#3627408481;=න
0
??????
&#3627408467;&#3627408480;
ത??????(&#3627408480;)
&#3627408465;&#3627408480;
•Karena &#3627409158;&#3627408481;=
−??????
????????????
ത??????(??????)
ത??????(??????)
, makaΛ&#3627408481;=−lnത??????(&#3627408481;).
•Sehingga:
ത??????&#3627408481;=exp(−න
0
??????
&#3627409158;&#3627408480;&#3627408465;&#3627408480;)=exp(−Λ&#3627408481;)
6
Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –ITB
Kasuskhusus:
untukpeubahacakdiksrit
denganfungsipeluang
??????
&#3627408472;&#3627408472;=0

(domain: terdefinisidari&#3627408472;=0
hingga∞):
&#3627409158;&#3627408472;=
??????
&#3627408472;
σ
&#3627408471;=&#3627408472;

??????
&#3627408471;
,
&#3627408471;=0,1,…
sehingga&#3627409158;&#3627408472;≤1.

7
Latihan
Suatu fungsireliabilitasdarisebuahsistemperalatanpada waktutdinyatakan
sebagai
&#3627408453;&#3627408481;=??????&#3627408455;≥&#3627408481;=1−??????&#3627408481;
denganT, waktukerusakan(dalamjam), merupakansuatupeubahacakyang
mengikutidistribusitertentu. Suatumesinterobservasimengalamikerusakansecara
seragampada selang[t
1, t
2], yaitu&#3627408467;&#3627408481;=
1
??????
2−??????
1
.
a.Tentukanreliabitasmesinpada waktut, t
1 t t
2.
b.Jika180 t220, hitungreliabilitassaatwaktu200 jam.
c.JikafungsilajuHazard (t) didefinisikansebagai
??????&#3627408481;=
&#3627408467;(&#3627408481;)
1−??????(&#3627408481;)
=
&#3627408467;&#3627408481;
&#3627408453;&#3627408481;
=−
&#3627408465;&#3627408453;&#3627408481;
&#3627408465;&#3627408481;
&#3627408453;&#3627408481;
HitunglajuHazard darimesintersebut. Interpretasikanhasilyang Anda peroleh.
7
Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –ITB

8
Solusi
MM.DD.20XX ADD A FOOTER 8
•Misal p.a. &#3627408455;:waktukerusakan(dalamjam)
&#3627408467;&#3627408481;=൞
1
&#3627408481;
2−&#3627408481;
1
,&#3627408481;
1≤&#3627408481;≤&#3627408481;
2
0, &#3627408481;lainnya
a.Fungsikesintasanpada &#3627408481;
1≤&#3627408481;≤&#3627408481;
2:
&#3627408454;&#3627408481;=??????&#3627408455;>&#3627408481;=න
??????

1
&#3627408481;
2−&#3627408481;
1
&#3627408465;&#3627408480;=
&#3627408480;
&#3627408481;
2−&#3627408481;
1

??????
??????2
=
&#3627408481;
2−&#3627408481;
&#3627408481;
2−&#3627408481;
1
b. Jika180&#3627408481;220, maka&#3627408453;200=
220−200
220−180
=
20
40
=
1
2
c. (t)=
&#3627408467;(??????)
1−??????(??????)
=
&#3627408467;??????
&#3627408453;??????
=
1
??????2−??????1
??????2−??????
??????2−??????1
=
1
??????2−??????
Interpretasi: lajukegagalanmesindi rentang&#3627408481;
1≤&#3627408481;≤&#3627408481;
2, berbandingterbalikdengansisaumurnyadr
waktu t (&#3627408481;
2−&#3627408481;), yaitusemakinpendeksisawaktuhidupnya(mesinsudahberopersailebihlama) makasemakin
besarlajukegagalannya(semakinmudahrusak)
Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –ITB

9
Latihan
Misalkanwaktuyang diperlukan(dalammenit) oleh sebuahpesawatuntuk
lepaslandas(take off) di suatubandaramerupakanpeubahacakX, dengan
fungsikepadatanpeluang:
&#3627408467;&#3627408485;=ቐ
1
4
&#3627408466;
−??????/4
,&#3627408485;>0
0,&#3627408485;lainnya
Misalkanlajukegagalanpesawatuntuklepaslandasdapatdinyatakanoleh laju
hazard (hazard rate), ℎ&#3627408485;=
&#3627408467;(??????)
&#3627408454;(??????)
, denganS(x) adalahfungsikesintasanpeubah
axakX.
a.Hitunglajuhazard(lajupesawatgagaluntuklepaslandas) di menitke-6.
b.Apabilawaktuyang diperlukanpesawattersebutuntukmemperolehizin
lepaslandas(clearencefor take off) adalah3 kali lipatwaktuuntuklepas
landasdikurang2 menit, hitungrataan(ekspektasi) dan variansiwaktu
yang diperlukansampaiizinlepaslandasdiberikanoleh pihakbandara.
9
…Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –ITB

10
Solusi
Misalkan X : waktuyang diperlukansebuahpesawatuntuklepaslandas(take off) di suatubandara(dalammenit).
FungsipeluangX:
&#3627408467;&#3627408485;=ቐ
1
4
&#3627408466;
−??????/4
,&#3627408485;>0
0,&#3627408485;lainnya
Misalkanlajukegagalanpesawatuntuklepaslandas(lajuhazard) : ℎ&#3627408485;=
&#3627408467;(??????)
&#3627408454;(??????)
,
dengan&#3627408454;&#3627408485;=??????&#3627408459;>&#3627408485;=1−??????(&#3627408485;).
•Fungsidistribusi: ??????&#3627408485;=1−&#3627408466;
−??????/4
untuk &#3627408485;>0
•Fungsikesintasan: &#3627408454;&#3627408485;=1−??????&#3627408485;=&#3627408466;
−??????/4
untuk &#3627408485;>0
•Fungsilajukekgagalan(hazard rate) : ℎ&#3627408485;=
&#3627408467;??????
&#3627408454;??????
=
1
4
&#3627408466;

??????
4
&#3627408466;

??????
4
=
1
4
, untuk&#3627408485;>0
a.ℎ6=
1
4
b.JikaY : waktuyang diperlukanpesawattersebutuntukmemperolehizinlepaslandas(clearencefor take off)
(dalammenit)
&#3627408460;=3&#3627408459;−2
&#3627409159;
&#3627408460;=3&#3627409159;
&#3627408459;−2=dan ??????
&#3627408460;
2
=9??????
&#3627408459;
2
=
10
Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –ITB

11
Solusi
Rerata dariX : &#3627409159;
&#3627408459;=׬
0

&#3627408485;
1
4
&#3627408466;
−??????/4
&#3627408465;&#3627408485;=⋯=4
VariansidariX :
??????
2
=න
0

&#3627408485;−4
2
1
4
&#3627408466;
−??????/4
&#3627408465;&#3627408485;=න
0

&#3627408485;
2
1
4
&#3627408466;
−??????/4
&#3627408465;&#3627408485;−&#3627409159;
2
=32−16
=16
Jika Y : waktuyang diperlukanpesawattersebutuntukmemperolehizin
lepaslandas(clearencefor take off) (dalammenit)
&#3627408460;=3&#3627408459;−2
Maka,
&#3627409159;
&#3627408460;=3&#3627409159;
&#3627408459;−2=10menitdan ??????
&#3627408460;
2
=9??????
&#3627408459;
2
=144menit
2
11
Copyright 2020 © U. Mukhaiyar, KK Statistika, FMIPA –ITB

12
Referensi
12
Dekking F.M., et.al., A Modern Introduction to Probability and
Statistics, London : Springer, 2005.
Devore, J.L. and Peck, R., Statistics –The Exploration and Analysis
of Data, USA: Duxbury Press, 1997.
Hogg, et.al., Intro. to Mathematical Statistics 6
th
ed., Pearson: New
Jersey, 2005.
Wackerly, et.al., MathematicslStatistics and Its Application 7
th
Ed.,
USA: Thomson, 2008.
Walpole, Ronald E., et.al, Statistiticfor Scientist and Engineering,
8th Ed., 2007.
Wild, C.J. and Seber, G.A.F., Chance Encounters –A first Course in
Data Analysis and Inference, USA: John Wiley&Sons,Inc., 2000.
Tags