3. linear programming senstivity analysis

32,809 views 21 slides Sep 28, 2015
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

LP-senstivity analysis


Slide Content

ADVANCED
OPERATIONS
RESEARCH
By: -
Hakeem–Ur–Rehman
IQTM–PU
1
RAO
LINEAR PROGRAMMING : SENSITIVITY ANALYSIS

LINEAR PROGRAMMING:
SENSITIVITY ANALYSIS
2
Thetermsensitivityanalysis,sometimesalsocalled
post-optimalityanalysis,referstoananalysisofthe
effectontheoptimalsolutionofchangesinthe
parametersofproblemonthecurrentoptimalsolution.
The following questions arise in connection with performing the
sensitivity analysis.
1.Howdochangesmadetothecoefficientsoftheobjective
functionaffecttheoptimalsolution?
2.Howdochangesmadetotheconstantsontherighthand
sideoftheconstraintaffecttheoptimalsolution?

EXAMPLE
3
XYZmanufacturingcompanyhasadivisionthatproducestwomodelsof
grates,model–Aandmodel–B.Toproduceeachmodel–Agraterequires‘3’g.
ofcastironand‘6’minutesoflabor.Toproduceeachmodel–Bgraterequires
‘4’g.ofcastironand‘3’minutesoflabor.Theprofitforeachmodel–Agrate
isRs.2andtheprofitforeachmodel–BgrateisRs.1.50.Onethousandg.of
castironand20hoursoflaborareavailableforgrateproductioneachday.
Becauseofanexcessinventoryofmodel–Agrates,Company’smanagerhas
decidedtolimittheproductionofmodel–Agratestonomorethan180grates
perday.
SolvethegivenLPproblemandperformsensitivityanalysis.
LPMODEL:LetX
1
andX
2
bethenumberofmodel–Aandmodel–B
gratesrespectively.
ThecompleteLPmodelisasfollow:
Maximum:Z=2X
1
+1.5X
2
2X
1
+(3/2)X
2
Subjectto:
3X
1
+4X
2
≤1000
6X
1
+3X
2
≤1200
X
1
≤180
X
1
,X
2
≥0

EXAMPLE (Cont…)
4
Contribution Per Unit C
j 2 3/2 0 0 0
C
Bi
Basic
Variables (B)
Quantity
(Qty)
X
1 X
2 S
1 S
2 S
3
0 S
1 1000 3 4 1 0 0
0 S
2 1200 6 3 0 1 0
0 S
3 180 1 0 0 0 1
TotalProfit(Z
j) 0 0 0 0 0 0
Net Contribution (C
j–Z
j) 2 3/2 0 0 0
0 S
1 460 0 4 1 0 –3
0 S
2 120 0 3 0 1 –6
2 X
1 180 1 0 0 0 1
Total Profit (Z
j) 360 2 0 0 0 2
Net Contribution (C
j–Z
j) 0 3/2 0 0 –2
0 S
1 300 0 0 1 –4/3 5
3/2 X
2 40 0 1 0 1/3 –2
2 X
1 180 1 0 0 0 1
Total Profit (Z
j) 420 2 3/2 0 1/2 –1
Net Contribution (C
j–Z
j) 0 0 0 –1/2 1
0 S
3 60 0 0 1/5 –4/15 1
3/2 X
2 160 0 1 2/5 –1/5 0
2 X
1 120 1 0 –1/5 4/15 0
Total Profit (Z
j) 480 2 3/2 1/5 7/30 0
Net Contribution (C
j–Z
j) 0 0 –1/5 –7/30 0
Sinceallthevaluesof(C
j
–Z
j
)≤0;so,
thesolutionisoptimal.
‘Z=480;at‘X
1
=120’and‘X
2
=160’.Thus,XYZmanufacturing
companyrealizesamaximumprofitofRs.480perdayby
producing120model–Agratesand160model–Bgratesperday.

LP:SENSITIVITY ANALYSIS
5
Thefollowingquestionsariseinconnectionwithperformingthe
sensitivityanalysisoftheaboveproblem.
1.Howdochangesmadetothecoefficientsoftheobjective
functionaffecttheoptimalsolution?
2.Howdochangesmadetotheconstantsontherighthand
sideoftheconstraintaffecttheoptimalsolution?
CHANGE INTHECOEFFICIENTS OFTHEOBJECTIVE
FUNCTION:
Nowtwoquestionsaretobeanswered:
1.Howdochangesmadetothecoefficientsofnon–basic
variableaffecttheoptimalsolution?
2.Howdochangesmadetothecoefficientsofbasicvariable
affecttheoptimalsolution?

LP:SENSITIVITY ANALYSIS (Cont…)
6
Howdochangesmadetothecoefficientsofnon–basic
variableaffecttheoptimalsolution?
Accordingtotheaboveoptimalsimplextable,S
1,&S
2are
thenon–basicvariables.
Nowthequestionarisesthathowmuchhavethe
objectivefunctioncoefficientstobechangedbeforeS
1,
&S
2wouldenterthesolutionandreplacesoneofthe
basicvariables(X
1,X
2&S
3)?
Accordingtothesimplexalgorithmaslongastherow
(C
j–Z
j)≤0,therewillnotbeanychangeinthe
optimalsolution.Thus,C
j–Z
j≤0C
j≤Z
j
Rangeforanon–basicvariable:
Therangeof‘C
j
’valuesfornon–basicvariablesare:“–∞≤C
j
≤Z
j
”.So,
Therangeofvaluesfor‘S
1
’is:“–∞≤C
j
≤1/5”
Therangeofvaluesfor‘S
2
’is:“–∞≤C
j
≤7/30”

LP:SENSITIVITY ANALYSIS (Cont…)
Howdochangesmadetothecoefficientsofbasicvariableaffecttheoptimal
solution?
Accordingtotheaboveoptimalsimplextable,X
1,X
2&S
3arethebasicvariables.
Nowthequestionarisesthathowmuchtheobjectivefunctioncoefficientonabasic
variablecanchangewithoutchangingtheoptimalsolutionofanLPproblem.
ChangeintheCoefficientoftheBasicVariable‘X
1
’:
Letusdenotethechangeinavariablevalueby‘h’.Thechangein‘X
1
’is‘2+h’.Now,were–
computethenewfinalsimplextablewhichisasfollows:
Contribution Per Unit C
j 2+h 3/2 0 0 0
C
Bi
Basic Variables
(B)
Quantity
(Qty)
X
1 X
2 S
1 S
2 S
3
0 S
3 60 0 0 1/5 –4/15 1
3/2 X
2 160 0 1 2/5 –1/5 0
2+h X
1 120 1 0 –1/5 4/15 0
Total Profit (Z
j) 480+120h 2+h 3/2 (1–h)/5 (7+8h)/30 0
Net Contribution (C
j–Z
j) 0 0 –(1–h)/5 –(7+8h)/30 0
Sinceallthevaluesinthe(C
j
–Z
j
)≤0,sothesolutionisoptimal.Theoptimalsolutionwillchangeifatleast
oneof(C
j
–Z
j
)>0.Wewillfindthevalueof‘h’forwhichthenewsolutionremainsoptimal.Inordertodo
this,weevaluate‘h’ineachcolumnforthenon–basicvariables.
From‘S
1
’Column:(C
j
–Z
j
)≤0–(1–h)/5≤0h≤1
Itmeansthat‘S
1
’willnotenterthebasisunlesstheprofitperunitfor‘X
1
’willincreaseto‘2+h
=2+1=3’;ifitgoesabove,thesolutionwillnotremainoptimal.
From‘S
2
’Column:(C
j
–Z
j
)≤0–(7+8h)/30≤0h≥–(7/8)
Itmeansthat‘S
2
’willnotenterthebasisunlesstheprofitperunitfor‘X
1
’willreduceto‘2+h
=2–(7/8)=9/8’;ifitgoesbelow,thesolutionwillnotremainoptimal.

LP:SENSITIVITY ANALYSIS (Cont…)
8
Howdochangesmadetothecoefficientsofbasicvariableaffect
theoptimalsolution?
RangeofOptimalityfor‘X
1
’:
Here,thevalueof‘C
1
’rangesfrom‘(9/8)to3’(i.e.1.125≤C
1
≤3).Inthisintervalof‘C
1
’,the
optimalityisunaffected.So,weconcludethatthecontributiontotheprofitofamodel–Agratecan
assumevaluesbetweenRs.1.125andRs.3withoutchangingtheoptimalsolution.
ChangeintheCoefficientoftheBasicVariable‘X
2
’:
Letusdenotethechangeinavariablevalueby‘k’.Thechangein‘X
2
’is‘(3/2)+k’.Now,were–
computethenewfinalsimplextablewhichisasfollows:
Contribution Per Unit C
j 2 (3/2)+k 0 0 0
C
Bi
Basic Variables
(B)
Quantity
(Qty)
X
1 X
2 S
1 S
2 S
3
0 S
3 60 0 0 1/5 –4/15 1
(3/2)+k X
2 160 0 1 2/5 –1/5 0
2 X
1 120 1 0 –1/5 4/15 0
Total Profit (Z
j) 480+160k 2 (3/2)+k (1+2k)/5 (7–6k)/30 0
Net Contribution (C
j–Z
j) 0 0 –(1+2k)/5–(7–6k)/30 0
Sinceallthevaluesinthe(C
j
–Z
j
)≤0,sothesolutionisoptimal.Theoptimalsolutionwill
changeifatleastoneof(C
j
–Z
j
)>0.Wewillfindthevalueof‘k’forwhichthenewsolution
remainsoptimal.Inordertodothis,weevaluate‘k’ineachcolumnforthenon–basicvariables.

LP:SENSITIVITY ANALYSIS (Cont…)
9
Howdochangesmadetothecoefficientsofbasicvariableaffect
theoptimalsolution?
From‘S
1
’Column: (C
j
–Z
j
)≤0–(1+2k)/5≤0k≥(–1/2)
Itmeansthat‘S
1
’willnotenterthebasisunlesstheprofitperunitfor‘X
2
’willdecreaseto
‘(3/2)+k=(3/2)–(1/2)=1’;ifitgoesbelow,thesolutionwillnotremainoptimal.
From‘S
2
’Column: (C
j
–Z
j
)≤0–(7–6k)/30≤0k≤7/6
Itmeansthat‘S
2
’willnotenterthebasisunlesstheprofitperunitfor‘X
2
’willincreaseto
‘(3/2)+k=(3/2)+(7/6)=15/6’;ifitgoesabove,thesolutionwillnotremainoptimal.
RangeofOptimalityfor‘X
2
’:
Here,thevalueof‘C
2
’rangesfrom‘1to15/6’(i.e.1≤C
2
≤2.5).Inthisintervalof‘C
2
’,the
optimalityisunaffected.So,weconcludethatthecontributiontotheprofitofamodel–B
gratecanassumevaluesbetweenRs.1andRs.2.5withoutchangingtheoptimalsolution.

LP:SENSITIVITY ANALYSIS (Cont…)
10
Howdochangesmadetothecoefficientsofbasicvariableaffect
theoptimalsolution?
ChangeintheCoefficientoftheBasicVariable‘S
3’:
Letusdenotethechangeinavariablevalueby‘L’.Thechangein‘S
3’is‘0+L’.Now,were–
computethenewfinalsimplextablewhichisasfollows:
Contribution Per Unit C
j 2 3/2 0 0 0+L
C
Bi
Basic Variables
(B)
Quantity
(Qty)
X
1 X
2 S
1 S
2 S
3
0+L S
3 60 0 0 1/5 –4/15 1
3/2 X
2 160 0 1 2/5 –1/5 0
2 X
1 120 1 0 –1/5 4/15 0
Total Profit (Z
j) 480+60L 2 3/2 (1+L)/5 (7–8L)/30 0+L
Net Contribution (C
j–Z
j) 0 0 –(1+L)/5–(7–8L)/30 0
Sinceallthevaluesinthe(C
j
–Z
j
)≤0,sothesolutionisoptimal.Theoptimalsolutionwill
changeifatleastoneof(C
j
–Z
j
)>0.Wewillfindthevalueof‘L’forwhichthenewsolution
remainsoptimal.Inordertodothis,weevaluate‘L’ineachcolumnforthenon–basicvariables.

LP:SENSITIVITY ANALYSIS (Cont…)
11
Howdochangesmadetothecoefficientsofbasicvariableaffect
theoptimalsolution?
From‘S
1
’Column: (C
j
–Z
j
)≤0–(1+L)/5≤0L≥–1
Itmeansthat‘S
1
’willnotenterthebasisunlesstheprofitperunitfor‘S
3
’willdecreaseto‘0+L
=0–1=–1’;ifitgoesbelow,thesolutionwillnotremainoptimal.
From‘S
2
’Column: (C
j
–Z
j
)≤0–(7–8L)/30≤0L≤7/8
Itmeansthat‘S
2
’willnotenterthebasisunlesstheprofitperunitfor‘S
3
’willincreaseto‘0+L=
0+(7/8)=7/8’;ifitgoesabove,thesolutionwillnotremainoptimal.
RangeofOptimalityfor‘S
3
’:
Here,thevalueof‘C
5
’rangesfrom‘–1to7/8’(i.e.–1≤C
5
≤0.875).Inthis
intervalof‘C
5
’,theoptimalityisunaffected

LP:SENSITIVITY ANALYSIS (Cont…)
12
ChangetotheConstantsontheRight–HandsideoftheConstraint
Inequalities:
TheLPproblemis:
Maximum:Z=2X
1
+1.5X
2
2X
1
+(3/2)X
2
Subjectto:
3X
1
+4X
2
≤1000
6X
1
+3X
2
≤1200
X
1
≤180
X
1
,X
2
≥0
Contribution Per Unit C
j 2 3/2 0 0 0
C
Bi
Basic Variables
(B)
Quantity
(Qty)
X
1 X
2 S
1 S
2 S
3
0 S
1 1000 +1h 3 4 1 0 0
0 S
2 1200 + 0h 6 3 0 1 0
0 S
3 180 + 0h 1 0 0 0 1
Total Profit (Z
j) 0 0 0 0 0 0
Net Contribution (C
j–Z
j) 2 3/2 0 0 0
Analyzingthe1
st
Constraint:Now,consider
an‘h’increaseintheright–handsideofthefirst
constraintthentheLPmodelconstraints
become:
3X
1
+4X
2
≤1000+1h
6X
1
+3X
2
≤1200+0h
X
1
≤180+0h
Contribution Per Unit C
j 2 3/2 0 0 0
C
BiBasic Variables (B)
Quantity
(Qty)
X
1 X
2 S
1 S
2 S
3
0 S
3 60+(h/5) 0 0 1/5 –4/15 1
3/2 X
2 160+(2h/5) 0 1 2/5 –1/5 0
2 X
1 120–(h/5) 1 0 –1/5 4/15 0
Total Profit (Z
j) 480+(h/5) 2 3/2 1/5 7/30 0
Net Contribution (C
j–Z
j) 0 0 –1/5 –7/30 0

LP:SENSITIVITY ANALYSIS (Cont…)
13
ChangetotheConstantsontheRight–HandsideoftheConstraint
Inequalities:
Rememberthatastherequirementofthesimplexmethodisthatthevaluesinthequantity
columnnotbenegative.Ifanyvalueinthequantitycolumnbecomesnegativethenthecurrent
solutionwillnolongerbefeasibleandanewvariablewillenterthesolution.
Thus,theinequalities:60+(h/5)≥0,160+(2h/5)≥0&120–(h/5)≥0;aresolvedfor‘h’:
60+(h/5)≥0(h/5)≥(–60)h≥–300;
160+(2h/5)≥0(2h/5)≥–160h≥–400;
120–(h/5)≥0–(h/5)≥–120h≤600.
Wewillget:h≥–300,h≥–400&h≤600
Since:b
1
=1000+hthenh=b
1
–1000;
Thevalue‘h=b
1
–1000’isputintotheinequalitiesh≥–300,h≥–400&h≤600
asfollows:
h ≥ –300
b
1–1000 ≥ –300
b
1≥ –300+1000
b
1≥ 700
h ≥ –400
b
1–1000 ≥ –400
b
1≥ –400+1000
b
1≥ 600
h ≤ 600
b
1–1000 ≤ 600
b
1≤ 600+1000
b
1≤ 1600
Thus,therangeof‘b
1’is:600≤b
1≤1600.Undertheseconditions,XYZ
ManufacturingCompanyshouldproduce‘120–(h/5)’model–Agratesand
‘160+(2h/5)’model–Bgrates.

LP:SENSITIVITY ANALYSIS (Cont…)
14
ChangetotheConstantsontheRight–HandsideoftheConstraint
Inequalities:
TheLPproblemis:
Maximum:Z=2X
1
+1.5X
2
2X
1
+(3/2)X
2
Subjectto:
3X
1
+4X
2
≤1000
6X
1
+3X
2
≤1200
X
1
≤180
X
1
,X
2
≥0
Analyzingthe2
nd
Constraint:
Now,considera‘k’increaseintheright–hand
sideofthefirstconstraintthentheLPmodel
constraintsbecome:
3X
1+4X
2≤1000+0k
6X
1+3X
2≤1200+1k
X
1 ≤180+0k
Contribution Per Unit C
j 2 3/2 0 0 0
C
BiBasic Variables (B) Quantity (Qty) X
1 X
2 S
1 S
2 S
3
0 S
1 1000 +0k 3 4 1 0 0
0 S
2 1200 + 1k 6 3 0 1 0
0 S
3 180 + 0k 1 0 0 0 1
Total Profit (Z
j) 0 0 0 0 0 0
Net Contribution (C
j–Z
j) 2 3/2 0 0 0
Contribution Per Unit C
j 2 3/2 0 0 0
C
Bi Basic Variables (B) Quantity (Qty) X
1 X
2 S
1 S
2 S
3
0 S
3 60–(4k/15) 0 0 1/5 –4/15 1
3/2 X
2 160–(k/5) 0 1 2/5 –1/5 0
2 X
1 120+(4k/15) 1 0 –1/5 4/15 0
Total Profit (Z
j) 480+(7k/30) 2 3/21/5 7/30 0
Net Contribution (C
j–Z
j) 0 0 –1/5–7/30 0

LP:SENSITIVITY ANALYSIS (Cont…)
15
ChangetotheConstantsontheRight–HandsideoftheConstraint
Inequalities:
Rememberthatastherequirementofthesimplexmethodisthatthevaluesinthequantity
columnnotbenegative.Ifanyvalueinthequantitycolumnbecomesnegativethenthecurrent
solutionwillnolongerbefeasibleandanewvariablewillenterthesolution.
Thus,theinequalities:60–(4k/15)≥0,160–(k/5)≥0&120+(4k/15)≥0;aresolvedfor‘k’:
60–(4k/15)≥0–(4k/15)≥–60k≤225,
160–(k/5)≥0–(k/5)≥–160k≤800&
120+(4k/15)≥0(4k/15)≥–120k≥–450
Wewillget:k≤225,k≤800&k≥–450.
Since:b
2=1200+kthenk=b
2–1200;
Thevalue‘k=b
2–1200’isputintotheinequalitiesk≤225,k≤800&k≥–450as
follows:
Thus,therangeof‘b
2’is:750≤b
2≤2000.Undertheseconditions,XYZ
Companyshouldproduce‘120+(4k/15)’model–Agratesand‘160–(k/5)’model–B
grates.
k ≤ 225
b
2–1200 ≤ 225
b
2≤ 225+1200
b
2≤ 1425
k ≤ 800
b
2–1200 ≤ 800
b
2≤ 800+1200
b
2≤ 2000
k ≥ –450
b
2–1200 ≥ –450
b
2≥ –450+1200
b
2≥ 750

LP:SENSITIVITY ANALYSIS (Cont…)
16
ChangetotheConstantsontheRight–HandsideoftheConstraint
Inequalities:
TheLPproblemis:
Maximum:Z=2X
1
+1.5X
2
2X
1
+(3/2)X
2
Subjectto:
3X
1
+4X
2
≤1000
6X
1
+3X
2
≤1200
X
1
≤180
X
1
,X
2
≥0
Analyzingthe3
rd
Constraint:
Now,consideran‘L’increaseintheright–hand
sideofthefirstconstraintthentheLPmodel
constraintsbecome:
3X
1+4X
2≤1000+0L
6X
1+3X
2≤1200+0L
X
1 ≤180+1L
Contribution Per Unit C
j 2 3/2 0 0 0
C
Bi
Basic Variables
(B)
Quantity
(Qty)
X
1 X
2 S
1 S
2 S
3
0 S
1 1000 + 0L 3 4 1 0 0
0 S
2 1200 + 0L 6 3 0 1 0
0 S
3 180 + 1L 1 0 0 0 1
TotalProfit(Z
j) 0 0 0 0 0 0
NetContribution(C
j–Z
j) 2 3/2 0 0 0
Contribution Per Unit C
j 2 3/2 0 0 0
C
BiBasic Variables (B)
Quantity
(Qty)
X
1 X
2 S
1 S
2 S
3
0 S
3 60+L 0 0 1/5 –4/15 1
3/2 X
2 160 0 1 2/5 –1/5 0
2 X
1 120 1 0 –1/5 4/15 0
Total Profit (Z
j) 480 2 3/2 1/5 7/30 0
Net Contribution (C
j–Z
j) 0 0 –1/5 –7/30 0

LP:SENSITIVITY ANALYSIS (Cont…)
17
ChangetotheConstantsontheRight–HandsideoftheConstraint
Inequalities:
Rememberthatastherequirementofthesimplexmethodisthatthevaluesinthequantity
columnnotbenegative.Ifanyvalueinthequantitycolumnbecomesnegativethenthecurrent
solutionwillnolongerbefeasibleandanewvariablewillenterthesolution.
Thus,theinequalities:60+L≥0,160≥0&120≥0;aresolvedfor‘L’:60+L≥0
L≥–60.
Wewillget:L≥–60.
Since:b
3=180+LthenL=b
3–180;
Thevalue‘L=b
3–1200’isputintotheinequalityL≥–60asfollows:
L≥–60b
3–180≥–60b
3≥–60+180b
3≥120
Thus,therangeof‘b
3’is:120≤b
3≤∞.

LP:SENSITIVITY ANALYSIS (Cont…)
18
ShadowPrices:
ShadowPricefor1
st
Resource:
Asweshowedearlierthatiftherighthandsideofconstraint–1isincreased
by‘h’unitsthentheoptimalsolutionis:X
1=120–(h/5)&X
2=160+(2h/5).
Theresultingprofitiscalculatedasfollows:
Z=2X
1+1.5X
2=2X
1+(3/2)X
2
Z=(2)[120–(h/5)]+(3/2)[160+(2h/5)]
Z=(480+h/5)
Now,let‘h=1’,wefindthatZ=(480+(1/5))=480.20.
Asweknowthattheoptimalvalueoftheobjectivefunctionoftheoriginal
problemisRs.480.20,sotheshadowpriceforthe1
st
resourceis480.20–480
=Rs.0.20.

LP:SENSITIVITY ANALYSIS (Cont…)
19
ShadowPrices:
ShadowPricefor2
nd
Resource:
Asweshowedearlierthatiftherighthandsideofconstraint–2isincreased
by‘k’unitsthentheoptimalsolutionis:X
1=‘120+(4k/15)’&X
2=‘160–
(k/5)’.Theresultingprofitiscalculatedasfollows:
Z=2X
1+1.5X
2=2X
1+(3/2)X
2
Z=(2)[120+(4k/15)]+(3/2)[160–(k/5)]
Z=480+(7k/30)
Now,let‘k=1’,wefindthatZ=[480+(7(1)/30]=480.23.
Asweknowthattheoptimalvalueoftheobjectivefunctionoftheoriginal
problemisRs.480,sotheshadowpriceforthe2
nd
resourceis480.23–480=
Rs.0.23.

LP:SENSITIVITY ANALYSIS (Cont…)
20
ShadowPrices:
ShadowPricefor3
rd
Resource:
Asweshowedearlierthatiftherighthandsideofconstraint–3isincreased
by‘L’unitsthentheoptimalsolutionis:X
1=‘120’&X
2=‘160’.
Theresultingprofitiscalculatedasfollows:
Z=2X
1+1.5X
2=2X
1+(3/2)X
2
Z=(2)[120]+(3/2)[160]
Z=480
Theshadowpriceforthisresourceis‘Zero’.
Thereisasurplus(i.e.,excess)ofthisresource.Duetotheexcessofthis
resourceconstraint“X
1≤180”isnotbindingontheoptimalsolution(X
1=120
&X
2=160).
While,Constraint–1andConstraint–2,whichholdwithequalityattheoptimal
solution(X
1=120&X
2=160),aresaidtobebindingconstraints.Theobjective
functioncannotbeincreasedwithoutincreasingtheseresources.Theyhave
positiveshadowprices.

QUESTIONS
21
Tags