3-Strength of Materials formulaws.pdf

554 views 18 slides Dec 05, 2023
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

ssss


Slide Content

2
–”‡‰–Š ‘ˆ
Material
‘”—Žƒ¬Š‘”– Notes)

3
–” ‡••ƒ† strain
Stress = Force / A rea
T e n s io n s tr a in ( e )
L C h a n g e in le n g th
L In itial length

4
”‹‡ŽŽ ƒ”† ‡••—„‡”
(BHN)
Žƒ•– ‹……‘•– ƒ–•ã
where, P = Standard load, D = Diameter of steel ball, an d d = Diameter of the indent.

5
š‹ƒŽŽ‘‰ƒ– ‹‘‘ˆ ƒ””‹•ƒ– ‹…ƒ”—‡–‘š –‡”ƒŽ‘ƒ†
Ž‘‰ƒ–‹‘‘ˆ ”‹• ƒ–‹… ƒ” —‡ –‘ ‡Žˆ‡‹‰Š–
Where is specific weight
Ž‘‰ƒ–‹‘‘ˆ ƒ’‡ ”‡ † ƒ”
‹”…—Žƒ” ƒ’‡”‡ †
‡…–ƒ‰—Žƒ”ƒ’‡”‡†
–”‡••†—…‡†„›š ‹ƒŽ– ”‡••ƒ†‹’އЇƒ”
‘”ƒŽ•– ”‡••
ƒ‰‡ –‹ƒŽ •–”‡ ••
Principal Stresses and Principal Plan es
Major principal stress
Major principal stress

6
” ‹…‹’ƒŽStrain
-

‡”‰›‡–Š‘†•ã
(i) ‘”—Žƒ–‘…ƒŽ…—Žƒ– ‡–Ї•–”ƒ‹‡‡”‰›†—‡–‘ƒš ‹ƒŽŽ‘ƒ†•– ‡•‹‘ã
limit 0 toL
Where, P = Applied tensile load, L = Length of the member , A = Area of the memb er, and
(ii) ‘”—Žƒ–‘…ƒŽ…—Žƒ– ‡–Ї•–”ƒ‹‡‡”‰›†—‡–‘„‡†‹‰ã
limit 0 toL
inertia.
(iii) ‘”—Žƒ–‘…ƒŽ…—Žƒ– ‡–Ї•–”ƒ‹‡‡”‰›†—‡–‘– ‘”•‹‘ ã
limit 0 toL

7
Where, T = Applied Torsion , G = Shear modulus or Modulus of rigidit y, and J = P olar
moment ofinertia
(iv) ‘”—Žƒ–‘…ƒŽ…—Žƒ– ‡–Ї•–”ƒ‹‡‡”‰›†—‡–‘’—”‡•Їƒ”ã
U =K limit 0 to L
Where, V= Shearload
G = Shear modulus or Modulus of rigidity
A = Area of cross section.
K = Constant depends upon shape of cross section.
(v) ‘”—Žƒ–‘…ƒŽ…—Žƒ– ‡–Ї•–”ƒ‹‡‡”‰›†—‡–‘’—”‡•Їƒ”ወ •Їƒ”•–”‡••‹•‰‹˜‡ã
Where,
G = Shear modulus or Modulus of rigidity V = Volume of the material.
(vi) ‘”—Žƒ–‘…ƒŽ…—Žƒ– ‡–Ї•–”ƒ‹‡‡”‰›á‹ˆ –Ї‘‡– ˜ƒŽ—‡‹•‰‹˜‡ã
U = M ² L / (2EI)
Where, M = Bending moment L = Length of the b eam
I = Moment of inertia
(vii) ‘”—Žƒ–‘…ƒŽ…—Žƒ– ‡–Ї•–”ƒ‹‡‡”‰›á‹ˆ –Ї–‘”•‹‘ ‘‡– ˜ƒŽ—‡‹•‰‹˜‡ã
U= T ²L / ( 2GJ)
Where, T = AppliedTorsion
L = Length of the b eam
G = Shear modulus or Modulus of rigidity
J = Polar moment of inertia

8
(viii) ‘”—Žƒ–‘…ƒŽ…—Žƒ– ‡–Ї•–”ƒ‹‡‡”‰›á‹ˆ –Їƒ’’Ž‹‡†–‡•‹‘Ž‘ƒ†‹•‰‹˜‡ã
U = P² L / ( 2AE )
Where,
P = Applied tensile load.
L = Length of the member
A = Area of the member
(ix) theorem:
(x) ‘”—Žƒˆ‘”†‡ˆŽ‡…–‹‘‘ˆ ƒˆ‹š‡†„‡ƒ™‹–Š’‘‹–Ž‘ƒ†ƒ– centr e:
= - wl
3
/ 192EI
This def ection is ¼ times the deflection of a simply supported beam.
(x i) ‘”—Žƒˆ‘”†‡ˆŽ‡…–‹‘‘ˆ ƒˆ‹š‡†„‡ƒ™‹–Š—‹ˆ ‘”Ž›†‹•– ”‹„—–‡† load:
= - wl
4
/ 384EI
This def ection is 5 times the deflection of a simply supported beam.
(x ii) ‘”—Žƒˆ‘”†‡ˆŽ‡…–‹‘‘ˆ ƒˆ‹š‡†„‡ƒ™‹–Ї……‡–”‹…’‘‹– load:
= - wa
3
b
3
/ 3 EIl
3
Stresse s due to
Gr adual Loading : -
Sudden Loading: -

9
Impac t Loading : -
Deflection ,
Thermal Stresses: -
‡’‡”ƒ– —”‡ S –” ‡••‡•‹ T ƒ’‡” B ars: -
‡’‡”– ƒ—”‡–”‡••‡•‹‘’‘•‹–‡ƒ”•
‘‘‡5•ƒ™‹‡ƒ”‡Žƒ•–‹…‹–›ã
Hooke's Law stated that within elastic limit, the linear relationship between simple
stress and strain for a b ar is expressed by equations.

10
,
E
Where, E = Young's modulus of elasticity
P = Applied load across a cross - sectional area
Ž = Change in length
Ž= Original length
‘Ž—‡– ”‹…– ”ƒ‹ã

11
‡Žƒ–‹‘ •Š‹’„‡–™‡‡áá K and µ :
‘†—Ž—•‘ˆ rigidit y: -
Bulk modulus: -
Comp ou nd S tresses
“—ƒ– ‹‘‘ˆ —”‡‡†‹‰
‡…–‹‘‘†—Ž—•
Їƒ”‹‰–”‡••
Where,
V = Shearin g forc e
= First moment of a rea
Їƒ”
S –” ‡••
‹
Rectang
—Žƒ”
B eam

12
Їƒ”– ”‡••‹”…—Žƒ”‡ƒ
‘‡–‘ˆ ‡”– ‹ƒ ƒ† ‡… –‹‘ ‘†—Ž— •

13
Direct Stress
where P = axial thrust, A = area of cros s - section
Bend ing Stress
where M = bending moment, y - distan ce of fibre from n eutral axis, I =
moment of inertia.
Torsional Shear Stress
where T = torque, r = ra di us of s haft, J = polar moment of in ertia.
Eq uivalent Tors ional Moment
Eq uivalent Bending Moment

14
Sh ear force and B ending Momen t Relation

15
For both end hin ged ± l
For one en d fixed and other free ±t l
For both end f ixed ± l /2
For one en d fixed and other hi nged ± l /
Slend erness Rati o ( )

16
P
R
=
P
cs

cs
A = Ultimat e crushing l oad for column
‡ˆŽ‡…–‹‘‹†‹ˆ ˆ‡”‡– ‡ƒ•
Torsion
W here, T = Torque,
J = Polar moment of inertia
G = Modulus of ri gidi ty,
= Angle of twis t
L = Length of shaft,

17
‘–ƒ Žƒ ‰Ž‡‘ˆ –™‹•–
GJ = Torsi onal rigidity
= Torsional stiffn ess
= Torsional flexibility
= Axial sti ffn ess
= Axial flexibility
‘ ‡ –‘ˆ ‡”–‹ƒ„‘ —–’‘ Žƒ” š‹•
Moment of Inertia About polar Axis
For hollow ci rcular shaf t
‘ ’‘—†Šƒˆ–
‡”‹‡•…‘ ‡…–‹‘
W here,
1
= Angular deformation of 1
st
shaft
2
= Angular deformation of 2
nd
shaft
ƒ”ƒŽŽ‡Ž‘‡…–‹‘

18
–”ƒ‹ ‡”‰›‹ ‘”•‹‘
For soli d shaf t,
For hollow shaft,
Š‹›Ž‹ †‡”
Circu mferential Stres s /Hoop Stres s
Longitudinal Stres s
Hoop Strain
Longitudinal Strain
Ratio of Hoop S train to Longitu di nal Strain

19
–”‡••‡•‹Š‹ ’Ї”‹…ƒŽ Š‡ŽŽ
Hoop stress /lon gitud in al s tress
Hoop stres s/longitu din al strain
Vol ume tric s train of s ph ere
Th ickness ratio of Cylind rical Shell w ith Hemis phere E nd s
W here v = Poiss on R atio
Tags