3-Unit-Circle-Angles-and-their-Measuretrigo.pdf

liezelcataytay12 6 views 17 slides Mar 04, 2025
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

Angles in the unit circle, special angles, their measurements


Slide Content

5.1 Angles and Their Measure
A unit circle is a circle with a radius of 1
It is centered at the origin on a coordinate plane

Angles in
multiples of
30 and 45
degrees are
included on
the circle.
45°
30°
60°
90°
120°
135°
150°
180° 0°
360°
210°
225°
240°
270°
300°
315°
330°
5.1 Angles and Their Measure

Radian Measurements in a Circle
•What’s the circumference of a circle with a
radius of 1?
5.1 Angles and Their Measure
radians

5.1 The Unit Circle
45°
30°
60°
90°
120°
135°
150°
180° 0°
360°
210°
225°
240°
270°
300°
315°
330°
Angles in multiples of and radians are included on
the circle.
6
p
4
p
6
p4
p
3
p2
p
p p0
p2

5.1 The Unit Circle
Finally, coordinate points on the circle are filled in.
Such as the
points on
each axis
)0,1(
)1,0(
)0,1(-
)1,0(-

5.1 The Unit Circle
)0,1(
)1,0(
)0,1(-
)1,0(-
?)(?,
?)(?,
?)(?,
How can we find the coordinates at 30 degrees? 45 degrees?

5.1 The Unit Circle
Two special triangles are used to
coordinatize the unit circle
1)We use a 45-45-90 triangle
with a hypoteneuse of 1
45°
45°
1
2
2
2
2

5.1 The Unit Circle
Two special triangles are used to
coordinatize the unit circle
2) We also use a 30-60-90
triangle with a
hypoteneuse of 1
30°
60°
1
2
3
2
1

)0,1(
)1,0(
÷
÷
ø
ö
ç
ç
è
æ
2
1
,
2
3
5.1 The Unit Circle
1
2
3
2
1
30°
60°

)0,1(
)1,0(
÷
÷
ø
ö
ç
ç
è
æ
2
2
,
2
2
5.1 The Unit Circle
1
2
2
2
2
45°
45°

)0,1(
)1,0(
÷
÷
ø
ö
ç
ç
è
æ
2
3
,
2
1
5.1 The Unit Circle
1
2
1
2
3
60°
30°

)0,1(
)1,0(
)0,1(-
5.1 The Unit Circle
÷
÷
ø
ö
ç
ç
è
æ
2
1
,
2
3
2
3
2
11
How do you fill in the rest of the coordinates? Ideas?
30°
60°

)0,1(
)1,0(
)0,1(-
5.1 The Unit Circle
÷
÷
ø
ö
ç
ç
è
æ
2
1
,
2
3
2
3
2
11
Use reflections of the triangles and/or symmetry rules!
30°
60°
( ) ,
2
3
1
30°
60°
same y coordinates
opposite x coordinates
2
1

)0,1(
)1,0(
)0,1(-
5.1 The Unit Circle
How do you fill in the rest of the coordinates?
Use reflections of the triangles
( ) , ÷
÷
ø
ö
ç
ç
è
æ
2
2
,
2
2
1
2
2
2
2
45°
45°
same y coordinates
opposite x coordinates
45°
45°
1
2
2
2
2

)0,1(
)1,0(
)0,1(-
5.1 The Unit Circle
How do you fill in the rest of the coordinates?
÷
÷
ø
ö
ç
ç
è
æ
2
3
,
2
1
1
2
1
2
3
60°
30°
( ) ,
same y coordinates
opposite x coordinates

5.1 The Unit Circle
45°
30°
60°
90°
120°
135°
150°
180° 0°
360°
210°
225°
240°
270°
300°
315°
330°
What your plate should look like when it’s complete…
6
p
4
p3
p
2
p
3
2p
3
4p
p p0
p2
3
5p
4
3p
4
5p
4
7p
6
5p
6
7p
6
11p
2
3p
÷
÷
ø
ö
ç
ç
è
æ
2
1
,
2
3
)0,1(
)1,0(
)0,1(-
)1,0(-
÷
÷
ø
ö
ç
ç
è
æ
2
3
,
2
1
÷
÷
ø
ö
ç
ç
è
æ
2
2
,
2
2
÷
÷
ø
ö
ç
ç
è
æ
-
2
3
,
2
1
÷
÷
ø
ö
ç
ç
è
æ
--
2
3
,
2
1
÷
÷
ø
ö
ç
ç
è
æ
-
2
3
,
2
1
÷
÷
ø
ö
ç
ç
è
æ
-
2
2
,
2
2
÷
÷
ø
ö
ç
ç
è
æ
--
2
2
,
2
2
÷
÷
ø
ö
ç
ç
è
æ
-
2
2
,
2
2
÷
÷
ø
ö
ç
ç
è
æ
-
2
1
,
2
3
÷
÷
ø
ö
ç
ç
è
æ
--
2
1
,
2
3
÷
÷
ø
ö
ç
ç
è
æ
-
2
1
,
2
3

5.1 The Unit Circle
Tags