AbuBakarAbdollWahab
18 views
44 slides
Oct 15, 2024
Slide 1 of 44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
About This Presentation
calculator
Size: 808.74 KB
Language: en
Added: Oct 15, 2024
Slides: 44 pages
Slide Content
KALKULATOR MATHS MOHD SALLEH AMBO SMK TERUSAN, LAHAD DATU 2 1 6 GRAF FUNGSI PERSAMAAN LINEAR PERSAMAAN INDEKS PERSAMAAN LINEAR SERENTAK PERSAMAAN KUADRATIK ASAS NOMBOR MATRIKS TABURAN NORMAL PENGAMIRAN BENTUK PIAWAI TABURAN BINOMIAL
GRAF FUNGSI: MELENGKAPKAN JADUAL 1 Lengkapkan jadual -2 -1 -0.5 1 2 3 4 4.5 7 -2 -2 3 12 33 ALPHA Y ALPHA = 2 ALPHA ALPHA X X 3 SEMAK CALC - 2 X ? 7 CALC CALC X ? X ? - 1 4 25 KIRA 25 = = = (2005.2.12) SOALAN 2005
PERSAMAAN LINEAR : MENCARI NILAI 1 Diberi 10 – 3 (2 – w) = 9 w + 2 , hitungkan nilai w (2005.1.22) ALPHA ALPHA = 10 -- ALPHA X X ? SHIFT 3 ( 2 -- ) 9 + 2 X SOLVE X = 0.333333 SHIFT SOLVE a b/c X = 1/3
PERSAMAAN LINEAR : MENCARI NILAI 2 Diberi , - 4 k = - 2 ( 3 – k ) , maka k = (2006.1.22) ALPHA ALPHA = 5 a b/c ALPHA X X ? ………. SHIFT 2 ( 4 -- ) - 2 3 X SOLVE X = 1.416667 SHIFT SOLVE a b/c X = 1/5/12 -- SHIFT a b/c X = 17/12
PERSAMAAN LINEAR : MENCARI NILAI 3 Diberi , cari nilai x (2007.1.22) ALPHA ALPHA = 1 -- ALPHA X X ? SHIFT 5 ( ) 2 + 1 X SOLVE X = 0.666666 SHIFT SOLVE a b/c X = 2/3 a b/c
PENGGUNAAN KALKULATOR TAMAT PERSAMAAN LINEAR
PERSAMAAN INDEKS : MENCARI NILAI Diberi , cari nilai x (2005.1.24) ALPHA ALPHA = 2 ^ ALPHA X X ? ………. SHIFT 3 ( ) 9 3 X SOLVE X = 0.666666 SHIFT SOLVE a b/c X = 2/3 a b/c ^
PENGGUNAAN KALKULATOR TAMAT PERSAMAAN INDEKS
EQN MAT VCT 1 2 3 PERSAMAAN LINEAR SERENTAK 1 Hitungkan nilai p dan nilai q yang memuaskan persamaan linear serentak berikut 2 p – 3 q = 13 4 p + q = 5 (2005.2.2) MODE 1 MODE MODE UNKNOWNS ? 2 3 2 a1? 2 = b1? -3 = a2? 13 = c1? 1 = c2? 5 = y = -3 = x = 2 b2? 4 = SOALAN 2005
EQN MAT VCT 1 2 3 PERSAMAAN LINEAR SERENTAK 2 Hitungkan nilai x dan nilai y yang memuaskan persamaan linear serentak berikut (2008.2.2) MODE 1 MODE MODE UNKNOWNS ? 2 3 2 a1? 1 = b1? 3 ab /c 2 = a2? -3 = c1? -1 = c2? 16 = y = -4 = x = 3 b2? 4 = SOALAN 2008
PENGGUNAAN KALKULATOR TAMAT PERSAMAAN LINEAR SERENTAK
EQN MAT VCT 1 2 3 Tukar kpd bentuk AM PENYELESAIAN PERSAMAAN KUADRATIK Selesaikan persamaan kuadratik (2005.2.1) MODE 1 MODE MODE UNKNOWNS ? 2 3 2 a? 2 = b? - 9 = c? = a b/c X1=5 - 5= DEGREES ? 2 3 X2=-0.5 X2=-1/2 ( k – 5 ) ( 2 k + 1 ) , k = k = 5, SOALAN 2005
PENGGUNAAN KALKULATOR TAMAT PERSAMAAN KUADRATIK
PENGIRAAN NOMBOR ASAS 2, 8, 10 (2005.1.4) MODE 3 BIN SD REG BASE 1 2 3 MODE 110001 - 1011 = CARA LAIN : MODE 3 MODE d h b 0 1 2 3 4 LOGIC LOGIC LOGIC 3 110001 -- LOGIC LOGIC LOGIC 3 1011 = b 110001 – b 1011 b 110001
PENGIRAAN NOMBOR ASAS 2, 8, 10 MODE 3 OCT SD REG BASE 1 2 3 MODE d h b 0 1 2 3 4 LOGIC LOGIC LOGIC 4 7654 = 7654 LOGIC LOGIC LOGIC 1 12 o 7654 d 12 516
PENGIRAAN NOMBOR ASAS 2, 8, 10 MODE 3 BIN MODE 14 COMP 1 CMPLX 2 SD 1 REG 2 BASE 3 14 = OCT 1110 16
PENGGUNAAN KALKULATOR TAMAT ASAS NOMBOR
(2005.1.39) MODE 2 Mat A ( mxn ) m? SHIFT MAT 1 1 2 = Mat A ( mxn ) n? MODE MODE 2 = Mat A 11 3 = Mat A 12 1 = Mat A 21 4 = Mat A 22 6 = Mat A 11 AC EQN MAT VCT 1 2 3 Dim Edit Mat 1 2 3 A B C 1 2 3 Mat A ( mxn ) m? Mat A ( mxn ) n? 1 Mat A 11 Mat A 12 Mat A 21 Mat A 22 Mat A 11 3 PENGIRAAN MATRIKS 1.1 BINA MATRIKS A
PENGIRAAN MATRIKS 1.2 (2005.1.39) Mat B ( mxn ) m? SHIFT MAT 1 2 2 = Mat B ( mxn ) n? 2 = Mat B 11 -1 = Mat B 12 = Mat B 21 -1 = Mat B 22 4 = Mat B 11 AC Mat B ( mxn ) n? 1 Dim Edit Mat 1 2 3 A B C 1 2 3 Mat B ( mxn ) m? Mat B ( mxn ) n? 1 Mat B 11 Mat B 12 Mat B 21 Mat B 22 Mat B 11 -1 BINA MATRIKS B
PENGIRAAN MATRIKS 1.3 (2005.1.39) SHIFT MAT 3 2 BINA PENGIRAAN 1 2 Mat A SHIFT MAT 3 2 2 Mat A – Mat B = Mat Ans 11 5 Mat Ans 12 2 Mat Ans 21 9 Mat Ans 22 8 2 Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 2 Mat A -- Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 2 Mat A – Mat B Mat Ans 11 5 Mat Ans 12 2 Mat Ans 21 9 Mat Ans 22 8 5 2 9 8 J A W A P A N
(2008.1.39) MODE 2 Mat A ( mxn ) m? SHIFT MAT 1 1 3 = Mat A ( mxn ) n? MODE MODE 2 = Mat A 11 2 = Mat A 12 3 = Mat A 21 -3 = Mat A 22 = Mat A 31 AC EQN MAT VCT 1 2 3 4 = Mat A 32 1 = Mat A 11 Dim Edit Mat 1 2 3 A B C 1 2 3 Mat A ( mxn ) m? Mat A ( mxn ) n? 1 Mat A 11 Mat A 12 Mat A 21 Mat A 22 Mat A 31 Mat A 32 Mat A 11 2 HASIL DARAB DUA MATRIKS 1 BINA MATRIKS A
(2008.1.39) Mat B ( mxn ) m? SHIFT MAT 1 2 2 = Mat B ( mxn ) n? 1 = Mat B 11 1 = Mat B 21 -4 = Mat B 11 AC Dim Edit Mat 1 2 3 A B C 1 2 3 Mat B ( mxn ) m? Mat B ( mxn ) n? 1 Mat B 11 Mat B 21 Mat B 11 1 HASIL DARAB DUA MATRIKS 2 BINA MATRIKS B
HASIL DARAB DUA MATRIKS 3 (2008.1.39) Mat A SHIFT MAT 3 1 Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 SHIFT MAT 3 2 Mat A x Mat B = Mat Ans 11 - 10 Mat Ans 21 -3 Mat Ans 31 X = - 10 - 3 Mat A x Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 Mat A x Mat B Mat Ans 11 -10 Mat Ans 21 -3 Mat Ans 31 JAWAPAN
MATRIKS: MENCARI PENENTU 1 Cari nilai m dan nilai n (2007.2.9) MODE 2 Mat A ( mxn ) m? SHIFT MAT 1 1 2 = Mat A ( mxn ) n? MODE MODE 2 = Mat A 11 -4 = Mat A 12 2 = Mat A 21 -5 = Mat A 22 3 = Mat A 11 AC EQN MAT VCT 1 2 3 Dim Edit Mat 1 2 3 A B C 1 2 3 Mat A ( mxn ) m? Mat A ( mxn ) n? 1 Mat A 11 Mat A 12 Mat A 21 Mat A 22 Mat A 11 -4 SOALAN 2007
MATRIKS: MENCARI PENENTU 2 Cari nilai m dan nilai n (2007.2.9) Dim Edit Mat 1 2 3 SHIFT MAT 1 Det SHIFT MAT 1 3 Det Mat A = Det Mat A -2 m = -2 Det Trn 1 2 Det Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 Det Mat A Det Mat A -2 n = 3 SOALAN 2007
SELESAI PERSAMAAN MATRIKS Menggunakan kaedah matriks , hitung nilai x dan nilai y yang memuaskan persamaan matriks berikut : (2007.2.9b) PENYELESAIAN SOALAN 2007
Masuk mode Matriks Input Matriks A Input Matriks B SHIFT MAT 3 1 = - 1.5 1 - 2.5 2 SHIFT MAT 3 2 x = 0.5 1.5 x Mat B SHIFT MAT 3 1
PENGGUNAAN KALKULATOR TAMAT MATRIKS
P (t) Q (t) R (t) TABURAN NORMAL MODE MODE 1 Z < + ve 0 < Z < + ve Z > + ve SHIFT DISTR COMP CMPLX 1 2 SD REG BASE 1 2 3 P ( Q ( R ( t 1 2 3 4
TABURAN NORMAL MODE MODE 1 SHIFT DISTR COMP CMPLX 1 2 SD REG BASE 1 2 3 (a) P ( z < 0.5) = COMP CMPLX 1 2 SD REG BASE 1 2 3 P ( Q ( R ( t 1 2 3 4 1 0.5 ) = P ( P ( 0.5 P ( 0.5 ) P ( 0.5 ) 0.69146 P (0.5) 0.69146 (b) P ( z > 1.2) = 3 1.2 ) = R (1.2) 0.11507 (c) P ( z > - 0.8 ) = (e) P ( 0 < z < 1.3) = 2 1.3 ) = Q (1.3) 0.4032 SHIFT DISTR SHIFT DISTR P ( Q ( R ( t 1 2 3 4 R ( R ( 1.2 ) 0.11507 (d) P ( z < - 2.1 ) = P ( Q ( R ( t 1 2 3 4 Q ( 1.3 ) 0.4032 Q ( Q ( 1.3 ) 0.4032 1 – Q (0.8) Q (2.1)
TABURAN NORMAL COMP CMPLX 1 2 SD REG BASE 1 2 3 COMP CMPLX 1 2 SD REG BASE 1 2 3 P ( Q ( R ( t 1 2 3 4 P ( P ( 0.5 P ( 0.5 ) P ( 0.5 ) 0.69146 P ( Q ( R ( t 1 2 3 4 R ( (f) P ( 0 < z < 1.3 ) = Q ( 0 ) – Q (1.3) (f) P ( - 1.2 < z < 0 ) = Q ( 0 ) – Q (1.2) (f) P ( - 0.8 < z < 2.4 ) = 1 - Q ( 0.8 ) – Q (2.4)