318733148-Cara-Penggunaan-Kalkulator-SPM.pptx

AbuBakarAbdollWahab 18 views 44 slides Oct 15, 2024
Slide 1
Slide 1 of 44
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44

About This Presentation

calculator


Slide Content

KALKULATOR MATHS MOHD SALLEH AMBO SMK TERUSAN, LAHAD DATU 2 1 6 GRAF FUNGSI PERSAMAAN LINEAR PERSAMAAN INDEKS PERSAMAAN LINEAR SERENTAK PERSAMAAN KUADRATIK ASAS NOMBOR MATRIKS TABURAN NORMAL PENGAMIRAN BENTUK PIAWAI TABURAN BINOMIAL

GRAF FUNGSI: MELENGKAPKAN JADUAL 1 Lengkapkan jadual -2 -1 -0.5 1 2 3 4 4.5 7 -2 -2 3 12 33 ALPHA Y ALPHA = 2 ALPHA ALPHA X X 3 SEMAK CALC - 2 X ? 7 CALC CALC X ? X ? - 1 4 25 KIRA 25 = = = (2005.2.12) SOALAN 2005

- 4 - 3 -2 -1 1 1.5 2 3 - 6 -12 -24 24 12 8 GRAF FUNGSI: MELENGKAPKAN JADUAL 2 Lengkapkan jadual (2006.2.12) ALPHA Y ALPHA = 24 a b/c ALPHA X CALC X ? - 4 - 6 = CALC CALC X ? X ? - 3 1.5 - 8 16 = = - 8 16 SOALAN 2006

- 3 - 2.5 -2 -1 1 2 2.5 33 21.63 14 6 5 -9.63 GRAF FUNGSI: MELENGKAPKAN JADUAL 3 Lengkapkan jadual (2007.2.12) ALPHA Y ALPHA = 6 -- ALPHA X CALC X ? - 2 14 = CALC CALC X ? X ? - 1 2 7 - 2 = = SHIFT 7 - 2 SOALAN 2007

PENGGUNAAN KALKULATOR TAMAT GRAF FUNGSI

PERSAMAAN LINEAR : MENCARI NILAI 1 Diberi 10 – 3 (2 – w) = 9 w + 2 , hitungkan nilai w (2005.1.22) ALPHA ALPHA = 10 -- ALPHA X X ? SHIFT 3 ( 2 -- ) 9 + 2 X SOLVE X = 0.333333 SHIFT SOLVE a b/c X = 1/3

PERSAMAAN LINEAR : MENCARI NILAI 2 Diberi , - 4 k = - 2 ( 3 – k ) , maka k = (2006.1.22) ALPHA ALPHA = 5 a b/c ALPHA X X ? ………. SHIFT 2 ( 4 -- ) - 2 3 X SOLVE X = 1.416667 SHIFT SOLVE a b/c X = 1/5/12 -- SHIFT a b/c X = 17/12

PERSAMAAN LINEAR : MENCARI NILAI 3 Diberi , cari nilai x (2007.1.22) ALPHA ALPHA = 1 -- ALPHA X X ? SHIFT 5 ( ) 2 + 1 X SOLVE X = 0.666666 SHIFT SOLVE a b/c X = 2/3 a b/c

PENGGUNAAN KALKULATOR TAMAT PERSAMAAN LINEAR

PERSAMAAN INDEKS : MENCARI NILAI Diberi , cari nilai x (2005.1.24) ALPHA ALPHA = 2 ^ ALPHA X X ? ………. SHIFT 3 ( ) 9 3 X SOLVE X = 0.666666 SHIFT SOLVE a b/c X = 2/3 a b/c ^

PENGGUNAAN KALKULATOR TAMAT PERSAMAAN INDEKS

EQN MAT VCT 1 2 3 PERSAMAAN LINEAR SERENTAK 1 Hitungkan nilai p dan nilai q yang memuaskan persamaan linear serentak berikut 2 p – 3 q = 13 4 p + q = 5 (2005.2.2) MODE 1 MODE MODE UNKNOWNS ? 2 3 2 a1? 2 = b1? -3 = a2? 13 = c1? 1 = c2? 5 = y = -3 = x = 2 b2? 4 = SOALAN 2005

EQN MAT VCT 1 2 3 PERSAMAAN LINEAR SERENTAK 2 Hitungkan nilai x dan nilai y yang memuaskan persamaan linear serentak berikut (2008.2.2) MODE 1 MODE MODE UNKNOWNS ? 2 3 2 a1? 1 = b1? 3 ab /c 2 = a2? -3 = c1? -1 = c2? 16 = y = -4 = x = 3 b2? 4 = SOALAN 2008

PENGGUNAAN KALKULATOR TAMAT PERSAMAAN LINEAR SERENTAK

EQN MAT VCT 1 2 3 Tukar kpd bentuk AM PENYELESAIAN PERSAMAAN KUADRATIK Selesaikan persamaan kuadratik (2005.2.1) MODE 1 MODE MODE UNKNOWNS ? 2 3 2 a? 2 = b? - 9 = c? = a b/c X1=5 - 5= DEGREES ? 2 3 X2=-0.5 X2=-1/2 ( k – 5 ) ( 2 k + 1 ) , k = k = 5, SOALAN 2005

PENGGUNAAN KALKULATOR TAMAT PERSAMAAN KUADRATIK

PENGIRAAN NOMBOR ASAS 2, 8, 10 (2005.1.4) MODE 3 BIN SD REG BASE 1 2 3 MODE 110001 - 1011 = CARA LAIN : MODE 3 MODE d h b 0 1 2 3 4 LOGIC LOGIC LOGIC 3 110001 -- LOGIC LOGIC LOGIC 3 1011 = b 110001 – b 1011 b 110001

PENGIRAAN NOMBOR ASAS 2, 8, 10 MODE 3 OCT SD REG BASE 1 2 3 MODE d h b 0 1 2 3 4 LOGIC LOGIC LOGIC 4 7654 = 7654 LOGIC LOGIC LOGIC 1 12 o 7654 d 12 516

PENGIRAAN NOMBOR ASAS 2, 8, 10 MODE 3 BIN MODE 14 COMP 1 CMPLX 2 SD 1 REG 2 BASE 3 14 = OCT 1110 16

PENGGUNAAN KALKULATOR TAMAT ASAS NOMBOR

(2005.1.39) MODE 2 Mat A ( mxn ) m? SHIFT MAT 1 1 2 = Mat A ( mxn ) n? MODE MODE 2 = Mat A 11 3 = Mat A 12 1 = Mat A 21 4 = Mat A 22 6 = Mat A 11 AC EQN MAT VCT 1 2 3 Dim Edit Mat 1 2 3 A B C 1 2 3 Mat A ( mxn ) m? Mat A ( mxn ) n? 1 Mat A 11 Mat A 12 Mat A 21 Mat A 22 Mat A 11 3 PENGIRAAN MATRIKS 1.1 BINA MATRIKS A

PENGIRAAN MATRIKS 1.2 (2005.1.39) Mat B ( mxn ) m? SHIFT MAT 1 2 2 = Mat B ( mxn ) n? 2 = Mat B 11 -1 = Mat B 12 = Mat B 21 -1 = Mat B 22 4 = Mat B 11 AC Mat B ( mxn ) n? 1 Dim Edit Mat 1 2 3 A B C 1 2 3 Mat B ( mxn ) m? Mat B ( mxn ) n? 1 Mat B 11 Mat B 12 Mat B 21 Mat B 22 Mat B 11 -1 BINA MATRIKS B

PENGIRAAN MATRIKS 1.3 (2005.1.39) SHIFT MAT 3 2 BINA PENGIRAAN 1 2 Mat A SHIFT MAT 3 2 2 Mat A – Mat B = Mat Ans 11 5 Mat Ans 12 2 Mat Ans 21 9 Mat Ans 22 8 2 Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 2 Mat A -- Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 2 Mat A – Mat B Mat Ans 11 5 Mat Ans 12 2 Mat Ans 21 9 Mat Ans 22 8 5 2 9 8 J A W A P A N

(2008.1.39) MODE 2 Mat A ( mxn ) m? SHIFT MAT 1 1 3 = Mat A ( mxn ) n? MODE MODE 2 = Mat A 11 2 = Mat A 12 3 = Mat A 21 -3 = Mat A 22 = Mat A 31 AC EQN MAT VCT 1 2 3 4 = Mat A 32 1 = Mat A 11 Dim Edit Mat 1 2 3 A B C 1 2 3 Mat A ( mxn ) m? Mat A ( mxn ) n? 1 Mat A 11 Mat A 12 Mat A 21 Mat A 22 Mat A 31 Mat A 32 Mat A 11 2 HASIL DARAB DUA MATRIKS 1 BINA MATRIKS A

(2008.1.39) Mat B ( mxn ) m? SHIFT MAT 1 2 2 = Mat B ( mxn ) n? 1 = Mat B 11 1 = Mat B 21 -4 = Mat B 11 AC Dim Edit Mat 1 2 3 A B C 1 2 3 Mat B ( mxn ) m? Mat B ( mxn ) n? 1 Mat B 11 Mat B 21 Mat B 11 1 HASIL DARAB DUA MATRIKS 2 BINA MATRIKS B

HASIL DARAB DUA MATRIKS 3 (2008.1.39) Mat A SHIFT MAT 3 1 Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 SHIFT MAT 3 2 Mat A x Mat B = Mat Ans 11 - 10 Mat Ans 21 -3 Mat Ans 31 X = - 10 - 3 Mat A x Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 Mat A x Mat B Mat Ans 11 -10 Mat Ans 21 -3 Mat Ans 31 JAWAPAN

MATRIKS: MENCARI PENENTU 1 Cari nilai m dan nilai n (2007.2.9) MODE 2 Mat A ( mxn ) m? SHIFT MAT 1 1 2 = Mat A ( mxn ) n? MODE MODE 2 = Mat A 11 -4 = Mat A 12 2 = Mat A 21 -5 = Mat A 22 3 = Mat A 11 AC EQN MAT VCT 1 2 3 Dim Edit Mat 1 2 3 A B C 1 2 3 Mat A ( mxn ) m? Mat A ( mxn ) n? 1 Mat A 11 Mat A 12 Mat A 21 Mat A 22 Mat A 11 -4 SOALAN 2007

MATRIKS: MENCARI PENENTU 2 Cari nilai m dan nilai n (2007.2.9) Dim Edit Mat 1 2 3 SHIFT MAT 1 Det SHIFT MAT 1 3 Det Mat A = Det Mat A -2 m = -2 Det Trn 1 2 Det Dim Edit Mat 1 2 3 A B C Ans 1 2 3 4 Det Mat A Det Mat A -2 n = 3 SOALAN 2007

SELESAI PERSAMAAN MATRIKS Menggunakan kaedah matriks , hitung nilai x dan nilai y yang memuaskan persamaan matriks berikut : (2007.2.9b) PENYELESAIAN SOALAN 2007

Masuk mode Matriks Input Matriks A Input Matriks B SHIFT MAT 3 1 = - 1.5 1 - 2.5 2 SHIFT MAT 3 2 x = 0.5 1.5 x Mat B SHIFT MAT 3 1

PENGGUNAAN KALKULATOR TAMAT MATRIKS

P (t) Q (t) R (t) TABURAN NORMAL MODE MODE 1 Z < + ve 0 < Z < + ve Z > + ve SHIFT DISTR COMP CMPLX 1 2 SD REG BASE 1 2 3 P ( Q ( R (  t 1 2 3 4

TABURAN NORMAL MODE MODE 1 SHIFT DISTR COMP CMPLX 1 2 SD REG BASE 1 2 3 (a) P ( z < 0.5) = COMP CMPLX 1 2 SD REG BASE 1 2 3 P ( Q ( R (  t 1 2 3 4 1 0.5 ) = P ( P ( 0.5 P ( 0.5 ) P ( 0.5 ) 0.69146 P (0.5) 0.69146 (b) P ( z > 1.2) = 3 1.2 ) = R (1.2) 0.11507 (c) P ( z > - 0.8 ) = (e) P ( 0 < z < 1.3) = 2 1.3 ) = Q (1.3) 0.4032 SHIFT DISTR SHIFT DISTR P ( Q ( R (  t 1 2 3 4 R ( R ( 1.2 ) 0.11507 (d) P ( z < - 2.1 ) = P ( Q ( R (  t 1 2 3 4 Q ( 1.3 ) 0.4032 Q ( Q ( 1.3 ) 0.4032 1 – Q (0.8) Q (2.1)

TABURAN NORMAL COMP CMPLX 1 2 SD REG BASE 1 2 3 COMP CMPLX 1 2 SD REG BASE 1 2 3 P ( Q ( R (  t 1 2 3 4 P ( P ( 0.5 P ( 0.5 ) P ( 0.5 ) 0.69146 P ( Q ( R (  t 1 2 3 4 R ( (f) P ( 0 < z < 1.3 ) = Q ( 0 ) – Q (1.3) (f) P ( - 1.2 < z < 0 ) = Q ( 0 ) – Q (1.2) (f) P ( - 0.8 < z < 2.4 ) = 1 - Q ( 0.8 ) – Q (2.4)

PENGGUNAAN KALKULATOR TAMAT TABURAN NORMAL

PENGAMIRAN (INTEGRATION) MODE 1 COMP CMPLX 1 2 -- 3 ) = X ALPHA 4 1 , 3 , 18 18

PENGAMIRAN (INTEGRATION) MODE 1 COMP CMPLX 1 2 -- 2 ) = X ALPHA 4 , 2 , ( ) ^ 6.4 6.4

PENGGUNAAN KALKULATOR TAMAT PENGAMIRAN

BENTUK PIAWAI (2009.1.3) MODE 2 MODE MODE MODE MODE 4.5 EXP 15 5.1 EXP 14 + 3 = Fix Sci Norm 1 2 3

BENTUK PIAWAI (2010.1.3) MODE 2 MODE MODE MODE MODE 0.034 ( 1.7 7 1 = Fix Sci Norm 1 2 3 ) EXP

BENTUK PIAWAI (2012.1.3) MODE 2 MODE MODE MODE MODE 746.5 ( - 3 ^ 10 -7 4 = Fix Sci Norm 1 2 3 ) EXP

PENGGUNAAN KALKULATOR TAMAT BENTUK PIAWAI

TABURAN BINOMIAL 0.6 7 3 SHIFT nCr X ^ 3 X 0.4 ^ 4 0.1935 7 7C 7C3 7C3x 7C3x0.6 7C3x0.6^ 7C3x0.6^3 7C3x0.6^3x 7C3x0.6^3x0.4 7C3x0.6^3x0.4^ 7C3x0.6^3x0.4^4 7C3x0.6^3x0.4^4 0.1935 =

PENGGUNAAN KALKULATOR TAMAT TABURAN BINOMIAL
Tags