4.2 Solubility of solids in liquids(0).ppt

1,026 views 46 slides May 01, 2024
Slide 1
Slide 1 of 46
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46

About This Presentation

FGJHKYIEH


Slide Content

Solubility of solids in liquids

Contents
Ideal and non ideal solubility
Solvation and association in polar solvents
Factors affecting solubility

Objectives of the lecture
After completion of this lecture, the student should
be able to:
Explain the ideal solution and real solution
Describe Solubility of strong and weak electrolytes

Ideal and non ideal solubility
Ideal solution
Thesolubilityofasolidinanidealsolutiondependson
Temperature
Meltingpointofthesolid
Molarheatoffusion∆H
f,(heatrequiredtomeltone
moleofsolidtoliquidwithoutchangingits
temperature)
Idealsolubilityisnotaffectedbythenatureofthe
solvent.

Ideal solution…
In an ideal solution
whereX’2isthemolfractionsolubilityinanideal
solution
ΔHfisthemolarheatoffusionofsolute
T0isthemeltingpointofsolute,andTisthesolution
temperaturesuchthatT<T0.
NB.itisassumedthatinanidealsolutiontheheatof
solutionisequaltotheheatoffusion

Ideal solution…
Example:whatisthesolubilityofnaphthaleneat
20
o
Cinanidealsolution?Themeltingpointof
naphthaleneis80
o
C,andthemolarheatoffusionis
4500cal/mole.
-logX
2
i
=∆H
f/2.303R(T
o-T)/TT
o
-logX
2
i
=4500 (353-293)
2.303x1.987293x353
X
2
i
=0.27

Non-ideal solutions
Heat of solution ≠Heat of fusion
the mole fraction solubility is the sum of two terms:
the solubility in an ideal solution +
the log of the activity coefficient of the solute
-log X’
2 = ΔH
fx T
o–T + log 
2.303 R T
oT
Theconventionalconcentrationtermsprovideacountof
molecules,atoms,orionsperunitvolumebutaffordno
indicationofthephysicalorchemicalactivityofthe
speciesmeasured,and
itisthisactivitythatdeterminesthephysicaland
chemicalpropertiesofthesystem

Activitymaybeconsideredlooselyasacorrected
concentrationorpressurethattakesintoaccountnot
onlythestoichiometricconcentrationorpressurebut
alsoany
intermolecularattractions
Repulsions
interactionsbetweensoluteandsolventinsolution
association,andionization
Thus,activitymeasurestheneteffectivenessofa
chemicalspecies.

Activity and Activity Coefficient
•The activity coefficient, γ
2, depending on the nature
of both the solute and solvent
•To account for non-ideality of solutions “activity” is used
instead of concentration in all equations
“Activity”:a
i= 
ic
i
Activity coefficient:
i
Log of activity co efficient considers
work of solubilization(overcome IMF)
Volume of solution
Total volume of solvent

Non-ideal solutions…
The total work as given by
(w
22+ w
11-2w
12)
The activity coefficient, γ
2, is to be proportional to
To the volume of the solute and
To the fraction of the total volume occupied by the
solvent.

Non-ideal solutions…
The log of the γ
2 is given by
logγ
2= [(w
11)
1/2
-(w
22)
1/2
]
2
V

1
2
2.303RT
In which
V
2is volume per mole of solute and
ф
1is the volume refraction, or X
1V
1/(X
1V
1+
X
2V
2) of the solvent,
R is the gas constant, 1.987 cal/mole degree
T is the absolute temperature of the solution.
 -logX
2= ∆H
f(T
o-T)+ V

1
2

1-σ
2)
2
2.303RT T
o 2.303RT

Non-ideal solutions…
Thewtermsrepresentingattractiveforces
Thetermsw11andw22areameasureoftheinternalenergy
orcohesiveforcesofthesolventandsolute,respectively.
w11istheamountofworkinvolvedinseparatingsolvent
moleculestocreatespaceforasolutemolecule
w22istheworkinvolvedinbreakingasolutemoleculefrom
itsbulk

Solvationand association in polar solvents
•Solvation
•Indissolutionofsoluteinsolventtheremaybe
stronginteractionssuchashydrogenbonding
•-vedeviation
•Association
•Whentheinteractionoccursb/nlikemoleculesof
oneofthecomponentsinasolution
•+vedeviation
•Example:dimerizationofbenzoicacidinsome
nonpolarsolventsortheinterlinkingofwater
moleculesbyhydrogenbonding

Factors affecting solubility
Temperature
Molecular structure
Nature of solvent and cosolvent
pH
Combined effect of solvent and pH
Common ion effect
Effect of indifferent electrolytes
Effect of complex formation
Effect of solubilizing agents

Temperature
Solubilityofstrongelectrolytes
•AriseinTwillincreasethesolubility
-endothermicprocess-95%ofsolutes
•AriseinTwilldecreasethesolubility
•exothermicdissolution
•TheseeffectconformstotheLeChatelier'sprinciple
–asystemtendstoadjustitselfinamannersoasto
counteractastresssuchasincreaseofT.

Solubility curve
Figure Effect of heat on solubility.

Solubility curve

Common ion effect
Solubilityofslightlysolubleelectrolyteisdescribedby
solubilityproduct,K
sp
ForsaturatedsolnofelectrolyteABinequilibriumwith
undissolvedsolid
AB
solid=A
+
+B
-
Accordingtolowofmassaction,theequilibrium
constantintermsofconc.isgivenby
K=[A+][B
-
]/[AB]

Common ion effect…
Sincetheconcentrationofthesolidphaseisessentially
constant,theeqnrewrittenas:
[A
+
][B
-
]=K
sp
IfanionincommonwithAB,(e.g.A+)isaddedtoa
solutionofAB,therewillbeamomentaryincreasein
ionicspecies:
[A
+
][B
-
]>K
sp
•Inordertore-establishtheequilibrium[A
+
][B
-
]=K
sp
SomeofABwillprecipitateout
Theadditioncompoundbearingthecommonion(e.g.,
AC)reducesthesolubilityofslightlysolublesalt
Example,Al(OH)
3andAgCl

Common ion effect…
AgCl
solid= Ag
+
+ Cl
-
Al(OH)
3solid= Al
3+
+ 3OH
-
K= [Ag+][Cl
-
] /[AgCl
solid] [Al
3+
][OH-]
3
= K
sp
K
sp=[Ag
+
][Cl
-
]
let us add NaCl into AgCl solution
Cl
-
ion increases
Momentarily [Ag
+
][Cl
-
] > K
sp
some of the AgCl precipitates from the solution until
the equilibrium [Ag
+
][Cl
-
] = K
spis reestablished.

pH (solubility of weak electrolytes)
Drugsmaybeclassifiedintothreecategoriesaccordingto
theirphysicalbehaviorinaqueoussolution:
strongelectrolytes-theymayexistentirelyasions,such
asK+,Cl−
Nonelectrolytes-theymaybeundissociated,aswiththe
steroidsandthesugars
weakelectrolytes-theymaybepartiallydissociated
andexistinbothanionicandamolecularform
Mostdrugsareweakacidsorbases&poorlysolublein
water.
Solubilityofweakelectrolytesisaffectedbychangein
pH

Weak acids
Solubilityofweakacids(itssalt)decreaseswith
decreaseinpH
Theproportionofunionizedmoleculesinsolution
increases(theyarelesssolublethanionized)
Example
Carboxylicacids(>5C)reacttoproducesolublesalt
withNaOH,carbonates&bicarbonates
Fattyacidsformsolublesoapwithalkalimetals
Alkalimetalsaltoftartaricacidissoluble
Phenolisweaklyacidic&Benzoicacidsaresoluble
inNaOHsolution
C
6H
6OH+NaOH=C
6H
5O-+H
2O

Weak bases
Solubilityofweakbases(itssalt)increaseswitha
decreaseinpH
Alkaloids, symphathomimetic amines,
antihistamines,localanestheticsandothers
Atropinesulfateandtetracainehydrochlorideare
formedbyreactingwithacids

Calculating the solubility of weak electrolytes as
influenced by PH
AtlowerpHtheionic&solublephenobarbitalsodium
isconvertedtolesssolublemolecularphenobarbital
thatprecipitates
Alkaloidalsaltssuchasatropinesulfatebeginsto
precipitateasthepHiselevated
Forhomogeneoussoln&maxtherapeuticeffect,the
preparetionshouldbeadjustedtooptimumpH.

pH…
At a certain pH, the relative conc. of the ionic and
the molecular moieties of a drug are given by the
Henderson-Hasselbalchequation.
For a weak acid HA, which ionizes according to
Equation
HA+H2O=H
3O
+
+ A−
the dissociation constant is given in Equation
Ka = [H
3O
+
] [A−]
[HA]
Ka = dissociation constant
A− = molar concentration of the acidic anion
H
3O
+
= molar concentration of the hydroniumion
HA = molar concentration of the undissociatedacid

pH…
thelogarithmofbothsides
pH=pKa+log[A-]/[HA]
Acidsaresubstancesdonatinghydrogenions,andbases
aresubstancesacceptinghydrogenions.
IftheacidBH+,whichisaconjugateofaweakbase
withahydrogenion,isincontactwithwater,an
ionizationordissociationconstantKacanbeobtained
fortheweakbase,too:
 BH
+
+H
2O=H
3O
+
+B
The Henderson-Hasselbalchequation for a weak base is
therefore as follows:
pH=pKa+log[B]/[BH+]

pH…
ThepHbelowwhichthesaltofaweakacid,
phenobarbitalsodium,forexample,beginsto
precipitatefromaqueoussolutionisreadilycalculated
inthefollowingmanner
Representingthefreeacidformofphenobarbitalas
HP&thesolubleionizedformasP-,equilibriumin
asaturatedsolnoftheslightlysolubleweak
electrolyteare
HP
solid=HP
sol
HP
sol+H
2O=H
3O
+
+P-

pH…
theequilibriunconstantisgiveninEquation
Ka=[H
3O
+
]+[P

]
[HP]
Thesolubilityofunionizedform:
So=HP
sol
Thetotal(theoverall)solubilitySofphbconsistsofthe
concoftheundissociatedacid[HP]&theconjugatebase
orionizedform[P−]:
S=[HP]+[P

]
ThepHbelowwhichthedrugseparatesfromsolutionas
theundissociatedacid,pH
p:
pHp= pKa+ log(S-So)/So

Example:BelowwhatpHwillfreephenobarbital
begintoseparatefromasolutionhavinganinitial
concentrationof1gofsodiumphenobarbitalper
100mLat25°C?Themolarsolubility,So,of
phenobarbitalis0.0050andthepKais7.41at
25°C.Themolecularweightofsodium
phenobarbitalis254.
Solution
Molarsolubility,S
o=0.0050mole/liter
Molarconc,S=10g/254=0.039mole/liter
pH
p=pKa+log(S-S
o)/S
o
=7.41+log(0.039-0.005)/0.005
=7.41+log(0.034/0.005)
=8.24

Combined effect of solvent and
pH
Addition of solvents such as alcohol to aqueous solution
may affect the solubility of weak electrolytes:
It increases the solubility of unionized species
It decreases the dissociation
Example:WhatistheminimumpHrequiredforthe
completesolubilityofthedruginsolutioncontaining
6gofphbNa(M.Wt:254)in100mlofa30%v/v
alcoholicsolution(givenpka&S
oofphbin30%v/v
alcohol=7.92&0.0276M),respectively)

Solution
Molarsolubility,S
o=0.0276mole/liter
Molarconc,S=60g/254=0.236mole/liter
pH
p=pKa+log(S-S
o)/S
o
=7.92+log(0.236-0.0276)/0.0276
=7.92+log(0.208/0.0276)
=7.92+0.877
=8.79

Effect of non-electrolytes on the solubility of
electrolytes
Thesolubilityofelectrolytesdependsonthedissociation
ofdissolvedmoleculesintoions.
Liquidswithahighdielectricconstant(e.g.water)are
abletoreducetheattractiveforces.
Ifawater-solublenon-electrolytesuchasalcoholisadded
toanaqueoussolutionofasparinglysolubleelectrolyte,
thesolubilityisdecreasedbecausethealcohollowers
thedielectricconstantofthesolventandionic
dissociationoftheelectrolytebecomesmoredifficult.

Effect of electrolytes on the solubility of non-electrolytes
Non-electrolytes
donotdissociateintoionsinaqueoussolution,
consistsofsinglemolecules.
Theirsolubilityinwaterdependsontheformationof
weakintermolecularbonds(hydrogenbonds)
Thepresenceofaverysolubleelectrolyte(e.g.
ammoniumsulphate),
theionsofwhichhaveamarkedaffinityforwater,
competingfortheaqueoussolvent&breakingthe
IMFbondsb/nthenon-electrolyteandthewater.

Effect of complex formation
InComplexformationtheapparentsolubilityofasolute
inaparticularliquidmaybe:
Increasesd
Thesolubilityofmercuriciodide(HgI
2)becauseof
theformationofawatersolublecomplex,K
2(HgI
4)
Cyclodextrineincreasessolubility
Decreased
TTCformaninsolublecomplexwithcalciumions

Effects of Solubilizingagents
Theseagentsformlargeaggregatesormicellesin
solution>CMC
Inaqueoussolutionthecentreoftheseaggregates
resemblesaseparateorganicphase
Solubilityoforganicsolutesisincreasesastheymaybe
takenupbytheaggregates
Inorganicsolventsthecentreoftheaggregatesinthese
systemsconstitutesamorepolarregion
Solubilityofpolarsolutesincreasesastheyaretaken
upintotheseregions

Distribution Phenomena
Ifliquidorsolidisaddedtoamixtureoftwo
immiscibleliquids,itwillbecomedistributedbetween
thetwolayersinadefiniteconcentrationratio.
IfC1andC2aretheequilibriumconcentrationsofthe
substanceinSolvent1andSolvent2,respectively,the
equilibriumexpressionbecomes
C1/C2=K
The equilibrium constant, K, is known as the
distribution ratio,
distribution coefficient, or partition coefficient

Example Distribution Coefficient
Whenboricacidisdistributedbetweenwaterand
amylalcoholat25°C,theconcentrationinwateris
foundtobe0.0510mole/literandinamylalcoholitis
foundtobe0.0155mole/liter.Whatisthedistribution
coefficient?
Noconventionhasbeenestablishedwithregardto
whethertheconcentrationinthewaterphaseorthat
intheorganicphaseshouldbeplacedinthe
numerator.Therefore,theresultcanalsobe
expressedas
Oneshouldalwaysspecify,whichofthesetwoways
thedistributionconstantisbeingexpressed

Partition coefficient (P)
Partitioncoefficient(P)isaparameterthat
characterizetherelativeaffinityofcompoundin
itsunionizedformforwaterandanimmisibile
modellipidsolvent(octanol)
Octanolwaschosenasmodellipidphase
becauseitmostcloselysimulatesthe
propertiesofbiologicalmembranes
Partitioncoefficientcanbemeasured
experimentally
bydissolvingaknownamountofdruginwater,
mixingthesolutionwellwithoctanoland
allowingenoughtimeforthemixturetoreach
equilibriuminpartitioningbetweenthetwo

Partition coefficient (P) Interpretation
P>1orlogP>0impliesthatthedrughas
affinityforlipidmembrane
P<1orlogP<0impliesthatthedrughas
affinityforwaterorhydrophiliclayer.
LogPprovidesthepharmacistanappreciation
ofthedrug'spartitioningpreference.
ApositivelogPtellsusthatmoredrughas
movedintooctanol
AnegativelogPtellsusthatthedrughas
partitionedmoreintowater.
AlogPof2indicatesthatthereare100
moleculesofdruginoctanolforevery1
moleculeofdruginthewaterphase

Effect of Ionic Dissociation & Molecular Association on Partition
Whenassociationanddissociationofdrugoccur,
thesituationbecomesmorecomplicated.
E.g.benzoicacidassociatesintheoilphaseand
dissociatesintheaqueousphase
Drugsthatareweakacidsorweakbasesionizein
waterdependingonpKaandpHoftheaqueous
phase
Ingeneral,ionizedstructurecannotpartitionin
octanolorotherhydrophobicsolvent
Pvaluecannotbeusedtoassessthetrue
distributionofionizabledrugintwoimmiscible
phase
Becauseitsvalueisdependentontheionicstate
ofthedrug(whichinturndependsonpH)

Apparent distribution coefficient
P = Co/Cw
Co = [HA]o

Pharmaceutical Application
Knowledgeofpartitionisimportanttothepharmacist
becausetheprincipleisinvolvedinseveralareasof
currentpharmaceuticalinterest.Theseinclude
1.preservationofoil–watersystems
2.theabsorptionanddistributionofdrugsthroughout
thebody
3.Extractionofactiveingredientsfromcrudedrug

Extraction
Partitioncoefficientisusedtodeterminethe
efficiencywithwhichonesolventcanextracta
compoundfromasecondsolvent.
Supposethatwgramsofasoluteisextracted
repeatedlyfromV1mLofonesolventwith
successiveportionsofV2mLofasecondsolvent,
whichisimmisciblewiththefirst
Letw1betheweightofthesoluteremaininginthe
originalsolventafterextractingwiththefirstportion
oftheothersolvent
Then,theconcentrationofsoluteremaininginthe
firstsolventis(w1/V1)g/mLandtheconcentration
ofthesoluteintheextractingsolventis(w-w1)/V2
g/mL.

The process can be repeated, and after n extractions
The distribution coefficient is thus
Byuseofthisequation,itcanbeshownthatmost
efficientextractionresultswhennislargeandV2issmall
inotherwords,whenalargenumberofextractionsare
carriedoutwithsmallportionsofextractingliquid

Example Distribution Coefficient
Thedistributioncoefficientforiodinebetweenwater
andcarbontetrachlorideat25°CisK=CH2O/CCCl4
=0.012.Howmanygramsofiodineareextracted
fromasolutioninwatercontaining0.1gin50mLby
oneextractionwith10mLofCCl4?Howmany
gramsareextractedbytwo5-mLportionsofCCl4?
Thus, 0.0011 g of iodine remains in the water phase,
and the two portions of CCl4 have extracted 0.0989
g.
Tags