FACTORING NOT PERFECT SQUARE TRINOMIAL (GENERAL TRINOMIAL a = 1)
ACTIVITY I: AM I PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36 PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL B. FACTOR THE TRINOMIALS THAT BELONGS TO PERFECT SQUARE TRINOMIAL.
ACTIVITY I: AM I PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36
ACTIVITY I: AM I PERFECT OR NOT? PERFECT SQUARE TRINOMIAL FACTORS B. FACTOR THE TRINOMIALS THAT BELONGS TO PERFECT SQUARE TRINOMIAL. m² + 12m + 36 16d² - 24d + 9 (m + 6)² (4d – 3)² 9n² + 30nd + 25d² (3n + 5d)² 121c² + 66c + 9 (11c + 3)² (7g – 6)² 49g² - 84g + 36 = = = = =
FACTORING NOT PERFECT SQUARE TRINOMIAL (GENERAL TRINOMIAL a = 1)
ACTIVITY I: AM I PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36
HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? NOT PERFECT SQUARE TRINOMIAL p² + 5p + 6 q² + q – 12 v² + 4v – 21 q² - 3q – 18 n² - 17n + 72
HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? EXAMPLE: p² + 5p + 6 = ( )( ) FACTOR THE FIRST TERM p² = p ● p p p FACTOR THE LAST TERM 6 1 ● 6 -1 ● - 6 2 ● 3 -2 ● - 3 THE SUM FACTOR THE LAST TERM = 7 = -7 = +5 + 2 + 3
HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? EXAMPLE: q² + q - 12 = ( )( ) FACTOR THE FIRST TERM q ² = q ● q q q FACTOR THE LAST TERM -12 1 ● -12 -1 ● 12 4 ● - 3 -4 ● 3 THE SUM FACTOR THE LAST TERM = -11 = 11 = +1 + 4 - 3
HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? EXAMPLE: v ² + 4v - 21 = ( )( ) FACTOR THE FIRST TERM v² = v ● v v v FACTOR THE LAST TERM -21 -7 ● 3 7 ● - 3 1 ● - 21 -1 ● 21 THE SUM FACTOR THE LAST TERM = -4 = +4 = -20 + 7 - 3
HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? EXAMPLE: n ² - 17n + 72 = ( )( ) FACTOR THE FIRST TERM n ² = n ● n n n FACTOR THE LAST TERM 72 8 ● 9 -8 ● - 9 1 ● 72 -1 ● - 72 THE SUM FACTOR THE LAST TERM = 17 = -17 = 73 - 8 - 9