4. FACTORING NOT PST A=1.pptx MATHEMATICS

RYANCENRIQUEZ 43 views 21 slides Aug 18, 2024
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

mathematics


Slide Content

FACTORING NOT PERFECT SQUARE TRINOMIAL (GENERAL TRINOMIAL a = 1)

ACTIVITY I: AM I PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36 PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL B. FACTOR THE TRINOMIALS THAT BELONGS TO PERFECT SQUARE TRINOMIAL.

ACTIVITY I: AM I PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36

ACTIVITY I: AM I PERFECT OR NOT? PERFECT SQUARE TRINOMIAL FACTORS B. FACTOR THE TRINOMIALS THAT BELONGS TO PERFECT SQUARE TRINOMIAL. m² + 12m + 36 16d² - 24d + 9 (m + 6)² (4d – 3)² 9n² + 30nd + 25d² (3n + 5d)² 121c² + 66c + 9 (11c + 3)² (7g – 6)² 49g² - 84g + 36 = = = = =

FACTORING NOT PERFECT SQUARE TRINOMIAL (GENERAL TRINOMIAL a = 1)

ACTIVITY I: AM I PERFECT OR NOT? A. DIRECTION: CATEGORIZE THE FOLLOWING TRINOMIALS AS TO WHERE IT BELONGS. PERFECT SQUARE TRINOMIAL NOT PERFECT SQUARE TRINOMIAL m² + 12m + 36 16d² - 24d + 9 p² + 5p + 6 q² + q – 12 9n² + 30nd + 25d² v² + 4v – 21 121c² + 66c + 9 q² - 3q – 18 n² - 17n + 72 49g² - 84g + 36

HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? NOT PERFECT SQUARE TRINOMIAL p² + 5p + 6 q² + q – 12 v² + 4v – 21 q² - 3q – 18 n² - 17n + 72

HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? EXAMPLE: p² + 5p + 6 = ( )( ) FACTOR THE FIRST TERM p² = p ● p p p FACTOR THE LAST TERM 6 1 ● 6 -1 ● - 6 2 ● 3 -2 ● - 3 THE SUM FACTOR THE LAST TERM = 7 = -7 = +5 + 2 + 3

HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? EXAMPLE: q² + q - 12 = ( )( ) FACTOR THE FIRST TERM q ² = q ● q q q FACTOR THE LAST TERM -12 1 ● -12 -1 ● 12 4 ● - 3 -4 ● 3 THE SUM FACTOR THE LAST TERM = -11 = 11 = +1 + 4 - 3

HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? EXAMPLE: v ² + 4v - 21 = ( )( ) FACTOR THE FIRST TERM v² = v ● v v v FACTOR THE LAST TERM -21 -7 ● 3 7 ● - 3 1 ● - 21 -1 ● 21 THE SUM FACTOR THE LAST TERM = -4 = +4 = -20 + 7 - 3

HOW TO FACTOR GENERAL TRINOMIALS ax ² + bx + c WHERE a = 1? EXAMPLE: n ² - 17n + 72 = ( )( ) FACTOR THE FIRST TERM n ² = n ● n n n FACTOR THE LAST TERM 72 8 ● 9 -8 ● - 9 1 ● 72 -1 ● - 72 THE SUM FACTOR THE LAST TERM = 17 = -17 = 73 - 8 - 9

q² - 3q – 18

DRILL

1. m² + m – 90 (m-9)(m+10)

2 . m² + 2m – 24 (m+6)(m-4)

3. k² - 13k + 40 (k-5)(k-8)

4 . x² - x -56 (x+7)(x-8)

5 . x² - 15x +50 (x-10)(x-5)

FACTOR BINGO GAME Caption

FACTOR

THANK YOU FOR LISTENING!
Tags