44
Cramér-Rao Lower Bound (CRLB)
SOLO
References
http://en.wikipedia.org/wiki/Cramer_Rao_bound
Bergman, N., “Recursive Bayesian Estimation - Navigation and Tracking Applications”,
PhD Thesis, Linköping University, 1999, Dissertation No. 579, Ch. 4
Van Trees, H., L., “Detection, Estimation and Modulation Theory”, Wiley,
New York, 1968, 2001, pp. 146, 66, 72, 79,84,
Tichavský, P., Muravchik, C, Nehorai. A., “Posterior Cramér – Rao bounds for
Discrete-Time Nonlinear Filtering”, IEEE Transactions on Signal Processing, 46(5),
1998, pp. 1386 - 1396
Ristic, B., Arulampalam, S., N., Gordon, N., “Beyond the Kalman Filter – Particle Filters
for Tracking Applications”, Artech House, 2004, Ch. 4: “Cramér – Rao Bounds for
Nonlinear Filtering”
Ristic, B., “Cramér – Rao Bounds for Target Tracking”, Int. Conf. Intelligent Sensors,
Sensor Networks and Information Processing, 6 Dec., 2005,
http://www.issnip.org/2005/branko_05.pdf
Van Trees, H., L., “Bayesian Bounds”, Keynote Speech, 2005 Adaptive Sensor and Array
Processing Workshop, 7 June 2005,
http://www.ll.mit.edu/asap/asap_05/pdf/Presentations/01_vantrees.pdf
Return to Table of Content