5 Filter Part 1 (16, 17, 18).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf

deepaanmol2002 13 views 42 slides Mar 02, 2025
Slide 1
Slide 1 of 42
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42

About This Presentation

5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf


Slide Content

Filters
Basic Realization & Circuit Design

Introduction of Filter
Filter is a broad area of electronics also an
independent subject
Oldest Technology: Filter with inductor &
capacitor called passive LC filter
LC filter works well in high frequency
Low frequency application : DC to 10 KHz
required inductors are bulky and provide
non ideal characteristics
So, filter design without inductor is an
interesting issue

Introduction of Filter
Passive LC Filter
Active RC Filter
Op-amp based RC filter
Switch Capacitor Filter

Filter Transmission
Filter transfer function
Passband:Passingsignalwhosefrequencyspectrum
lieswithinmagnitudeoftransmission
Stopband:Frequencybandoverwhichtransmissionis
zero
<Gain function>
<Attenuation function>
<Transfer function with phase>
<Transfer function >

Filter Types

Specifications for physical filter
circuit
Physicalcircuitcannotrealizetheidealized
characteristics
PhysicalCircuitcannotprovideconstanttransmission
atallthepassbandfrequencies
Alsophysicalcircuitcannotprovidezerotransmission
atallthestopbandfrequenciesi.e.sometransmission
overstopband
Transmissionofphysicalcircuitcannotchangeabruptly
attheedgeofthepassband.
Transmissionbandextendsfromthepassbandedgeω
P
tostopbandedgeω
S.
ω
S/ω
Pismeasuredtounderstandthesharpnessof
thelowpassfilterresponsecalledSelectivityFactor

Filter Specifications (Low pass)
Realisticspecificationforthetransmissioncharacteristicsof
lowpassfilter
Maximum
deviation in
passband
transmission
Stop band signal
must be attenuated
by at least A
min
Pass-band edge ω
P
Maximum allowed variation in pass-band transmission A
max
Stop-band edge ω
S
Maximum required stop-band attenuation A
min

Towards Ideal Filter (Low Pass )
Selectivityratioω
S/ω
Ptowardsunity
LowerA
max
HigherA
min
Toachievetheabovespecificationfiltercircuitshouldbe
higherorderandcomplexandexpensive
Filterdesignmustbecomplicatedifboththemagnitude
andphasespecified
Ripplepeakatpassbandaswellasstopbandmustbe
equalcalledequi-ripplecharacteristics

Filter Transfer function
The degree of the denominator, N, is the filter order
For the filter circuit to be stable, the degree of the numerator must
be less than or equal to that of the denominator M ≤ N
Numerator and denominator coefficients, a
0, a
1, . . . , a
Mand b
0, b
1, . . . ,
b
N−1, are real numbers.
Thenumeratorroots,z
1,z
2,...,z
M,arethetransferfunction
zeros,ortransmissionzeros
Denominatorroots,p
1,p
2,...,p
N,arethetransferfunctionpoles,
orthenaturalmodes
Eachtransmissionzeroorpolecanbeeitherarealoracomplex
number
Complexzerosandpoles,however,mustoccurinconjugatepairs.
(1)
(2)

Filter transfer function (LP)-‘Zeros’
Zerosareusuallyplacedonthejωaxisatstopbandfrequencies
Infiniteattenuation(zerotransmission)attwostopbandfrequencies:
ω
l1andω
l2.
Thefilterthenmusthavetransmissionzerosats=+jω
l1ands=
+jω
l2
Sincecomplexzerosoccurinconjugatepairs,theremustalsobe
transmissionzerosats=−jω
l1ands=−jω
l2.
Thus the numerator polynomial of this filter will have the factors
(s + j ω
l1)(s −j ω
l1)(s + j ω
l2)(s −j ω
l2)
Can be written as (s
2
+ ω
l1
2
)(s
2
+ ω
l2
2
) If, S=jω, then ω=ω
l1&
ω=ω
l2

Filter transfer function (LP)-‘Zeros’
Transmissiondecreasestoward-∞asωapproaches∞.
Thusthefiltermusthaveoneormoretransmissionzerosats
=∞.
Numberoftransmissionzerosats=∞isthedifference
betweenthedegreeofthenumeratorpolynomial,M,andthe
degreeofthedenominatorpolynomial,N,ofthetransfer
function
N−Mzerosats=∞

Filter transfer function (LP)-‘Poles’
Forafiltercircuittobestable,
allitspolesmustlieintheleft
halfofthesplane,andthusp
1,
p
2,...,p
Nmustallhavenegative
realparts.
Assumedthatfilterisoffifth
order(N=5).
Twopairsofcomplex-conjugate
polesandonereal-axispole,for
atotaloffivepoles.
Allthepoleslieinthepassband
thatgivesthefilteritshigh
transmissionatpassband
frequencies.
Thefivetransmissionzerosare
ats=∞,±jω
l1,±jω
l2,

Filter Transfer function (BP)

Filter Transfer function (BP)

Filter Transfer function (BP)
Bandpassfilter
Transmissionzerosareats=±jω
l1
andS=±jω
l2
oneormorezerosats=0andone
ormorezerosats=∞becausethe
transmissiondecreasestoward0as
ωapproaches0and∞
Assumingthatonlyonezeroexists
ateachofs=0ands=∞,thefilter
mustbeofsixthorder

Transfer function (All Pole Filter)
Low-passfilter
Nofinitevaluesofωatwhichthe
attenuationisinfinite(zero
transmission).
Thusitispossiblethatallthe
transmissionzerosofthisfilterare
ats=∞.
All-polefilter

Problem 1
Asecondorderfilterhasitspolesats=[-1/2±j(√3/2)].
Thetransmissioniszeroatw=2rad/sandisunityatDC
(w=0).Findthetransferfunction

Problem 2
Aforthorderfilterhaszerotransmissionatw=0,w=2rad/s
andw=∞.Thenaturalmodesare-0.1±j0.8and-0.1±j1.2find
T(s).

Filter Approximations
ButterworthApproximation:Maximallyflat
responseinpassband.
ChebyshevApproximation:Passbandripple
andsharpcut-off.
EllipticalApproximation:Passbandandstop
bandrippleandverysharpcut-off
BesselApproximation:Nosignaldistortionin
passband.

Filter Approximations

Butterworth Filter
Flat pass band.
This filter exhibits a monotonically decreasing transmission with
all the transmission zeros at ω= ∞
All-pole filter
Design specifications:
•A
max
•passband edge ω
p
•A
min
•stop band edge ω
S
ℇ: To determine maximum
deviation in pass band

Butterworth Filter
Fix the value of ℇ,
for A
max=3 dB, ℇ=1
A
max
Fix the order N for A(ω
s)≥A
min
ω
S
A
min

Butterworth Filter
ThedegreeofpassbandflatnessincreasesastheorderNis
increased
Nisincreasedthefilterresponseapproachestheidealbrick-
walltypeofresponse
DC Gain normalized at 1

Butterworth Filter: Graphical
Construction
The natural modes of an N
th
-order Butterworth filter can
be determined from the graphical construction
Natural modes lie on a circle of radius ω
0= ω
p(1/ε)
1/N
Spaced by equal angles of (П/N)
First mode at an angle (П/2N) from the +jω axis
P
1, P
2…P
Nare poles, K is setting any DC gain

Graphical construction for determining
the poles of Butterworth Filter

Graphical construction for determining
the poles of Butterworth Filter

Problem 3
FindtheButterworthtransferfunctionthatmeetsthe
followinglow-passfilterspecifications:f
p=10kHz,A
max=1
dB,f
s=15kHz,A
min=25dB,dcgain=1.

Problem 3
Solution:
A
max=1dB;ε=0.5088
If, N = 8, A( ω
s) = 22.3 dB
If, N = 9 , A( ω
s) = 25.8 dB.Select N = 9
The poles all have the same radius: ω
0

p(1/ε)
1/N
ω
0= 6.773 ×10
4
rad/s
p1 = ω
0(−cos80°+ j sin80°)
= ω
0(−0.1736 + j0.9848)

First-Order and Second-Order
Filter Functions
Simplestfiltertransferfunctions:firstandsecond
order.
Thesefunctionsareusefulinthedesignofsimple
filters.First-andsecond-orderfilterscanalsobe
cascadedtorealizeahigh-orderfilter.
Cascadedesignisoneofthemostpopular
methodsforthedesignofactivefilters(utilizing
opampsandRCcircuits).

First Order Filter
Thegeneralfirst-ordertransferfunctionisgivenby
First-orderfilterwithanaturalmodeats=−ω
0
Transmissionzeroats=-a
0/a
1
High-frequencygainthatapproachesa
1
Thenumeratorcoefficients,a
0anda
1,determinethetypeof
filter
Activerealizationsprovideconsiderablymoreversatilitythan
theirpassivecounterparts;inmanycasesthegaincanbesetto
adesiredvalue
Theoutputimpedanceoftheactivecircuitverylow,making
cascadingeasilypossible.
Theopamplimitsthehigh-frequencyoperationoftheactive
circuits.

Low pass (LP)
Bode Plot

Low pass (LP) with load

Low pass (LP) with load

High pass (HP)
Bode Plot

High pass (HP)

High pass (HP)

General

General

All Pass Filter
Animportantspecialcaseofthefirst-orderfilter
function
Transmissionzeroandthenaturalmodeare
symmetricallylocatedrelativetothejωaxis
Transmissionoftheall-passfilteris(ideally)constantat
allfrequencies
Phaseshowsfrequencyselectivity
All-passfiltersareusedasphaseshiftersandin
systemsthatrequirephaseshaping

All Pass Filter

All Pass Filter

All Pass Filter
Tags