5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf

deepaanmol2002 14 views 62 slides Mar 02, 2025
Slide 1
Slide 1 of 62
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62

About This Presentation

5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf5 Filter Part 2 (Lecture 19, 20, 21, 22).pdf


Slide Content

Filters
Basic Realization of Second Order Filter

Second Order LCR Resonator
Use of this resonator to derive circuit realizations for the
various second-order filter functions
The Resonator Natural Modes
Thenaturalmodesoftheparallelresonancecircuitcanbe
determinedbyapplyinganexcitationthatdoesnotchange
thenaturalstructureofthecircuit.
Resonatorisexcitedwithacurrentsource‘I’connectedin
parallel
Circuitisconcernedwithanindependentidealcurrent
sourceisequivalenttoanopencircuit
Findthepolesofanyresponsefunction

Second Order LCR Resonator
The Resonator Natural Modes
V
oacrosstheresonatorastheresponseandthusobtainthe
responsefunctionV
o/I=Z
Z is the impedance of the parallel resonance circuit
In terms of the admittance Y

Second Order LCR Resonator
Alternative way of exciting LCR resonator
NodexofinductorLhasbeendisconnectedfrom
groundandconnectedtoanidealvoltagesourceV
i
Idealindependentvoltagesourceisequivalenttoa
shortcircuit
Notalterthenaturalstructureoftheresonator
SelectVoastheresponsevariableandfindthetransfer
functionV
0/V
i

Second Order LCR Resonator
Realization of Transmission Zeros
TransferfunctionV
0/V
iwouldbeaccordingtothefilter
specification
Nodeslabeledx,y,orzcanbedisconnectedfromground
andconnectedtoV
iwithoutalteringthecircuit’snatural
modes
Circuittakestheformofavoltagedivider

Realization of the Low-Pass Function
Node x is disconnected from ground and connected to Vi
sLbecomes infinite at s = ∞
shunt impedance becomes zero at s = ∞

Realization of the High-Pass Function
Node y is disconnected from ground and connected to V
i
Series capacitor introduces a transmission zero at s = 0 (dc)
Shunt inductor introduces another transmission zero at s = 0
(dc)
ω
0and Q are the natural mode parameters
a
2is the high-frequency transmission
Value of a
2can be determined from the circuit by observing
that as s approaches ∞
S
2

Realization of the Band-Pass Function
Onezeroats=0isrealizedbytheshuntinductor,andone
zeroats=∞isrealizedbytheshuntcapacitor
Centerfrequencyω
0theparallelLC-tunedcircuitexhibits
aninfiniteimpedanceandthusnocurrentflowsinthe
circuit
At,ω=ω
0,V
o=V
i;Center-frequencygainofthebandpass
filterisunity

Realization of the Notch Functions
Disconnecting both nodes x and y from ground and connecting
them together to V
i
The impedance of the LC circuit becomes infinite
at ω= ω
0= 1/√(LC)

Realization of the Notch Functions
To obtain a notch-filter realization in which the notch
frequency ω
nis arbitrarily placed relative to ω
0
Simple notch-filter when ω
n= ω
0

n)
2
= 1/L
1C
1

0)
2
= 1/(L
2││L
1) (C
2+C
1)

Realization of Low Pass Notch Functions

n)
2
= 1/L
1C
1

0)
2
= 1/(L
2││L
1) (C
2+C
1)

0)
2
= 1/L
1(C
2+C
1)

Realization of High Pass Notch Functions

n)
2
= 1/L
1C
1

0)
2
= 1/(L
2││L
1) (C
2+C
1)

0)
2
= 1/(L
2││L
1)C

Realization of the All-Pass Function
All-passrealizationwithaflat
gainof0.5
Disadvantageoflackinga
common groundterminal
betweentheinputandthe
output

Inductance Simulation
Inductor Replacement

Antoniuoinductance simulation
circuit

Second-Order Active Filters Based
on Inductor Replacement
The Op Amp–RC Resonator
Thenodefromwhereoutput
istakenisnotveryconvenient
totakeanoutput.Iftheoutput
loadishighthenthefilter
characteristicswillbechanged
accordingtotheload.
So, it is
convenient
to connect
a buffer
amplifier
to the
output of
the filter

Second Order Filter by Op-amp RC
Resonator

Second Order Filter by Op-amp RC
Resonator

Second Order Filter by Op-amp RC
Resonator

Second Order Filter by Op-amp RC
Resonator
X
X

Second Order Filter by Op-amp RC
Resonator

Problem 4
Identifythetypeoffilter.
Alsofindω
0andQ

Second Order Filer by Op-amp RC
Resonator
Sallen-Keytopology
MultipleFeedbacktopology
Twointegratorlooptopology

Sallen-Key Filter
TheSallen–Keytopologyisanelectronicfiltertopology
usedtoimplementsecond-orderactivefiltersthatis
particularlyvaluedforitssimplicity
Voltage-controlledvoltage-source(VCVS)filtertopology
Practicallyinfiniteinputimpedanceandzerooutput
impedance
HighQfactor
BestgainaccuracybecauseitsgainisnotdependonRC
componentvalue
IntroducedbyR.P.SallenandE.L.Key

Sallen-Key Filter
GenericSallen–KeyFilterstructure

Sallen-Key Low Pass Filter
R
4
R
3
V
x V
y

Sallen-Key High Pass Filter
R
4
R
3

Sallen-Key Band Pass Filter
R
5
R
4
R
3
R
2

Sallen-Key Band Pass Filter
Gain (K)=1+(R
B/R
A)
Centre frequency (f
0)=1/(2πRC)
Q-factor: 1/(3-K)
Gain at f
0=K/(3-K)

Sallen-Key Band Reject Filter
Gain (K)=1+(R
B/R
A)
Centre frequency (f
0)=1/(2πRC)
Pass-band gain=K
Q-factor: 1/[2(2-K)]

Problem 5
Design a 2
nd
order unity gain Butterworth Sallen-Key
Low pass filter at ω
0= 1 kHz

Cascading of two filter stages
(Butterworth)
Ref: Operational Amplifiers … by David A Bell
For 1.5 dbf
c1 = f
c/0.65 For 1.5 dB f
c2 = f
c/0.8
1.5=20log1+
??????
??????
??????
??????1
2
1
2
1.5=20log1+
??????
??????
??????
??????2
4
1
2
fc : Cut-off frequency of 3
rd
order filter
f
c1and f
c2are the individual cut-off frequency of 1
st
and 2
nd
order stages.

Second-Order Active Filters Based on the
Two-Integrator-Loop Topology
Anotherfamilyofopamp–RCcircuitsthat
realizesecond-orderfilterfunctions
Twointegratorsconnectedincascadeinan
overallfeedbackloop
Two-integrator-loopbiquadraticcircuitor
biquadcommonlydesignedwithsecond-
orderhigh-passtransferfunction

Derivation of the Two-Integrator-Loop Biquad

Derivation of the Two-Integrator-Loop Biquad

Derivation of the Two-Integrator-Loop Biquad
Two-integrator-loopbiquadrealizesthethreebasicsecond-
orderfilteringfunctions,LP,BP,andHP,simultaneously.
Thisversatilityhasmadethecircuitverypopularandhasgiven
itthenameuniversalactivefilter.

Circuit Implementation of Two-Integrator-
Loop Biquad
ReplaceeachintegratorwithaMillerintegratorcircuit
having
Replacethesummerblockwithanop-ampsumming
circuitthatiscapableofassigningbothpositiveand
negativeweightstoitsinputs.
Theresultingcircuit,knownastheKerwin–Huelsman–
NewcomborKHNbiquad
Selectsuitablypracticalvaluesforthecomponentsof
ω0,Q,andK

Two Integrator loop topology
(Practical Circuit)

Two Integrator loop topology
(Practical Circuit)

Two Integrator loop topology
(Practical Circuit)

Two Integrator loop topology
(Practical Circuit)

Two Integrator loop topology (Practical Circuit)

Realization of All Filter (Practical
Circuit)
All Pass Filter

Realization of Notch Filter (Practical
Circuit)
All Pass Filter
A notch is obtained by selecting R
B= ∞ and

Alternate Two Integrator loop
Circuit (Tow-Thomas method)
Ratherthanusingtheinputsummertoaddsignalswith
positiveandnegativecoefficients,introduceanadditional
inverterinthecircuit
Nowallthecoefficientsofthesummerhavethesamesign.
Performthesummationatthevirtual-groundinputofthefirst
integrator
Summingweightsof1,1/Q,andKarerealizedbyusing
resistancesofR,QR,andR/K,respectively.
High-passfunctionisnolongeravailable

Alternate Two Integrator loop
Circuit (Two-Thomas method)

Alternate Two Integrator loop
Circuit (Two-Thomas method)

Modified Tow-Thomas method
Ratherthanusingafourthopamptorealizethefinite
transmissionzerosrequiredforthenotchandall-pass
functions,aswasdonewiththeKHNbiquad,aneconomical
schemecanbeemployedwiththeTow–Thomascircuit.

Modified Two-Thomas method
Two-integrator-loopbiquadsareextremely
versatileandeasytodesign.However,their
performanceisadverselyaffectedbythe
finitebandwidthoftheopamps.

Switched Capacitor
Switched-capacitorfilterusedinanintegral
circuitenvironmentwhereresistorsareexpensive
andnoteasilycontrolled
Switched-capacitormaysimulatebyusing
capacitorandMOSFETs.
Acceptabledegreeofaccuracyandlessexpensive
Switched-capacitordealwithtransferofcharges
ratherthanvoltages

Switched Capacitor Basics

Switched Capacitor Basics

Switched Capacitor in Miller’s Integrator
Theswitched-capacitorfiltertechniqueisbasedonthe
realizationthatacapacitorswitchedbetweentwocircuit
nodesatasufficientlyhighrateisequivalenttoaresistor
connectingthesetwonodes.
Considertheactive-RCintegratori.e.Millerintegrator
ReplacedtheinputresistorR
1byagroundedcapacitorC
1
togetherwithtwoMOStransistorsactingasswitches
ThetwoMOSswitchesaredrivenbyanonoverlappingtwo-
phaseclock.
Clockfrequency ismuchhigherthanthe
frequencyoftheinputsignalv
i

Switch Capacitor filter in Miller’s
Integrator

Design of a Practical Circuit by
Switch Capacitor topology

Two-Thomas Circuit
C
1
C
2
R
3
R
4
R
5
R
6
r
r
V
i
-V
lp
V
bp

Two-Thomas Circuit by Switch Capacitor topology
C
1 C
2
C
3
C
4C
5
C
6
V
bp
-V
lp
-

Design of a Practical Circuit by
Switch Capacitor topology
Onlyanintroductiontoswitched-capacitorfilters
Manysimplifyingassumptionstaken
Themostimportantbeingtheswitched-capacitor–resistor
equivalence
Thisequivalenceiscorrectonlyatf
c=∞
Approximatelycorrectforf
c>>f
Switched-capacitorfiltersdesigncanbecarriedoutexactly
usingz-transformtechniques.

Problem 7
DesignaswitchcapacitorbasedMiller’sIntegratorwithclock
frequency100kHz,Vi=1V,C1=1pFandC2=10pF.
(a)Whatchargeistransferredforeachcycle.
(b)Whatistheaveragecurrentdrawnfromtheinputsource
(c)ForC2capacitor,whatchangeofvoltagewillbeexpectedat
theoutputateachclockpulse.
(d)Foranop-ampthatsaturatesat±10Vandfeedback
capacitorinitiallydischarged,howmanyclockwouldit
taketosaturatetheop-amp.
(e)Whatistheaverageslopeofthestaircaseoutput
voltageproduced.

Problem 8
DesignaswitchcapacitorbasedTwo-Thomascircuitfor
mainlyflatresponselowpassfilterwithw
0=10
4
rad/sand
unityDCgain.Useaclockfrequencyof100kHz,C
1=C
2=10
pF.Find,C
3,C
4,C
5andC
6.

Problem 8
DesignaswitchcapacitorbasedTwo-Thomascircuitformainly
flatresponselowpassfilterwithw
0=10
4
rad/sandunityDCgain.
Useaclockfrequencyof100kHz,C
1=C
2=10pF.Find,C
3,C
4,C
5
andC
6.

ENDofFILTER
Tags