ГДЗ - Алгебра. 7 класс. Макарычев Ю.Н.

AzatHollywood 10,498 views 158 slides Sep 23, 2015
Slide 1
Slide 1 of 158
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158

About This Presentation

ГДЗ - Алгебра. 7 класс. Макарычев Ю.Н.

Домашняя работа по алгебре за 7 класс к учебникам Ю.Н. Макарычева и др. «Алгебра. 7 класс: учеб. для общеобразоват. учреждений»: уч�...


Slide Content

bexosa A.A. - Lloapoómblt pasGop sait ws yen no aaredpe 7 x:
Marapuuen FO H. m ap.

Mana conepantr ANCOPATMA pewesiea TANOBSEN Ja, 01OMPOGAA paxGop
aGcomoTHo BOX SBZANNA, DKMIOYAR SARA NA MOCTPOENNE TPaQuron M 33:
nusuuenoG croxmocra ws yucóuma no arreópe aa 7 Knavca seropos FO.H. Mar
apuyena 1 ap. (M.: Mpoceeutetue).

Tlocoßie Gyne7 WCIRMONKMESM NOMOLINHNOM LIRE APH npHrOTOB-
renin ZOMALIMHX PAÓOT, NoaroTOBKE K SEAMEN. a TASA Gyaer CTIOCOSCTOOSATA-
‘OOpeTENHIO MONK HABLO CANONPOBCPKH.

Tnasa I
Bulpaxenua, TOKNECTBA, YPABHEHKA
$ 1. Bmpaxenun

1.2) 6,965 + 23,3 = 30,265; 6) 76,73 + 3.27 = 80; 9) 50,4 - 6,98 = 43,42;
1) 88 - 9,804 = 78,196; 2)6,5-1,22=79% ©) 048-2,5= 1,2;
9) 3,725 + 3,2= 11,92; 3) 0,016 - 0,25 = 0,004; m) 53,
© 16,94 :2,8= 6,05; M75:125=60 M)123,1

2.2) 481,92 : 12-20,16 = 40,16 - 20,16 = 20;

6) 6.05 - (53,8 + 50,2) = 6,05 - 104 = 629,2;
B) 1,08 - 30,5 — 9,72 : 2,4 = 32,94 ~ 4,05 = 28,89;
1) 44,69 + 0,5 - 25,5 : 3,75 = 44,69 + 3,4 = 48,09;
3,8) 155,5 - 5,5: 20,7 = 155,5 - 133,85 = 41,65:
6) 85,68 (4,138+ 2,162) = 85,68 6,3 = 13.6;
B) 3,6 : 0,08 + 5,2- 2,5 = 45 + 13 = 58;
1+44=9,52:1,7444=5,6+44= 10.

4 5 a
2 $(49)=-285 a -16{-2)=36;

1 3: 2 10
ll

Bd 5.0518) 5 A à
6.2) 81+61-32=142-32=11; 6) 123-5472 =72474=
DA IG 6) sI TEA

13
2
9’

nik:

26214,
6

4 ‘nage |. Bupaxerun, maxBocmas, ypaonemm

31,64.
7.2) 3 7052

3,3" = 12,25;

a

1.99.4:3= 12; 0)48:3-16=0,

12,40 (3 4 + 3. 5) paocronnhe Mexuy neuexonamn uspes 3 aca.
13. 4-7+4-9 - Konndecrao Aeranell, KOTOPOS HITOTOBAT 1BOS paGounx 34 4.
14. a) pasuocra 8,5 1 7,3; 6) mponsnenenne 4,71 12,3;
8) vacrnoe 65 x 1,3; 1) cynına 5,6 4 0,9;
A) cynesa nporcsneneitia 2 4 9,5 4 14, e) dacTHoe pasuocr 10 1 2,7 45;
oe) pasnocts 2,5 cymst 3,2 x 1,8; 3) nporcsteneie 6,1 h wacmoro 84m 4;
m} HacTHoe cym 64 4 7 H nena 2.
15.0) (28+ 15% 96-3 3-8,
16. 1% uncna 240 pape 2,4
5% = 0.05, 0,05 - 240 = 12; 85% = 0,8:
150% = 1,5. 1,5 - 240 = 360,

1)08:04.

),85 - 240 = 204;

$1 Bupoxonun 5

17. a) 0,03 + 500 = 15, 904.15 2) £,2-8,5 = 102;
10,095 - 280=26.6; a) 2.8-9,5= 26.6; €) 0.012 - 1,25 = 0.015.
18. 1) 0,3 - 5200 = 1560 - crommocre onnoh KiATH:
2) 0:45 - $200 = 2340 - cronmocro apyroit KHHEH;
3) 2340 - 1560 = 780 na cronoo | kxnra zewenne fl xHHTH.
19, Bo-nepasıx, walinem sewy paro 40% or 80. Dna 3roro nañinem 1% 4 ymHo-

‘xm Ha 40, Monyiaen: =. 0.6. Cnenobarensue. oerasınasca

nnomans pasa 80 ra-32 ra=48 ra. Hatinem 60% or 48 ra. Hmeewr:
48

100%

Gombe, mano cpasmkre Wena 32 4 28,8. Ouesmo, mo 32>28,8:
32-288 =3,2 ra. 3nawr, nepouf scnaxan na 3,2 ra Gonsuue, sem Bropoii.

20, 1) 0,25 - 44= 11 1— na cronsxo Gomme cran coGpars c 1 ra;
2)44+ 11 = 55 u— musenmues € 1 ra crann cobupars.

24, 8) Tps x= 7 nonyuaem, wro dy - 12=4- 7 - 12 = 16, 3nauenne suaparne-
hna patio 16.
pu x = 0: Ar— 12 =~12. 3nasenne asipaxcertix paso (-12)

Nipn x = -5 suavene esipaxenns paso 4x— 12 = -20- 12=-32,

6) Mpn y = 3 nonysaen, ro 2.8 0.5y = 2,805. 3= 2,8 1,5
Swavenne supaxenns passo 1,3.

Tipn y = 0: 2,8 0.5 -0 = 2,8, 3nanenne sipaxeuxa pastio 2,8.
Tipu y= 6: 28- 0,5 -(-6)=2,8 +3 = 5,8, Znauenne nsıpaxenna pasno 5,8.

22, Ana Toro, wroGu IAMIONNHTA TaBnnuy, NEDÖKOAHMO BMSHCAHTE Auauchi
Bmpanmenni (3x — 1) 4 (-3x+ 1) npn Bcex nannsıx aman. Haunem co
Bropoñ crpouxn TaGnnun. Fonera nepaoe snauenne.x = -2 8 ubipae-
te (3x — 1) # nonyaune: 3x — 1 = 3: (-2)- 1=-6- 1 = 7, Tax axe non
ETORASEM octaBunnecs IMAGEN x B TO mbipaxente. PesymsTaTel BEITHC-
CHAN npusenenss BO BTopoli CIPOAKE TAGLE.

60% = 288 ra. Ann Toro, STOÓK ONPERENITL, KTO HI HX BCTAXAR

13.

x E] =I a T 3 a 3

x] 7 = =I 2 5 IM 14

| 7 4 i EU [4

Nonoökuim o6pasom sanonuınem rpereto crpouxy raßnnunı. Noncrasnan
nepaoe snauenne x = -2 5 soipaxenne (-3x + 1), nonysiaew:

x + 123 (2) +1 64 1= 7. Tax ome HaROANM snasienne BBipamennn
4-3x + 1) ana apyrux suanetni x. B pesyasTaTe 33nIOMHASM TPETÉIO CTPOY-
ky Ta6nuuss. Coornerernennbie saver BbtpankennA (3x - 1) (-3x + 3)
ABAIOTCA NPOTHBORONOKMHNH SCAN.

23. Ina Toro, YTOÓL sanonHHre TAÓNMY, NEOÖKOAUMO BHUHEANT state
Anyx sHpaxenuA (10—2y) 4 (LU + 2y) pu Bcex aaMHEIX snauennax.y.

6 Tirana (. Bupaxomus, mondecmas, ypaemenun

Haunen co BTOpoh crpoak raßnnusı. Noacrasum nepsoe SHANEHNS y =
8 pageune (10 — 2y) m nonyumn: 10 -2y= 10-2 (-3)= 10 + 6 = 16.
‘Tax Ke NOACTABIAEM OCTABLIKECH 3HaNeMHA y B 910 BLipawenue, Pesynbra-
Tui DBIMHCACIAN MPHBEAEHBI BO BTOPOH CTPOWKe TAÓAMU

a 3 EL fo 2 3 a Je
19=2v [16 12 10 [6 4 [2 15]
10+2y [4 E 10 14 16 18 22

TlonoGuuim oGpasom sanoniaem Tperoio erpouky TaGaHu. Tlonctannas
nepnoe aHatieHie y =-3 e uipaenne (10 + 2y), noayuaew: 10 + 2y= 10+
+2.(-3)= 10-6 = 4, Tax ae taxon anavenne mupanxenn (10 + 29) ans
APyTux Haseult y. B pesyastare sanontsem TPETBIO crpouxy TAGAKULY,

24. a) Bygem naxonnTe sHaveHHR supaxenux x! + 4 MM KaKIOM anndennn x,
oncrasnas x 5 Bupaxeue, TaKHM 0Gpason rionyuaem, WTO.
npn x = Sa +42 5° 44225 +4 = 29, npux = 3 6 +404 4 = 13,
npnx= dr +4=0P44=4,mpnx==3: 0 +4= (3) +4=9+4=13,
np x = 10: € + 4 = 10° + 4 = 100 +4 = 104.
9x ~8; mpnx= 5: 25-82 17; mpnx
np x = 2319 — 8 = 1% mpu x = 10: 100 - 8 = 92.

25, a) Haline cuavana snaueiine cyaMer x + y. aa 3TOrO CROXIM nant
auavetina nepenennbnx xx y. Flonysaem, 470 x + y = 1.2 + (2,5)

L2- 2,5 =-1,3. Tenep» ananoru mo walinem npowanenenne xy. Hmeew:

Ly mpix = 0:0 -

ay 12-28) = -1,2-2,5 = -3, TIpn 3rom yunomenne woxkno Grano eae-

ave eronönkom.

6) Ecmx=-08:y=3,10-0843=22;-08-3=-24.

») Bonn x= 0.1; y = 0,2,70 0,1 +0,2 = 0.3: 0, -0.2=0.02

1) Een x = 14; y = 1,6, 10 -1,4 + (-1.6) = -3; 14.
26. a) Ham nyaco tafira anauenme abrpaein Sm — 3n pn mi “ ni

Mogcrastaem 9TH sHavenwa m un 8 gano pupaxente. Flonyuaem:

CG)
5 3
O) mpum=029n=-14:5m-3n=5-0,2-3 (1) =1+3+ 1,4=
1 24-08=12-08=0%

2-2=-4;

27, a) conn x = 24; y= 08,10

2

6) ccm x

Gy = 5,10 5-38) 5= RS = 685
B) ecan x = 4,8; x =-2,1, To Laseai=2aa 4,5:

1) cent x = 44; y=-3, 10 JA 4392243008,

$1. Bupanenum i

2.

a 5 =z 4 1 [3

ë 3 3 ra =I 4

ab [i + 4 3 =
E Gy-x=-07:

30. a) (2m + 6)-m.ecnnm=2

6)x-2xy ecm x= 5, y=-1,105-2-5-(-1)=5+ 10=15;

Dama ts — 1010 9-3-4} =-50+1-4#

Fite b= cms mo 2-23-2458

Hart b+ cecma= >

=1-6+58=0,8.

31.35 - (a+ 5b) - cronexo aener mapacxozosano Ohio ana Toro, vroGb1 Oßec-
HT KIIACC Y SCÓNIKAMH N KOUTYPHLIMH Kapranıt.

32. 320 + 406; ecn a= 120: b = 80, 10 32 - 120+ 40 - 80 = 3840 + 3200 = 7040.

33, Tax Kak no yenoumo sanaun wasecTHo, «ro na ctpolixe paßorano 5 Gpuran
no a «enosex 8 KAKOH, TO 8 5 Gpuranax Gun Sa nenosex. Tax axe paGo-
ano 3 Gpurag no b wenosex, aaa 8 Tpex Gpurazax Guino 30 venoper.
Ann Toro, WrOGM onpenenttrs cKOALKO HeOBEK paGorano acero na crpolí-
Ke, Mazo CORTE KONHAECTRO nioneh 8 3TAX Öphranax: Sa + 3b, Hafem
sHanenne STOTO BRIPAXENHA Nph AH sHadeHHsx a = 25 Hb = 32. To
ayusem: Sa+3b05-25+3-32=125+96=221,

Ba) S=a-b-c-(a-2 6)S=x-m+y (nm)

38. V=0-0-(a~h), Vm a? (ah.

36. Mt 3haem, To naoulans NPAMOYFONBHHKA PABHA NPOHSBENEMNO ETO ZU-

rt ra wApHHY. Mooromy:
a) a- b-310 nous npeuoyranumsa, Nlepawerp npaMoyromanica panen
“SYMME AN BOCK CTO CTOPON, a Tax KA Y EIPAMOYTO.ISNKIA NPOTHBOAEKALNE
TOPOMEI PARMA, TO NONYUAETCA, STO 6) 22 + 2b - NEPHMETP npamoyronstmka.
Toraa 1) a + b—nomynepunieTp Hin hate CYMMe AS H VIE Mp0
yronsna. A 8 cnysae 1) 2a nonyuaem, «TO 370 CyMMa aByX NPOTHPARANOX-
HK CTOpOH, MIE YABOCHIRAA JUANA NPAMOYTOMEHHKE.

37.8) x + y — CTOMMOCTO Kapanaaına m Terpsan:
6) 3x + y - cromuocte 3 Terpaneh # kapannaura;

Fresa | Bupaxonun, moxdecmea, ypsamenun
B) 2x + 3y—cronmocrs 2 Terpaneh u 3 xapanaawell;

1) À - po crontxo pas rerpans nopoxe Kapanaausa
y
38. a) npowapenetine m wm: © pasnocrs nw a;
8) cywara 10 m nponmaezeims and; 1) npomaenene cy a u S Hx:
2) pashoct or nponneaenna 8 na: €) cynwa Mporspedena 2 Wx H |:

ok) CYMMA YACTHOO a Hb Het 3) cyuma nponspenenua an bub uc
4) npowssezenne paanoctu a u bu cyMMbla HD.

39.a)b +c; am DES DES
2)x+ab; om: ward) Dairy).

40.) Sy +2—nwoer ewsen pa morts 6) 1° — meer cuuen, comm y # 0:
y

1

= weet onen, ect x # 7:1) eer cer mpi moGssx

à
+ nmcer uen, ec a 73 €) = umeer caien, econ b #7.

3+a 10-5

a

41. a) Sn ~ sueno, xpamos 5, rae » € Z: 6) 10n— weno, kparnoe 10, rae n € Z;
8) 101n~ameno, kpamioe 101, raen € Z.

42.0= In, rae n eZ,

15, 10.@= 105: n= 21, T0a= 147.

43. Yenosite Toro, YTO MENO OMAHO GuITE KPATHO 6, OIHAMOET, UTO OHO
‘AOmKNO AeAHTBER Ges OCTATKA Ha 6. TakHM 0ÖPASOM, cnn mi OGosHaauns
28 y Repemennyto, KOTOPAR MPMHAMACT MIOÓBIS ene 3HAYEHHS, TO MOKEM
sanncaTe Qopuyay sicna kak 6). Teneps Hagen no 270 popmyae 3 unc-
a, Kparaux 6. Hanpumep, mph y = 1 nonyuaem: 6-1 = 6, mpu y =4 ve-
eM: 6-4 = 24, npu = 7 nonyaaem: 6-7 = 42,

44. a) Ann nasana onpeneni ueny pasen 1% neitznectoro nam amena. Jan

roro nonenum: “= 0,6. Toraa wawte wueno past 0.6 100% = 60,

6) Onpenenun vemy pasen 1% nenzuecrnoro Ham «mena. Jaa aroro none-

27502: Toras name no parvo 02 - 100% =20

am

8) Onpenenum wemy pasen 1% heussectnoro Ham unena. flag 3roro none-

a: T= 0.03. Toras nue ameno paste 0,03 + 100% = 3

1) Onpenennm, semy pasen 1% Heitsuecruoro Ham "CNA.

$1. Bepaxemun 9

1,5 . CneaopsrensRo, Anexo, KoTopoe nam Tpeöyeren

majtra, paso 1,5 - 100% = 150.

48. Tiyers nepnonasansno 8 Gnnoxe Grito 100% monoxa, Flocne TOTO, KaK
oranan 30% monoxa, 8 Hem ocranoch 100% — 30% = 70% («ro cocTanıner
14 1). ostomy 1% or nepsonauanshoro Oßsema monoka 8 Önnone Öyaer
cocrasners, Brora 100% — 8 100 pas Gonsuue, 1. e. 0,2 - 100 = 20 (a).
CnenosatensHo, nepsonasanbHo 8 Gnome Órino 20 n MonoKa.

46, 32809 nowxKex Baur BsnOAUATS no nrany 100% sananna. Ho on nepessi-
Nomar nian na 15% u cnenan 100 + 15 = 115% 3ananıa, UTO cocTaBHno

230 erannon. Flogromy 1% or nnanonoro ‘ananna cocranıner ES =2 (oran),

2 100% or nnana — 8 100 pas Gonswie, 1. e. 2: 100 = 200 (cranxon). Creo»
ReTEnANO, No nay 33802 nomen sa BLITYCTHTE 200 cTaHKOB,

47. a) Jan Toro, STOÓA cpasinTe smasenHx SuIpaxcHHh, Hx Hy Carias.
suaenurz. Donyaaen, uro 2,06 - 3,05 = 6,283, a 21,28 : 3,5 = 6,08. Mpn
TOM YMHOREHHe BSIMOAMANOCE CTONÓNROM, a AELENNE YTOMKOM. Ones
wo, «10 6,283 > 6,08, Jun 2,06 - 3,05 > 21.28 : 3,5.
6)97,2:2,4=40,5; 62 -21,6= 40,4 = 62 - 21.6;

1,1,1,1

48, a) MpeoSpanyen enauana neuyio sacra $6 2 =7 82216 „Teneps npa-
2

7
nyo: 56:5: = 16 (samensa orepatuno Aenenng YMNOREMHEN, à Ie

7
rene ero oBparnoll BANANO). ME BAM, «ro neBan H mpanan HACTH

2207
to. Suar, $6-—=56:—
past. Sani, 56.7 =56:5

019:036=9: À =25>9:036>09%:

10 Fnasa | Bopamonum, moxtecmea, ypaanenun

49, a) Ana Toro, vroßu aa, BEPUO AK HSPARCHCTEO, HALO CHENE YnPOCTHTE.
ero. B nenoii sac nomyasew: 21:3. 21-3.8
ra 3

‘Hanomnie, STO cHawara BUTONIAETEE XENCHHE AHCEA, à HITEM BLITAIHE,

Tenept mpeoßpaayen mpanyio sacra. Heu: Bi)

Tenep» cpassmn nonysennsie pesyneraras. Bano, 70 | > 2 newer,

HepasexeTBo BepHo.
6) -7,62+ 3.38 = 4,24; 427,31 3,11;
TK, ~4,24 <~3,11, To -7,62 + 3,38 < 4,2 7,31 - Bepuo.
50, a) 0.7 -08 -0,9 = 0,504; 0,7 + 08-09 = 0.6 = 0,7 08 - 0.9 < 0,7 + 08-09;
13.5 Lido 11

all. BERN
27376 6 6 3236 3 23 236

SI. a) Hafen chasana swauenne abipaxenna 9,5 — a. Mipn a = 3.8 nonywaem:
9,5-3,8= 5,7 1 0.5a = 0,5 3,8 = 1,9. Cnenovarenseo, 5,7 > 1,9. Fipn a = 0:
95-a=9,5 0,5 - a = 0. Hucem: 9,5 > 0. Mpha=5:9,5-a=45#05-a =
=0,5:5=2,5. Nonymeur: 4,5 > 2,5. Cnenoparenunn, nepsoe spakente
nu Bcex AAHHEIX sami a BONE.

6) Hañnen cuavana suauenns smpowenni (3 — c) 1 (dc - 5). Tip c= 1.6

monyuaen: 3-6=3-16=14m4c-5=4:1.6-5=64-5 = 1,4. Cne-
aoparenbHo, 1,4= 1.4. [pe =-3:3-c=3-(-3)= 64 4c-5=4:(-3)-
—5=-17. Hmeem: 6> 17. pe =-6: 3-c=3-(-6) = 9 4e~S

= 4. (6) -5=-29, Monyuaem: 9 > -29.

52.a) x hr: een x = 8, ro 8 >-8, coat x = 0,10 0 = 0; ecnmx=-3, 10-3 <3;
OH 10x; cent x = 5,10 5 < 500: ccm x = 0,10 0 = 0: ec x =-5, 10-5 >-500;
8) 10- 3x x 10— 2x; ec x = 2, 70 4 < 6, can x= 0. 70 10 = 10:
ecu x= -3, 70 19> 16;
Nat ba b: een a= 34:

1,5, 70 19 <49.

. a) Chasana mañgem axaucena nbipaxccHHa (Sm — 0,8) u (0,8m— 5). Mpa
m = ~t nonysae: Sm -0,8= 5 - (-1)-08=-5,8 4 0,8m 5 = 0.8. (-1)-
—$=-5,8. Crenonarenbuo, -5,8 = -5.8. Mpn m = -5: Sm —0.8 = 5 - (-5) =
= 0,8 = ~25,8 4 0,8m — 5 = 0,8 - (-5)- 5 = -9, Umeeu: ~9 > -25,8. Tipn
m=2:5m-08=5-2-08-92H08m-5=08-2-5=16-5=-34.
Nonysaen: 9,2 > -3,4.
6) Halizem cuavana masenne ssipaxenia ab api a = 4.6 4 b= 0.23. Unc-
em: ab = 4,6 -0,23 = 1,058. Tenept nafnen mph Aanhbıx smauennax 2 K D
“nauenue sbipaxesia a: 6. Tlonyaaem: a: à + 46 : 0.23 = 20. CnenoBa-
remmo, 20 > 1,058, 7. e. sTopoe suipaxenite Gone.

51. Bupaxovin u

54. Chanana Halinem Snadeune 1eB0H 4acTH PH NAHHOM SHANEHHH x, NOTOM
npanoh, a norom cpasamo. Tlonyvaen: np x = 4,2: 2x+5=2-4,2+ 5=
=134#3x=3-4,2 = 12,6. meen: 13,4 > 12,6, nooromy: 2x + 5> 3x,
Zar, Hepazeucteo npux = 4,2 ne nepno. Flpa x = 5:2x+5=2-5+5=15
W3x=3:5 = 15. Monyuaem panencrao: 15 = 15. 3nawr, nepaencioo
pn x = 5 tome ne nepno. Ipn.x = 6,5: 2x +5=2-6,5+5=18 1 3x =
=3-6,5=19,5. Mlonysaew: 18 < 19.5. Inaunr, NepaBenicrao Bepro.

55. a) Sto hepanencrao anınerex crporna # noie. Ero Mono NPOUKTaTS
Tax: 48,14 Gonbuue 8,1 8,14 meuble 8,6» won KopoNe: «8,14 Gonbuue 8,1
H menbuue 8.60.

9) 9,865 Gomive 9, Ho meme 10; 8) -839 Sonuure -900, no menue -800:
1) 38.7 Gonsiue —40, Ho menue -30.

BUCHE 6)41<4.1E<AZ 0) 63<035<64,
H-M<-BI<-% mif<e<2& da<x<b,
$7.9) 86 <6,625<8,7; 6) 12 <1; 9)-3.6 3681 3,
3 “204 <7
58. 2) 0,7 <0,79<08. 6)6< + <1;
1)-16<m <-15; 8) 2.65 <k< 26 Om<y<n.
59, eee bc ace.
5 ae =
60.8) 73 ne Gone x, un 7.3 menbwle uns pamno x; 6) y me wenswe 0,83:
2) 0 ne menso -10,4:; 1) ke Gomue 0,5;

A) n ne ense 4,4 n ne Gonue 6,1;
e) mue menbiue 7,6 4 He Goneute 20,8;
X) a ue Meme —S m Menbwe-2; 3) Due Meine x x He Éonbute y.
61. a) Noncramn amecro x naNHtse SnaueRun u mposepHM HepaRexcTas.
Tlonysaens: npu x = 2,7: x $ 5,3 nu 2,7 S5,3 - Bepno,
npu x = 5,3: x < 5,3 um 53553 - Bepno;
pH x= 6: x 55,3 mu 65 5,3 — nesepmo.
6) Tloncranıım BMECTO Y sanainitie JHOHEHNA H NPOBCPHM HEPABCHCTO.
Flonywaem: np y=3,5: y 2 4,8 wna 3,5 2 4,8 — Henepno;
pn y = 4,8: y > 4.8 un 4,8 > 4.8 — sep;
mpx y = 6: y 2 4,8 nnn 6 2 4,8 - sepHo.
Bametine, sro Kecrporoe HEPABEHCTBO BEPHO TOTAB, Koran BEPHO MAH
ETPoroe Mepasencreo HAM PABEHCTEO,
8) FlOXCTABHNM BMECTO x nanHUE IHAUEHHA M NPOREPHM HERABEHCTBO.
Marce: — mpnx=0,5:0,6<x 50,8 naw 0.6 < 0,5 < 0,8 — nenepno:
BPH x = 0,6: 0,6 <x < 0,8 man 0,6 < 0,65 0,8 - nenepno; T. x.
ewan sacre 0,6 < 0,6 Kepanentcrea ne nepHa;

2 Fasa |, Bupawenun. modocmea, passeur

mpn x= 0,7: 0.6 <x 5 0.8 nnn 0,6<0,7 < 0,8- sepno;
08: 0,6 < x 5 0,8 nan 0,6 < 0,8 5 0.8 - Bepno;
npu x = 0,9: 0,6 <x 5.0.8 nnn 06 < 0,9 5 0,8 ~ Hesepto; +. x.
para acre 0,9 < 0.8 wepasencrea ne nepna.
1) Mloactaswnn BMECTO Y RANAS sxaderia 1 NPOBEpHM NEPABENCEO.
Monyuae: np y= 2,1: 2,1 $xJ2.4 nn 2,1 52,1 S 24- Bepno;
mpi y= 2,2: 2,1 € x 52,408 2,1 52,2 € 2,4 ~ nepno;
np y =2.3: 2,1 € x < 2,4 man 2,1 $2.3 < 24 — nepno;
mp y= 2,4: 2.1 £ x S 2,4 Han 2,1 52,4 5 2,4 BepHO;

npa y = 2,5: 2,1 SxS 2,4 wm 2,1 < 2,5 £ 2,4 — HeBepno; 7. x.
npasas dacrs 2,5 < 2,4 nepanencras ne suinonuaeTca.
62.2)x<8 6)y20; 8)5<a<7; r)-2<b<1
63.2)x<0; 6)m>0; y20 rz<0
64.) 115x<12; 6) 50<)S 100 8) 380<a<400; r)-100 <b <-10
65. 1 = 28: yy = 630
x y
aecanz- 125 p= 105 = 56; v = 60; <vx
6)ecan x= y= 14 M = 505 vp = 45! 11 > v2

66. a) Zina navara nalizem 1% suicna 200. aa sroro paszeamm 200 na 100,
Toaysiaem, «ro 1% pasen 2. TOBA) OMPCAENKTE, cKoABKO MPOLLEHTOB CO
craenser 8 oT uncaa 200, Hao nonenuts 8 Ha 2. HMeeM, «To “HERO $ co-
crannser 4% ot uncna 200
6) 14- 100%; 2,1 ~x%; x = 15%
8) 6,6 ~ 100%; 0,363 x%: x = 5,5%
¥) 8.5 ~ 100%; 10,2 - 4%; x = 120%.

67. 1600 - 100%; 1200 - x%
x= 75% — ocranoce na KoNGHHATE;

100% - 75% = 25% — na cromo coparmm paorinxos na KomBrare.

68. a) 37,6- 5,84 + 3.95 ~ 8,9 = 41,55 ~ 14,74 - 26,81;

6) 81 - 45,34 +19,6 + 21,75 = 122,35 ~ 45,34 = 77,01;
B) 17,138 : 4,5 - 0,5 = 64,98 : 4,5 -0,5 = 1444: 0,5 = 7,22;
N81.9:45:028- 12= 18,2:028 1.

69, a) x + ab; 9 — Data tr).

§ 2. IIpeo6pasomanme stipaxennit

70. a) Mlepenecrmrennoe cpoficrBo cnomeHna;
6) nepemecrirenniioe CBORCTBO ymHoxenits;

_§2.Npsosparossnve enpaxonut 13

8) Coverarennoe CROHCTO CNOMENHA;
7) pacnpenenmmenbnoe csolcrao.

71 a) 3,17 + 10,2 + 0,83 + 9,8 = 4 + 20 = 24:
GAL + 15,5 + 0,89 + 44 5 + 19,9 = 249;
8) 15,21 -3,9~4,7 + 6,79 = 22 -8,6= 134;
1427 + 3,8 - $,73-3,3 = -10+0,5 =-9,5.

72. 8) 8.91 + 25,741,09 = 10 + 25,7 = 35,7;
6) 6,64 + 7,12 + 2,88 = 6,64+10
8) 7,15 ~ 9,42 + 12,85 ~0,58 = 20- 10
1) 189-68-52-4,1=148-1

73, Vicnomtayem nepemeeritemuioe H couerarensnoe caoficrso CIOKEAMA

3 3

t 1 i,
a) spp):

aa.
66

sit
92+101= +
6) 195 +105 =(19+10} ( a

1

3,1 6 2.43
14.2) 53-21 $-7-7=0; 6) 82-
Ts) 52-2741 7=0; 6) 82-6

477 55 9 + 5°
75.2) $0 1,34 -0,2= 1,34: 10=13,4; 6)-75,7-0,5-20=-75,7- 10=-757;
8) 25-(-158)-4=-158- 100=-158; 1) 0.47 - 0,425 = 0,47 - 10=4,7

de

RE 2
76. a) 3=-S=15=; 6) 22-10=20+4=24;
o 3 E i) 3 +
2) 7-2321443=17; D 6-45 224425
+ u 2 ”

77.0)3.5-68+35-32=3,5-(68+3,2)
6) 12,4-143—124-43=124-(14,3-4,3)=12,4- 10=124,

78. a) 15,7: 3,09 + 15,7: 2,91 = 15,7: (3,09 + 2,91) = 15.7: 6= 942.
6)4,03 - 27,9~ 17,9 -4,03 = 4.03 - (27.9 - 17,9) = 40,3.

79,8) 24-17 + 17-6 = 17- (24+ 6) = 17-30; 305, amawnr, (17-30) 5;
©) 34-85 +34. 3634 (85 + 36)= 34-121; 121 ell, anaum, (34 - 121) el}.

80. Sa + 10b — eronmocrs noxynxst,

$01 +S0p
Tp

81 — operas cxopocrs asromo6ma,

82. 64 <64<6,3.
as

83, B (1,5); C(02% D (0.67: 4 (1,45),

14 Fnoas 1. Burpaxenun, moxdscmea, ypsenenum

401 23

BD ca x

ACI AY, BAM); (08); DU

85. a) nepemecrnrensuoe caoÑcrao cnomenHs;
6) coveraremuoe chocs cnoxenKa;
B) nepewecrhrenbHoe CBOÄCTBO cnoxeHHA:
©) pacnpezeinrrensnoe ceoñcreo.

86. a) Ha ocuoBattHt NEPEMSCTATEIBHOTO cuoficrsa YMHOXEHNA MOHO YT-
BepxAsTs, «ro TOXIECTBEHNO panıını auIpaxenns a - 256 n 25ab.
6) Ha OCHOBSHHH PaCnpeRENKTENBHOFO CBOHCTAA CHOKCHHN OTKOCHTEABNO
YMHOXEHHR MOKHO YTSEPKIATb, WTO TORNECTRENHO PABHBI BAXPARENNA
6 Art y) +4 mbr + Oy +4
B) nepewecrurensHoe eBOHCTEO CAOMEHHA;
©) pacnpenennrenssoe ceoiictso.

87. a) na; CES 8) ner; na

88. 8) Ja ouparkcnna, COOTBeTCTBeHNBIE snamenna KOTOP.X ab pH nkO6 Br
MANCHA NEPEMEHNLIK, HADBIDALOTCA TOXACCTEEHNO pau. B manco
cayuse MA OCHOBANNA NIEPEMCCTUTENSHOTO 38KOHA CHOCHIE H YMHOK CHA
NONONO CUATITO TOXAECTHENIO paABHLIMA sspaenmn 2 + &ba u Bab + 2.
6) rx Buipaxenna He ABNRIOTCA TOXNECTBEHKO PABIBIMH, DTO MOXEO AOKE-
876, pacxpuus cxoG. Monysaent: 2x + 7 = 2x + 14 nm Ze + 7 = (2x + 7) +7.
Bravo, amo npasas sacts a com camu Gonsune 60h. Tlosrony aan
Hoe PABENCTBO He ABANETCR TOKKECTEOM

89. a) pacnpenenkrensnoe; 6) pacnpenensrensmoe.
90.8Ja-0=0; B)at(-a)=0; mja-b=ía)-(br na=tay.
Dl.a)Sx+5=5-(e+ 1) De + day ax: (4D,

92. 8) Sx + 4=5- (x + 2) - nenepuo mph mo6on x;
6) 3x- 12 =3-(x— 4) — nepno npn M1060M x.

93. 4) 6 - (xy) = 6x — 6) — annnerca Tomnecroon;
6) 25 -{a- a)= 25 ~ te ABINETCA TOMACETBOM:
8) 3a- 4 = a + (2a-4) nemerc ToxnecrBOM:
1)0,3 : Sa = L,5ab - He HBIACTCA TOKAECTOM

94. a) Pacxpoen croön 8 nenoë sacrm panenera: + (2) + ÿ= xx T Y YA
BHAWM, «TO 18828 N NPABER MACTH PABHBL BEANSHHE y H PABHES APYT AYTY.
TlO3TOMY paseneTso AEAMETCA TOXIECTSOM RP BCEX SHAYEHKAK X H Yo
6)1-5+ 2a= 2a + b- TomaectH0;
e) El) :2+b=6-a—toxnecreo; Sy -15=5-(y-2) mer.

$2 Npeoóparocamue abipaxenist 15
015-$=312-012=3

EB:
95,2) y: 2:4+30,15=0,9+0,1

6) 2,08:5
» 3

96. 2) loncrasne 3nauennn x 4 y B ZAHNOS BbiparKeHMe N MONYANM ero 3HaV-
= 1,6 nonyvaem: 2° — Sy (295 > 1,6=4-8=4,
Lol

ae, [pa x

M4 24

97.2a-7 4 3a+4;
een a = 8, TO -23 <-20;
ccna a = 6, 10 19<-14.

98, a) Bocnomaosasmnes NEPeMECTHTENBHEIM cBoficTBOM YMIOXCHNA, nony-

mem: -62:0-5=-62:5-a=-3la.
0) 4c - (1,25) = Se; 8) 0,3x - (-12y) = -3,6xy; 1) 0,15 - (2,30) = 0.23bc.

99.2) L.6-(-02n) = 0,32; 0) -6:4a-(-5c)=32ac.

100. 2) 7 (%— yes Ty 6 (a—46)-3=3a~ 126:

8) -23- (20 - 36 + 1) =-46a + 696 - 23:
DS x + dy $2) LS (A+ 15 - dy + 15-52) = 45x + by 7,52,
101,2) 12-65-0)=6-120; 6) (mm — 4x) -(-6)=24x ~ 6m;
1)25-(4r-6y-2)= 10x 15p- 5; 1)-0,1 -(1002+ 105—c) =-10a-8+ Ole,
102. 2-(6~a) =-2-{a—b) = 2a + 26 = 2b -2a.
103,4) 30 +27a- a= 6) 12b-17b-
1B) Gx - 14 ~ 13x +26=(6-13)x + 26-14 =—Te +
1) 8-y+17-10y=-1ly +9.
104, a) 13a +26-2a-b= a+b; 6) 4lx - 58x + 6y—y=-I7x + 5y;
1B) -5,la-4-4,90 + b=-10n- 3b; 1) 7,5x + — 8 5x —3,5y = 1 2,5y.
105, a) &x — 6y+7x-2y = 151-87, 6) 27p + 14g - 16p-3g=11p+ 114:
1)3.56-24c-06c-0.70=28b-30; 1) 16a+4r-280-1,5x=-120-35x.
106.0) +(brord=mexrbrord=m Ga-(b-c-d=a-b+e+
a:
DMxty (bro mt yb ctm
v)x+ (ab) (ct) x+a-b-c-d.
107, a) m + (a— k—b)= m+ a~ k- 8:6) m-(a~k- b)= m—at k+ b;
s)xtat(m-2)=x+atm-2; ra-(b-c)+(m+m=a-btc+m+n.
108, DP m=x-y-m; Hard)-k-d=arb-ctd
mn ss m+n-5 NRa-b)tm-N=-2arbtm-I.
18. )arlb-c-Mrarb-erd Mxr-W-W+RI=x-yiptk
110. a) 5 ~(a—3)=5-a+3=8-a; 6)7 + (12-26) = 19-28;
8) 64 —(14 + 7x) = 50-2 1938 + (12p~8)= 30+ 12p.

16 rasa, Buipaxenun, moxdecmee, ypasmonun

Da + (x + 05) 3x 305; DEZIEPEFZEN
B) 4a -(a+6)=3a-6; n65+(10-4,55)= 1,56 + 10.

112.8) (Sx - 1)-(2-8x2)=5x-1-2+8r= 131 - 3:
ecaux = 0,75, 70 13-0,75-3=9,15-3=6,75;

6) (6 ~ 2e)+ (15-32) = 6-2 +15-3r-21-
ecru x =-0,2, 70 21 -5-{-0,2}= 21 + 1 = 22;
8) 12 + Ix—(1 - 3x) = 12 + 7x1 +3x= 10r+ ll:
ecan x =~1,7, 10 -1,7- 10+ 11 =-17+ 11 =;

1) 37 -4x- 16) + (11 ~ 53; 7 —x+ 16+ tLe - 53 = 10x;
ecan x = 0,03. To 0,03 - 10 = 0.3.
M3. a) (x - 1) + (12 — 7,52} =e - 1 + 12-7,5:

6) (2p +1,9)- (7 -p)
8) (3 ~ 0.44) ~(10 0.8) = 3 - 0,40 -
1) b-(4—2b) + (3d- 1) = b- 4+ 2b + 3b~1= 66-5;
DAYA A) y y tym day 8
€) dx (1 2x) + (2x7) = dx 1 + 2x4 Dy 7 = Bx 8,

114,3. (a+2)-3a=Ja+6-Ja=6.

115, a) 3 -(6-5x)+ 17: ~ 10 = 18 - 15x + 17x - 10= 8 + 2x:
6)B- (By + 4)— 29y + 14=24y + 32- 29y + 14 =-Sy+ 46;
a) 7- (22-3) + 62-1 42-21 + 62-1: 10x — 33;
n2-(7,3- 1,60) + 3,2a - 9,6 = 14,6 - 3,20 + 3,20 - 9,
)-5 + (0.39 +1,7)+12,5—8,5=-1,56—85+ 125 8,50
€) 4-(3,3 - 8c) + 4,80 + 5,2 =-13,2 + 320 + 4,80 + 5.

116. a) 0.6 « (p—3) + p+ 2 = 0,6p - 1,8 + p+ 2= Lop +02;
een p 10 1,6-0,5 + 0.2=08+0,2= 1;
6) 4: (0,5q - 6) - 14g +21 = 29-24- 14g +21 =-12q—

eeamg= pro Pa

8)-0,5-(3a+4)+ 1,901 =-1,50-2+1,9a—1=0,40 ~3;

ecma= -+.1004-(-4) 3901-3234
4 4

1) 10-(0,7-36)+ 146 + 13 = 7 - 306 + 14b + 13 = 16h + 20;
scan 6 = ~16, 10-16 - (-16) + 20= 256 + 20 = 276,

117.03: (2mm + 1) + 4m — 7 = 6m + 3 + 4m 7 = Om — 4:
6)-6 (3n + 1) + 120+ 9 = 18m 6 + 12n + 9=-6n +3;
8) 5-(06- 1,5p)+8--3,5p=3 - T5p+8-35p= 11 -11p;
102: Ga 1)+03 - 0.6a = 0,62 0.2 + 0,3 - 0,62 = 0.1;
A) 0,9- (2b —1)- 0,56 + 1 = 1,8b-09 - 0,5 + 1 = 1,36 + 0.1:
9-26 45-c)-c+8=-13+ 26e - 6 +8 =-5 + 1.6.

$2. Apeosparoeanve aupamenud v

I y E
118. a) 12,6-—<12,.6-—; 6 =
9) 6-5 <126-5 E 665°
8) GEA: D56:25<56-25.

119, Chanano HañneM, Ha CKOJBKO LITYK 8 CYTKH YBENMTHTCA BLATYCK CTANKOB.
Hueeu: 180-- 160 = 20. 3nawnr, Teneps tpebyerex haltru, cxonbro npo-

uewros or 160 cocraanmor 54 20 crankop. CocTasim nponopumo: 160
eramos — 100%; 20 cratixos — x%. Orciona mañinem x. Hmeew:
20-100%
og USO,
160

25%.

120. 4

A E € F BD x
AI: (22) ¿COM 13.2%; 4- 1] : (129).

121, Tloncrannm 8 aakHoe suipaxenne sananubie snauenun a Hb,
Tlonysaen: 6a - 5b = 6 + 2,35 ~ 5 (-0,24)= 14,1 + 1,2 15,3.

$3. Ypasnenns e oanoñ nepemennoi

122. a) Ana roro, vroÓÑ OTBETHT Ha BONPOS 33/I3UN, HAAO HNOACTABATA anaue-
ne 3 BMECTO X 8 JIEBYIO H MPABYIO HACTH YPABHEHHA H NPOBEPATE Pair
am ons. Takum OÓpasom, mogcrannsem # nonyasen 5 (2: 3 1)= 83 + 1;
$-(6~1)=244 1: 5: 5= 25: 25 = 25, Mbl BxAWM, STO np x = 3 aenan H
‘papas 4acTu YPaBIICWNS pannst. 3HawnT. x= 3 ABnnercn Kopstem ypanıenus.
6) An TOTO, TOO BuIACHITL, ABARETCK AN AHCAO 3 peWlenHeM Ypannenna
(x—4) (e+ 4) = 7, nano MONCTABISTO 370 UHCNO B 270 ypaanenne u npoBe-
pre panenicrso oGenx sacreñ ypapnents, ToacTasnaem 1 nonyssen:
8-4).344)=%-1-7=7,-7=7- nenepno, 3uaunr, aero 3 we sans
ren kopen ypanwennn

123.0) =10-3x, cam x =~2, 10 (2) = 10-3-(-2),4= 16 — ne Bepno;

=10-3-(-1),1= 11 - ne Bepno:

10-30, 0= 10- ne nepno;

ecan 10-3:2,4=4- Bepho:
ecan x™ 3, 103° = 10-3 -3,9= 1 - ne nepno.

Cnenosaremsno, TONEKO 2 ABMAETCA KOPMEM ITOFO YPABIEIMA;

Ox (4-7 10 (-2)- 4(-2)°

1,70 (3) eens 6

scan x = 0, 10 0 : (0° - d+6,

ecm x =2, 702 -(2 Roe eek

13 Fresa) Buparemn, maxdocmas, postes

ecm x =3,103- (3-7)
Crenomaremo, -1, -2, 3 — xOpHA ABNHOFO YPABHEHKA.

124.2) Ana roro, uroGer Y3HATO aanaerca 14 UHCNO | pewennem ypasmenma x
(x — 5) = 6, nano noncraswre 270 „ncno a ypapnenne. Tloncrannaem H no-
yuan: 1 + (1 ~ $)=6; 1 - (4) = 6; 4 = 6. Mu on, WTO panencrao He
Bumoanaercn. BAT, HHCRO | — HE KOPEHS HAMHOTO YPABHERHR.

6) Hanomnus, «TO Ana Toro, WTOÓRI BLIACHHTE, ABNKETCK AM BaHHO HCO
KOPMEM YPABHCHHA, Hallo NOACTABHTE ero YÜRAHTECH, NTO ode YaCTH ypan-
neuna pastas. Takum OSpasom, rtonysaew, NORCTABHB (-1) 8 Kcxomi0e ypas-
nenne -1 + (1 ~ 5)= 6;—I - (-6) = 6; 6 = 6. Pasetcreo ABMACICA nepmtin,
MEHR, MOKHO CACA BIBON, «TO YHCAO (-1} ABNETEA KOPHEM ypaBlienta.
128, x(x +3)-(x- 7) = 0; ecm
conn x

can.

; O— Kopi Rannoro ypannennn,

Cnenosaremno. 7:
126, Bepeu u noncrannaem chavana smono 1,2 à mano ypestenne, Monyuaem
(12) = 1,44, Das roro, vrodu sossecra aucno 1,2 BO BTOPyIO creme,
MOKIO BIATO H NEPEMHONIKTE ITO Mico camo Ha cen cTonGHKOM. Mucem
(1,23 = 1,44, Tlonyaaem 1,44 = 1,44, Pro pasexicreo ABNRETCA Bephia. Ia
sur, aHeno 1,2 ABARETCH KOpHEM YPERHEHNR. AHANOTHARO NIPOBEPACH AHCO
1.2), MOMIA, 470 np BOSBERCHMH OTPAUSTENSHOTO «cna B METIO CTe-
MEME, MONYYACM nonoxirrennoe nen. Taxim obpazoM, nonyuseu:
125° = 1,44; 1,44 = 1,44. Seaver, (-1.2) tome XBANETOA KOPHEN YDABHCHHR.
127.2) 14 (+5) = 7+ 14%; 1,4y +7=7+ 1,4) — roxgecrao, a ono enpanea-
eo pn moberK 3HaKeHHAX Y (NO ONP.), SHUNT, PEUIEHNEM AAMHOTO ypab-
henna RanseTeR m10G0e wen:
5) y-3=y.y-y=3; 0 # 3, suaunr, mantic’ ypanHeune KopHeH He HMECT.
128. a) 2x +3 2x + 8:2x-2x=8-3,0%5, ypannense ropneñ ne umeers
02y=3,2y=y:y=0.
129, a) 20+5=2k 6) 3x+2= 5x +26.
130, a} 1 = Hi = 1,22 = 1, 288 sopna; 6) le = 0; x = 0, on xopenn;
®) bd = 5; 120, kopaeñ mers r) = 1,351 = 12,25 =—1.3, ana xopna.
131.2) Bocnomayeucx caeayioumn CBOMÑCTBOM: ecan 06e aCTH ypamennn
PASREMHTE Ha ONHO H TO KE AHGAO, OTAMAHOE OT HYAR, TO NONYAHTER YPAB-
Heke, PABROCHAGHOE aaHKoMy. Taxim OÓpazom, pasnenum neppoe Ypan-

ene na 7, cen 7. (6-3) 495030 À à x 3 27, Mia nan, ero
nepooe ypasnenne TAKOS Xe, KBK H BTOPOS, INAMAT, OHM PABHOCHADHEL

8) Ypasmermn 2 = 9 25 27 pannccunnn ra mopoe pau noma.

$3 Ypaonanun c 06400 nepowenvod 19

rca nps yrmomenin oGeux sacreli nepaoro a 9: 2 91932x=27.

3) 237 = 0m 2x = 7 pasnocunsi, ra, 2x = 7 =O} + 7 (x oem uacran
parencrea mpubaenaem 7) = 2x = 7.
132.9) 0,4- (+2) 1,6 + 17x = 2,88 - 08 - 1,6 4147 = 45x24;
6) (1,204) + (40 4,8a)= 1,20- 4 + 40 - 4,8a = 36 - 3,60;
B) 2,5 + (4 - 3y)-y + 2,3 = 10- 7,5y—p + 2,3 = 12,385:
1) (14 — 3,66) - (12 - 10,45) = 14 — 3,6 - 12 +10,4b = 2 + 6,85,
133, 8 - (3 - 3,5m) - 20 + 23m = 24 — 28m - 20 + 23m = 4 — Sm,
ent m = 2.5.10 4 + 12,5= 16,
ecau m= 1,2, 104-6 =-2;
ecam — 200 = -196.
134. A(2; 4); B(-3; 2% Cll; 5) D(A; 4); E(0; 2); FO: 0).
135,

136. a) Hauhoe ypamnetine unseren sueltan ypamriennen Bima at = b, re 03.
b= ~60. Ono Her oui Kopen, 7. x. KoxdpuuneHTe! a H D OTAHNEL OT

Ryn, Pasnenn 06e sacra ypasnonna Ha 5, nonyuaem: Sx = -60; x

x=-12. Kopens ypamenua pasen (-12).
H-Ir=8::=-08, 87x79; x=

20 nass 1. Bopexonus, moxdecmas, ypaonenun

137.0 1x=12:x-36;
3

s
sy=-ó,
DE 37

D Bx= 05200.

138, a) Mlepenecen cnaraewce (-150) npanyıo sacro ypaenenna. een ne.
HO8 YpABNEHHE, HMEIONIES ONHH KOPEHD, T. X. KOXPDHUMEETEI OTAHYHEL OT
150

nyna. Takum o6pazom, monygaem: 5x — 150 = 0; 5x= 150; x = 3 30.
Kopens ypannenns ponen 30.

6) 48 3x = 0; 3 = 48x | 8)-1,Sx-9=0;-15= 9; x= fe
1) Ir 1 = 35 127=36;x SR 43; x = 4

e) L3x = 54 + x 3x = 54; x = 180: x) 7=6-02x;-0,2r
3)0,15x+6=51:0,151=43; x= 300; 1) -0,7x + 2 = 65: 0,7x= 63: x =-90.

139, a) 2x+9=13x:30=6;

de
3:
6) Tlepeneces cnaraemoe {-I 1y) 8 neayıo aacre ypasmemaa, a 14 — 8 npo-
Bylo. Monyaem amneitnoe ÿpaBHeHHE, HMEHOLIES OAHH Koper. Mmeeu:
14-y= 19-119, pps 19-14; 10y= 5. lonennm nenyıo u npauyio
5

Fp COMPETI menmens

‘acta ypasnenna na 10, nonysaem 10y

sy
5
Manamenarens na 5. Heu: y = 27,
8) Tlepenesen cnaraemoe (-30) 8 nenyro sacre nanıoro ypasnenna, a 11 —
2 npaay1o, Mlonyuaem: 0,50 + 11 =4- 3a: 0,58 + 3a = 4— 11,3,50=-7.
Tlonenum xenyio 4 mpanyıo sacra ypanırenna wa 3,5. Ameem: 3,5a = -7 wait

2.

1 1
> + Kopenn, ypasitenns y= —
q Kopem ypa ps

2. Kopemb nanhoro ypabnenia: a

1) flepenecen cnarsemoe (-m) 8 neayıo vacro 1annoro ypasnena, à 1
npasyro, Mmeem: 1,20 + 1 + 1; 1,2 + n = 1 - 1; 2,2 = 0. Flozenum ode

o
‘actu TOTO ypanhenns na weno 2,2. Mneem: 1 = —

. BHaUMT, aa

oe antefiioe ypastenne uMeer sopes 1 = 0.

a) Tiepenecem cnaraenoe 1,7m 8 nebyio Hace aanııcro ypannennn, a 1,7 —

e npanyro. Moyen 1.7 — 0 3m = 2 + 1,Im wan -O3m~ 11m = 2-17;

2m = 0,3. Tlonenum o6e sacra sroro ypannennn na queno (-2). Mueen:
a > 0,15 . Tam 06pmon, nannoe muetiHoe ypasıtenne

meer xopene m =-0,15.

e) Jlepenecen cnaraemoe (-1,6x) 8 nesyro wacro manoro ypasnenun, a 14—B

$3. Yossnenun c 00400 nepemerod 2
"payo. Jionyamm: O,8x + 14 = 2 - 1,6%; 0,86 + 1,60 = 2-14: 24x = 12.

Teneps moxenma oGe uacru ypasuenna na 2,4. Hmcen: x = 2 =-5,Ta-

5.

Km 06pasON, nannoe THHeHNoe ypannenne uMeer kopen. x=

a8) Tlepenecen craraemoe te B aesÿro sacre 3TOFO ypaBnenin, a 15-5

apanyıo. Tloryuaem: 15-p= do

1
15 -12p=-16,
3?

=16. Tenepo nonenin Or 4acTH ypabnenna Ha ameno A Mo-

16 _16_16 4 _16:3
SPST =12. Taxi oÖpasow, aoe an-

Helinoe ypasneitite uncer kopen p= 12.

3) Tlepenecem cnaracnıoe + B nesy.o HACTE TOTO ypasHens, 84 8

npasyro. Une: 14x+4= pe hi3 dress Maut,

3
aankoe IMBCÍNOS ypaBHeRHe HMeeT Kopenb.x = 3.
m) Mipunenen nOROÖRBIE cnaraemuie 8 ReBOË Yacta aroro ypaBnennn. Mo»

nyasem:

= Onan = 0. PasaemM oe actu ypaghiemx wa 4 À

Mueeur: z = 0, Taxım o6pasom, zanRoe nunelinoe ypasnerne HMECT KO-
pet 2= 0.

K) Tlpnsexen nonoÖNBIe cnaraemete B NRO HACTH HAHOFO YPABHEHHS.
Tlonywaen: x dx = 0 um -3x = 0, Teneps paznemmm oße sactH 37070
Ypasnenna ma (-3). Hmeem: x = 0. Takum 06paz0m, KOpENE JANHOrO ypaB-
nem = x = 0.

ax = 5 B= Di x © 0;

M) Tlepenecem cnaracmoe Sy npasyto sacre. Hueew: Sy = 6) nn

0 6y~ Sy nan 0 = y. Dr0 auneñnoe ypastenne anna ax = b, re a = I,
b= 0. Taxum 06pasow, y = 0 - Kopenb Aanioro ypannenna.

10,0) ix- Bert isn lire Ta 10 2-4a Naw 12 IL;

51) 2,6-0.2b=4,1 -0,5b;0,30= 1,5;

908-y=32+y-14=2y=-1,2

2 naga 1. Baspamante, moxdecmaa, ypaanenusn

IL. a) (9 + 4)- N= Gy y +4-y+1=6y=0:-6y=

6)3p-1- (p43
8) 6x — (7x - 12)

1) 200= 19-(3+ 120% 200 19-312: 320= 16: amd.

+ 3p—
101; 6x 7x + 12

142, a) (13x — 15) (9 + 6x) - 3x; 37 - 15-9 - Gr + 3x = 0 10x = 24; 2 = 24.
6) Ciraxana pacxpoem cKoGxit 8 oBeux uacrax ypanuenns. Tloryuaeı
12 ~ (4x ~ 18) = (36 + 4x) + (18 ~ 6x) wan 12 — dx + 18 = 36 + dx + 18 - 6x.
‘YnpocTam nesyio H mpasyto 4acTH ypasnents, RPHBLAR NONOÓNELE cnarae-
sie, Mucem: 12 + 18- 4x = 36 + 18 + 4x- 6x um 30 - x = 54 -2x. Mepe-
Heceu cagraemos (-Ax) u npanyıo vacts yousHenua, a 54 — » nenyıo. Tlony-
ann: 30 — 54 = 4x - 2x: 24 = 2x, Mlonennm 06e «acta ypapnenna na 2.

Vinee: Benes 12 — kopen» ypasenHa.

8) | 6x - (x - 2,8)=(0,2r+ 1,5)-0,7; L,6x-x+ 2,8 = 0,2 + 0,8; Odx=-2x=
1) Packpoent CkOËKH, yunTeldan STAR, croate nepen CKOÓKAMH.

Tlonysaem: (0,5x + 1,2) ~ (3,6 ~ 4.5x) = (4,8 —0,3x) + (10,5x + 0,6) unit
O\Sx + 1,2 - 3,6 + 4,5x = 4,8 - 0,3x + 10,5x + 0,6. Mlpeoöpasyem ode sacra:
Sx ~ 2.4 = 5,4+ 10,2x. Tlepenecen cnaraemoe 10,2x 1 neayo sacro, a (2,4
E npasyio sacre ypasnemns. Taxnm oSpasom, nanyaaen: $x— L0,2x = 5,4 + 2
-5,2x = 7,8. Paszenum 06e YacTH ypannenua na (-5,2) x monyunm:

73
#2 ig = 15 opens ypasnens.

143.2) Packpoen cxobxm 5 narıtom ypabttenmn. neem: Sx + 3x3 = 6x + 11.
Tlepenecem enaraemoe 6x & neaylo Macro Ypasnenna, a cnaraemoe (-3)- 8
npasyıo. Tlonysaew: Sx + 3x -6r = 11 + 3. Tipmaena nogoôHe went,
Halinem: 2x = 14. Pasnenwm 06e sac nannoro ypasmenna ma 2. Huecu:
x=7. Taxım OÖPaJOM, ramos annelinoe ypamenne meer Kopens x = 7.
6) Cnauana pacxpoem cxoÓKH 8 nesol HactH aanmoro ypasHeutr. [Tonys
em: 3a- (10 + $a) = 54; 3a— 10 - Sa = 54. Mlepenecen cnarnemoe (-10) 8
Npanyıo “ACTA ITOTO ypasHeHHN H NPHBCACM 8 OGCHK SACTAX ypaBHEHnA
nonoGunce amer. Hen: 3a 10 - Sa = 54 unn 3a - Sa = 54 + 10 unu
-2a = 64, Pasnennm 06e sacra ypasnenia ua (-2) n nalnem a: a = -32.
Taxim 06paom, naunoe nnelinoe ypaswenne meer koperb a = 32.

8) PackpoeM cKOÖKH 8 neBoH NaCTH xaHoro ypasıennn. MMeeM: (x — 7) —
~ (2x+9)=-13 sum x—7 - 2x -9 = -13. [Ipnnenem 8 neBoñ sacru ypas-
Renan nonoGne vers. Monyuacn: x -16 = -13. ¡lane nepenecem caa-

$3 Ypnananım « odnod nepewesod 3
Taewoe (CT) 8 mpaByıo ACTS YPABHEHKA # NPMBEREM » NPaBOÍ ACT no-
aoGubie unensr: x= 16-13 snm -x = -13 + 16; =x =3. Teneps monennm
06e wacrH aanıoro ypasmenwa na (-1). ucem: x =-3, Takıım 06pasom,
ainioe anHeÏlNoe ypaBNEHME HMCET KOpeHE x = 3.
F) Packpoem cko6KH 8 enol wacTa TOTO YPabnenin H RPHBENEM MOJOÓ=
ute nents. Hien: 0,6 + (0,5 — 1} = + 0,5: 0,6 + 0,5y- 1 = y+ 0,5;
0,57 0.4 = y + 5. epexecew cnaraemoe y 8 1EBYIO ACT» ypannenun, à
(-04) - 8 npasyıo. Zaren npunenem nonoGite were. Hasen: 0,5y — 0,4 =
=? +0,5; 0$y-y= 04 + 0,5-0,5y = 0.9. Pasremm oße sacru ypanmenun

og 9
-=-18

05 5

144. a) Aa Toro, “TOS 1 BöLRCHITL, NPK KAKOM 3HAYEIMH NepeMeRHOM SHaNEHHE
uipawenna (85 - 27) paso 5, nano nphpamse sro Bupaenne x 5. pe.
um nonyanouueecs ypaukenme: 86 - 27 = 5. Mepenecen (-27) a npanyıo

sensor. 2

na (-0,5). Monyuaem: y.

acre u nonenuM oße acru na 8. Vineem:

b=4.- kopen NCXOANOTO ypasenng, Shar, np b= 4 sHa¥enne mpa-
zxermn (8b — 27) pasito 5.

6) 8 - 27 =-115 8 = 16; b= 2:

5) Tax xax (2x + 1) na 20 Gonsiue (Bx + 5), To moyeu 3anHCATE 370 yono-
ane: 2x + 1 — (8x +5) = 20, Pacxpoen cKoËKH ¢ yuerom strakos. Tlomy'aeM:
2x+ 1 8x5 = 20. Npeobpasyen neayto sacra 6x — 4 = 20. Flepenecem
(4) » npasyio wacrs ypashenna à noneniin 06e 4acTH Ypasenna na (-6).

A,

Tlonyyaem: ~6x = 20 + 4 nam -6x = 24 nam =-4. Taxim oßpa-

30M, x = 4 YROBNETROPRET YCNOBHIO AAHRON aana4H.
1) 85-21 2-1; 86 = 26; 5 = 3,25.

145, a) 2m- 13 =m + 3; m= 16,6)(1 ~c)—(3~5e)= I; |-e-3+5e= 1; 4e=3;

D) (2e + 1)~ (Be+ 5) = 205 2x + 1 B= 5 = 20:6 = Dix = 4;
1) 3x = 45 = 10x; 13x = 45; xk DI =>

146.2) Sy +3
8) (3y— 25) ~ (1,79 + 37) = 169,39 25 — L Ty 37 = 14; 7.6)
447, a) 2x+5=2-(1+ 1) + 11:25+5=21+2+11;0-x=7- ner pemenna;
8) 5-(2y+4)=2-(Sy- 10); 10y+20= 10 - 20,0: y= 40— ner peana,
8) 3y-(y- 19) = 2y, 2y + 19=2y,0- y= 19- ner pemenna;
1) Gx= 1 (4-60); 6x =-3 + 6; 0+ x= -3 — er penis.

6 y Y= 3B: Y= 5S; 6) 7y-2-2y=10:5y= 12; y=24;
0.

2 fase 1 Bxpexonun, moxdecmes, ypaananın

148. 3) 15-(x +2) -30= 12x; 15x + 3030 = 12x: 3x=0;x=0;
)G-(1 + Sx)= 5-1 + 6 6+30x= 5 + 30x, O x = 1 ~ ner pemenne;
8)3+6-2)-2-(2y- 1; 3y+y-2=4y-2,0- y= 0:y- mo60e uncno;
96-G-D=4+ Sy 6y=y+1=4+5)%y-0=3 —ner peuenna.

149, a) 5-(3x + 1,2) +1 = 6,8; 15x + 6 + x = 6,8; 16x = 0,8: a

94-#+3,6)=3x- 1.6: dr + AA = 3x 141 =-15,8:
8) 13-4,5y=2-(3,7—0,5y) 13-450 = 7,4 y, 3,5
1) 56—Ty=-4- (20-09) + 2.4: 56~ Ty = By + 3.6425
150,2) 4x +3 =0,2 -(3x+1)-x0,41+3=0,6r +0,2 - 15 0.8
6) 3,4 - 06x = 2e (04 +1); 3,4 D660 = 2x -(0,4x +1); 34 - 0,6 = 16x ~ 5
222 44x22;
8) 08x — (0,77 + 0,36) = 7,1; 0,8x- 0,7x - 0.36 = 7,1: 01x = 7,46: x = 74,6;

1) x-0,5=2- (03x 0,2): x 0,5 =0,6r-

Oax= oi x=.
3

ISL. a) 6 -(x— 1) = 94 L,7x: 6x6 = 9,4 1.70: 7.2% = 15,4;
935-9a=2-(0,50-4.3.5-90=a-8;-a=-11,5;

B)3.(2,4- 11m) = 2.7m + 3,2; 72- 33m

NE

Tm + 32 m= 8; me

M3 > (y +2,5)=6,9-4,2y: -3y-7,5 42: 1,2y=14, 12;
OSA TAS O ASNO TS Ts y 2
€) 4- (x ~ 0,8) = 3,8x - 5,8; 4x - 3,2 = 3,8x - 5,8; 0,2x >

152. a) 7» (x ~ 82) = 3x + 19: 7x 574 = 3x4 19:

x = 76.4.5 19,1:
6) 0,2 - (Sx ~ 6) + = 0,8; x ~ 1,2 + 2x = 0,8: 3x = 2: aed:

2) {1p + 06)

3,640.6; Ty +y=

+ 0,6; -6y=4,2y=-0,7;
3

13-Q5-20=13,5- 145 75-6x= 13,5- 140, B= 6 x= Ti
A) 0,6 ~ 1,3 = 0.3: (9-4): 0,6y - 0,3y = 1,5 = 1,2: 03, = 0,3; y= 1;
e)05-(4-2a)=0=18,2-a=4=18-20=-38;a=1,9

3: 2; 150: 1,6) 28 y 531.2; y
1,1

153.

S<y<zy=

; 29; 30: 31.

2,17,3
<035<-04n ice.
$8) 03 <0,35 < 040) Sea <Z

154. a) 7,8 < 7,81 € 7,9: 6) de

me

25

155,

156. a) Canara ynpocrum nario vuipaxenne. Pacxpoeu cKoOkH u npHpenem
nonoönsıe sema. Hueex: 6,8¢—(3.6¢ + 2,1) = 6,80 3,60 2,1 = 3,26 - 2,1.
Teneps NOACTABHM 8 370 BeipankeHine Aanmoe snauenne c = 2,5 u Nahen
‘ero anauenne. HMeem: 3.20 2,1=3,2:2,5-2,1= 5.9.

6) Cuavama ZANNOE BEIPAMENNE Hyxo ynpocTiT, Packpoe CKOÖKH 4 TpHBe-

Dem nonoßusıe nents. Mlonyuaen: 4,4 — (9.6 — 1.2) = 44 — 9,6 + 1,2m=

=-5,2 + 1.2m. Teneps NOACTABUM B 310 BHIPRACHHE JaDanhos AHANERHE

m= -3,5 u alinem ero snaueine. Hem: 5,2 + 1,2m = 5,24 12-(-3,5)=
52-42=34.

157, Tlycrs 5 nepsoii xacce kunorextpa Ósuro mpoxano x Önneron. Torza 6 apyroM
Kacce nponanit wa #6 Guneros Gonsane,T.€, (x + 86) Gnneros. Masecrio, «ro
‘cero Geno mponano 792 6uneta. Orciona nomysaes ypasieme:x + (x +86) =
= 792. Peru 310 annehuoe ypaBremne. Pacxpocm CKOOKH 1 Iphacaem 8
_nawnoM ypaBeHHH nonoÖnBie “nent, Mmeem: x + (x + 86) = 792 MAM x + x +
+ B6 = 792 man 2x + 86 = 792 un 2x = 792 — 86 naw 2x = 706. Pasnenum

‘0Ge «actu roro ypantients na 2. Tloayvaea: x = we = 353 (Gunero). Taam

‘o6pasow, nepeoti kacce Guno nponano 353 Gunera. Hañzem, cxontKo 6x-
aeros Öbino nponatto 8 ApyrOH Kacce: x + 86 = 353 + 86 = 439 (Onneron).
158. Zamunem nepece yCnoBHe sada. Fipumem CTOPOHB TpeyronbIKa 38 a,
b,c. Tax wax nee cropomb pastor Mexay cOBOR, To nycro a = b= x (cm), a
peros cropona c na 2.9 eM Mens IX ABYX, saw C= x — 2,9. TAK ka
H3DSCTIO, STO Nepnaterp Tpeyronmuxa pasen [6 cm, ra MMEEM: x + x + =
=2,9 = 16, Ynpocrum, npsex nonobmue craraeume, a (-2,9) nepenecem

26 rosa | Bnpamemur, maxdecmee, ypoanomın
8 npanyio sacre ypapnenna. Monyuaem: 3x = 18,9. Nlonennm ode sara

ypannenns ma 3, Toraax= = 17.8.2763 (em) - nepeaa x Bropas Cro

Poni Tpeyronmunka, a Tperen pasa (x 2,9. 1.0.6.3-2,9=3.4cM.
Omer: 6,3 om; 6,3 cm; 3,4 cm.
159. Nycns por wsroroai x neraneh, Torna Il paGosi varorosun (x +8) aeranel.
1 +x+8=86,2x=78,x=39. 39 ner, — mmorossn paGoun, 47 ner, — I paBowni.
160.1 u, x senoser; lu. — (x + 70) senosex; MI u. — (x + 70+ 84) venosen,
acero 1274 nenonex.
a+ a+ 10 +x + 154 = 1274; 3x + 224 =1274; 3x = 1050; x = 350.
350 wenosek B ! uexe; 420 senonex so I] exe; 504 senonex s III uexe.
161. Caurep - Sx r wepern; wanxa — x r wepera; wapd ~ (x $) r weporu,
wero 555 1; 5x + x + x ~ 5 = 355; 7x = 560; x = 80,
80r WIepem nowno na uranxy, 400 r wepens — Ha comp: 75 r wep — va pd.
162. 1 monta — x our; It monta — (x + 8) kann: HE nonka ~ (x 5) kunr: acero

siz

158 same x +x + 8 4x 5 158: dre 3 158; 3x = 155; 5

2
Tex, SIT keurn nocrasnTe ma nonKy HeMLSA, suaunr, pasMectHTe o 158

XHHT Ha Tpex RONKAX, KAK MPEIDTAFAIOT, HEAOINOAHO.

163. Myers x Banok ~ 8 TeTLeM ALIKE, TOFAA BO STOPOM Na 4 GaitkH MenBUIE,
“em B TpeTbeM. TO ECT (x — 4), a B MEpBOM HA Y GaHOK MEHBLIE, dem 8
"pense, To ecrs (x - 9). Tax Kax ncero 59 Batiox, TO MOXEM COCTADATE
ypasweune: x + x = 4 + x 9 = 59, Ynpocrim, npiieeas nonoGHue cnarae-
Mule: 3x — 13 = 59, [lepenecem(-13) 8 npanyıo tacto YpABHEMHA n none-
ie 06e «acru ypannenun na 3. Hmeen: 3x = 59 + 13 nnn 3x = 72 won
x= 24. Mbı NONYAHNI UEROS YHCNO ÓABOK B TPETHEN ALINKE, SHAMIIT, MOR=
Ho cnenaT» suBon, «ro 59 Ganak MoxHO PAJIOKHTE 8 3 suttKa: a Epi
15 Ganox, Bo Bropoñ 20 Ganox n & Tperal 24 Gant.

164.
Buuno_Trrepecannan] Tiocaauni ‘Crano

[Tysacron [Sr xycros| 22 nyera [ET | ronny

it ywacrox] x ycron Byers | (x +22) eyeros

Sx—22 =x + 22; 4x = 44; x = 11 — xycros mannnel Go1n0 Ha IT yuacrke,
‘rorna 55 xycros ~ wal yuacrke.

165, Nyere coGcreenaa cxopocts Termoxoza Öyner passa x xw/s, Torna cko-
pocte tennoxoza na Tevenmio panna {x + 2) xm/u, a nyrs, mpoRneHHbsil Te-
MAOXOROM 24 9 4 NO TEMEIINO, Gyer pasen: 9 (x + 2) KM. Cropocte renno-
x02a mporma reuenna panna (x — 2) w/a, Toras sa 11 4 npoTHB Teuenna

$3, Yosananım 02608 nepewonuot 2
"TeNTOKOA nPORONKT paccTosHe: 11 (x — 2) kM. ITo yanonumo, pacetonmme,
npoiigentoe TENNOXOAOM no TEUEHAO, PABHO PACCTOAHMIO, npofizensiomy
TENAOKONOM MpoTHE Teuenna, 7. e. 9 (x + 2) = 11 (x 2). Peumm nonyuen-
‘Hoe ypannenne. Packpoem ckoGxn H nprsenem nonoSusie vena. Hees:
9 (#2) IL (2) 9x + 18 = 11x- 22: Lx Qx= 18 + 22; 2x = 40, Pas
em 06e uacru ypassienna ma 2. Tlonyaaem: x = 20 (mei).

166. Tiyer» nepnonauannno cxopocra oßenx Malunn panas x «ma. Torna
Roche WIMEHEKHA CKOPOCTEÍ MALINH IX CXOPOCTH ÉYAYT paar, COOTBET-
ermexno, (x + 10) ma m (x - 10) kw, 3a 2 y nepnan maluna mpohzer
paccroanne, pasnoe 2 (x + 10) xw, a Bropan xa 3 « ny 3 (x - 10) cm. H3-
BECTHO, WO PACCTOAMNA, npoñgenme Maman, pastis. Flonyaaem
ypasmenne: 2 (x + 10) = 3 (x - 10). Peu sro ypasrenne. Pacxpoem
ckoGku K mpunenen nozoónee nent. Hmeem: 2 (x + 10)= 3 (— 10);
2x + 20 = 3x~30; 3x— 2x = 30 + 20; x = 50 (ame).

167.

Beıno_T Yemen na | Craao
2x uen. ES Ea
TI Gparazal + ver, Deen Due, | 17 ver Gone

(Qk ~5)- @-2)= 72 -5-x+2= 77 = 10; 10 sen. Guno so Il Gpara-

ae, 20 ven. - 8 | Gpurane.

168, Nycre nepsoii Öpurane x mogell, Torna po Bropoll 84 paga Gonse, sem
8 Nepsoli, TO ecrs dx monek, Tak kax 43 BTopoll Gphranst yutno 6 senonex,
a 12 nepescan B nepayio, To ram ocranocı 4x - 6- 12 = dx - 18, a nep-
‘ol coorneTcraenHo crano (x + 12). Tak Kak ckasanıo, «To nocne 9TOro B
Spuranax moxeñ crano noposny, To nonyyaen: 4x — 18=x+ 12. Nepene-
cem x m ncayo «ace ypamnemna, a 18 5 npasyio. Mucem: dx x= 18 + 12
un 3x = 30, Tiopenm un 3 06e Wacta ypannenna, torna x = 10. Sat, 8
nepsoë épurane 6s1n0 10 aenonex.

169. Tiyers x - «neo, Janncannoe Ha nocke, Torna x + 23 = 7 (x
2423 = 7x = 7; 6x = 30; x = 5 — ace, sancaHHoe Ha AOCKE.

170.

Bano | Viena ua Crane
Kopsuns | rer 2er re | 0517 come
sunk | 2xer ETS Ñ

x4 2~2x=0,5)-x=—1,5; x = 1,5; 1,5 ar sunorpaan Obino » kopsuhe.

MTL. Lapôys xx; ll aps (2 + x) xr; apoya —Sx xr; x. (x + Sx) kr 8 3
pasa tamence (x +2) xr, ro x + Sx = 3 + (x + 2 Gr = 3x + 6x * 2;
2 kr ~ | apts, 4 Kr — 1] ap6ys, 10 xr - U apôys.

172. Mycre x rparropos ocranocs u xomone, rorza (x + 12) Tpaxropon Gsino ®
konxo3e. T.x, Gstno » 1,5 pasa Gonbure TPAKTOPOB, NEM CTANO, TO
x + 12= 1,5x; 0,5x = 12; x = 24; 24 rparropa ocranock 8 Kanxose.

28 naea |. Bupamenus. moxdeemee, ypasnenun
173. Dyers x xr caxapa waann M3 | Maui, Toraa 3x KP caxapa eaann wo I]
Maures, (50 — x) Kr caxapa ocranocs 8 | maunne, (50 ~ 3x) Kr caxapa 00-
Tanoce 20 I} mauve. T.x. 20 I] Mame OCTANOCH a 2 pasa Menbiue, EM B
Tnaunne, ro 2 - (50 — 3x) = 50 x; 100 — 6x = 50—x; 50 = Sx; x= 10;
10 xr caxapa manu ms] mauunnbt, 30 Kr caxapa — #3 IT Manny, Tora.
40 xr - ocranoce » | mauımne, 20 er — ocraocs 80 I! maurie.

174, e 175,

3e
LITE)

1 C0,505)
D

43.12+63-36

19,42 - 3,6

37
24-082 -32=07-32=
= 215 a

177. -0,5 - (7b - 12a) - (8,44 — 146) = -3,5h + 6a - 8,4a +146 = -2.4a +10,5b;
cnn a= ~10; b= -6, 70 -2,4 (10) + 10,5 -(-6) = 24-63 =-39,

178. a) Jlna nayana nepenuorxnMm cronÖnKom suena 3,52 u 1,7 m monyanm
5,984. B pesynbrare mph nepemnoxewmn: 3,52 -1,7=-5.984, ro uncno
orpiuatemoe, a, CREAOBATEALIO, Mene HyAR, anautr 3,52 - 1,7 < 0,

mal

6) (-2,86):(-09)>0; WR 1 <0.
= 3 es

Aonoanmrenvume yapaknenns x rase I

179. a) à 2)-

4
D 7-49) 28:

89

3
Dy as(-

180. a) Cravana nepemnoxm 42,5 na 10. Monyamm 425, sarem paazerum
‘cTonGitkom 25.5 ua 17 4 nonyuaem 1,5, a Teneps cHOKHM NORYUCHHME pe-

Tononnumenarer yapa « an06e | 29
ayzorara. Hmeem: 425 + 1,5 = 426,5
6) 168: 10+ 7,4 - 0,8 = 1,68 + 5,92 = 7,
5) 20,6-8-244,8:6
1) 240.8 : 301 + 32 : 0,06 = 0,8 + 1,92 =2,72.
181.0) 12,6+5-(3,251—1,171)— 12,6 + 5 : 2.08 = 12,6 +10,
6) 7,6 - 8,4 : (0.27 + 0,15) = 7,6~ 8.4 : 0.42 = 7,6 20
182, a) HanowHn, «ro cheuans einoniseTca YMHOXEHKE H Aenenie, a LATEM

siraxrane, FepeunoxHM ie | Repeseas MHOMOTERH B HENPABWTL-

1543 941 _ 18 10
5 59

ure apobu. Hmeen

- Teneps mogemm a na

É
1 nepenens 06e apoSie D wenpasunentic, u samennn onepauno aenenita
ymmomennen, a nemerens - o6parvolt senuamnol Tlonysaem:
214 9 _22 9
3 9+2 31
BEMHTAHHE H HAÂEM: 4 — 6 = 2.

6) t4:4l4 agua, 2010#2 12
5 1 273 30 3

122 3343 648-9 18 3
DC: 5 Jas .

„IPW ITOM COKPATHB APOÓS. 3aTeM mITONHHM

30 fresa Gupaxenur, moxdocmas, ypsanonun

962-58=04=

moe À
Pos y

D ET ramos 240; 1949 :35= —:obpammos +.

15 16 240
185. a) 2,86 + )-4,3) = -1,44; npornnonoronoe 1,
6) - Bee 2 2 m B0n070KH0€ | El
96 13 is’ Le 18"

8) -5,75 : 1,6 = -9.2; npormeononoxnoe 9,2;

» 40: 72). 6; nporuaononoxuoe 6,
102-101-100 ...+102 +1034 104 (s,
100-101-102 (Sa
424242 SS
Acero Taxıx enaraembix 207 urryx;
5+5:=2-207=414,45,

187. Mponszenenne uensex uncen oT -[1 20 13 pauho 0, TK. oann #3 MHOKMTO-
señ-0,

2a+1 Tel 8
a iceman 35,70 se lé.

tel

=-19:0 — 2 y 28

¿Lon E
14 13+78

190.2) ab +e; 95: ON n =

191. a} Bixpastim cysmy a + bars yCnOBKA, AA TOTO nonennm oße 4ACTH Ha 2,

+ b= le 405, Ham mazo sara yıpoennoe

ro ects (a+b) =

nponssenenne stoi cyan, aaa: 3 (a+ 6) = 3, (4,05) = 12,15.

Bonamumenunse pas seen | a
9 + (0+5)=2025: 9) 4a+4b=

62; £)-Sa-$b= 20,25.

192.2)

= We mue cmnicna, een 2x4 =0(x=2),
2x-4

3 1
er 42=0[y=+];
© 7577 Ne moerenmens, ccm 4y +2 o(» 3)

8) a Hacer emsscna, een a — b = 0(a= 6 #0):

»

ne nmeer euuicna, ecnu a +5 =0(a=-b).

a+b

193, a) ObosHa4um nepnmerp 6yxsoñ p. p = 2 (a + b), rae an b— croporui
npamoyronbunka. Hau no ycnoanıo ckasaHo, 470 p = 16, a a = m, Toraa
imeem: 16 = 2 (m + 6), pasnenun oße wacr Ha 2 4 slupasHM b, nonyuaem
8=m +b, b= 8m. Mnowans (S) npamoyromsuna para nposasenenmo
a Ha b, Taxum o6pazom, nonyuaent m - (8 — m) = S.

6)S=ab; P=2- (at by 28= ax; 1=2 ,orciona r-2{0+À)

a

B) 5 = v-r; ABTOMOÓHIM BETPETATCA vepes 1 =



E) Motounkaner AOTOHNT Benochnennora depes f=

ny

194.9 = (a- 25) (b= 25) x; coma = 35, b = 25,2 = 5,70

¥ = (35-10) (25 ~ 10)-5=25- 15-5 = 1875 cm,
195.8) a= Jin. rae n € 6) b= 2in,raen eZ.
196. pk x= 10 umm y= 1,852 - 10 = 18,52 xm:

pit x= 50 mum y = 1,852 - $0 = 92,6 xm;

apa x = 250 mure y = 1,852 + 50 = 463 x.
197. 3) 3,48 — 4,52 =-1,04; 8,93 + 9,16 = 0,23; aman 3,48 — 4,52 <-8.93 + 9,16;

1 L 3 3
648. — < 6,48: —; 8) 4,7 -9,65 > 47-99; 1) = - 16,4< 16,4: >
9 i Hd 65 97 4

198. a) 2,7x + 5 u 1,8x—4 coma x = -10, ro -22 = -22;

scan x = 10, 10 1,76 > -6,16; ecan x = 2,4, ro 11,48 > 0,32;

6) 60m - 1 50m + 1 ecan m = -0,2, 10 -13 < 9;

2.70 11= 11 m= 04, ro 23> 21.

199. x) 10 Gonsuxe 9,6 u mensuse 10,1; 6)0,75 Gonsue 0,7 u mensue 0,

2 ‘naga 1. Bepaxenun, mondecmes, ypaanonun

8) 641 Gone 640 n mensue 650; 1) od Gonsure 57 n mensure SB;

2) -4,71 Some -4,8 u mesure 4,7, e) „2 Gone -10 x meubune ~9.

200. a) x Gonowe Hunk pasito -8, 6) y meme mam panto 0,07;
B) 4,52 Mente Ham pasto a 1) 3.64 Some wan paso b;
a) m = n Gorse nn paso K; €) p + x mento nan pasno y.

201. a) m < 12; ecan m = 10,10 105 12 - sepno;
ecau m= 12, 70 12 < 12- nepno; een m

6) k2-5; comu k=-1, 10 -1 2 ~5 - Bepuo;

ceca k=-5, 10-5 2-5 - nepno; ecm k= -9, ro -9 2-5 ~ nenepno.
202.0) m2-52; — G)K<-1,7; 8)652x m912y
203. a) 100<x< 110; 6)-7,1<0552 8)3<d<3.L mOsk<l

204,9)-2<x<3; 6)-5<a<0; macorósl; MO<ab<15.
205. a) com a > 0, b > 0, ro ab > Ü- nepna;

6) ecnu ab > 0, ro a > 0, b > 0 - HeBepno, T.k. ecnn a < 0, à <Q, 10 ab > 0.
206. a) la + b] = jal + |6|- sepno Tomxo ans a 2 0, b 20;

6) lab] = lol - 16] — Bepno ana mob aH b.
207. Bocnonsayenca reoMerpHeckHM CMBICNOM Monyna uncna: | y | - paccros-

ite OT TONKH x Ha HHCADBO! och no ee nayana. Venoswe | x | = | y | osmana-
ET, TO paccTOMMitR OT TONEK x Hy RO NANA UNCADBOÍ OCH OAMMAKOSS.

tell ll
[E77 = 0%
wey feed

Nerxo cooBpaante, TO 310 BOIMOKHO Ha B CNYNAE, KOTAD MMCNA X HY
Onmmaxansı (r. €.x = y), mW ECM nena x Hy NPOTHRANANCM (T. e, X= =).
Hanpuwep, |-8 | =| 8], 10-8 = 8 - pasencrao ne sephoe.
208. Ecan lo] < |b], ro a < b - nesepko; npamep: a = 30: b
209, Beau al > bl. TO a < b — nosMoxato Taxoe: npHMep:
arb

210. Ecana <b, 10 a< 2 <5.
a

esos
300 4

au. -38a<4,
nono a MONET PH NAVE ALOGOTO SCA Hs DRUEAEMONO MITTEpEANA.
212.0) 8,7 - 9,64 3,8- 8,7 — 8,7 3,1 = 8,7: (9.6 + 3,5 - 3,1) =8,7- 10= 87;
6} 76-68-1868 + 6.8 - 13,9= 68. (7.6 — 1,5 + 13,9) = 6,8 - 20= 136;

Aonannumensnu yopananın « an000 1 3
m)5.9-2,6+59-3,2+5,8-4,1=59-5,8+5,8-4,1 =5,8- 10=58;

1) 6,8-8,4-1,6-8,4+5,2- 1,6= 5,2 - 8,4 + 5,2 - 1,€
213.0) (1.25 - 1,7 -O8- 1,7) 345 = 0-34
6) 3.947 : (3,6 ~ 26 -0,25)= 3.947

214. a) -3-(a- 36 - 3a - roxnecrBo:
9-5-19- 8) 5y- 5x - ne sansetes ToxneeTBOM
215. a) bei = bees pel = 1-1 > xls bel = AU pa bel = 1 be | = bel

947.

Ok-H=b- HL ey) bem = Hi es
be Ik - - Bepno.
8) [2c] = 2 fes |» Id = 2 lel: 2 fel = 2 let — nepuo.
216, a)x-y=x+ (Wi: G2 + (0) = 0 Ha? = ay,
217, a) ja + S|=lal + 5 ~ ne neaseron TOXIECTRON;
6) la" +4) =a" +4—toxnecrao; 8) la — 5 16 - aj = 0 - Tomaecrso;
1) la + bl — Jal = [bl - ne amaserca ToxnecTBOM.

218. a) Tlycrs nepeoe co Gyaer pasno a, a stopoe uncno Gyaer passo b.
Torna cymma orax AByX uncen Gyner pahha (a + 6), a nx paanocts Gyner
pasa (a 5), TpaGaau x (a + 6) wenmuuny (a 6). Monyuac: (a + 5) +
+ (a~ b). Packpoes 2 STOM auapaxetnn CKOÓKI 4 IPHBEAeH nonoSHBie
news. Uncen: (a +5) + (ab) = a + b+ a~6= 2a, una.

6) Tlycr» nepsoe uncno 6yaer panto a, a mropoe neo Öyner pasmo 5. Toraa
ya 27Hx anyx uncen Öyner pasna (a + 6), a ux pasnocts Gyaer panna
(a 5). Busrren M3 cymunt STAX ABYX 4HCEN wx pasnocrs. Packpoem ckoß-
uu mpusenen nonobnue vea, Tonyuaew: (a + 6) - (a 8) =
<a+b-a+b=2b arm

219.) 0,8 (1 Lx 10y-2)=8,8x + 8y- 16;

6) (20 - 12a + 46) -1,5=30- 180+ 65;
8) 7 -(0,5m- 1,2n + 1) = -3,5m + 8,4 7;
1) C-2.2—m + 1,5n) -(-6)= 13,2 + 6m 9m.

220.) Han TOTO, WTOGH1 nokasarı, TO BEIPEXEADE TOAECTBENHO paBHO HV,
ano BOCNONDIOBATICA PACNPEREANTENBUBIM FAKOHOM CNOXENNA OTHOCH-
Temo yunomenns. Tonysaens: (a + ic + (a - be -2ar=x(at b+a-5)-
-2ax=x (20 -0)- 2ar = 2ax—2ax = 0. Tipn ynpomerun namtoro Bsrpa-
KEHHA MAL HOMyYAEM, YTO OO TOXIECTRENIO PABRO RYO,

DLR ES (yx) =8x-8y+8y—8x=0

221. a) -3,6x-5,2—24x-9=-6x- 14,2:
0) 4.60 + 1,56-3.2b- 1,84” 2,84 = 1,7
18) -6,7a + 56— 0,80 - 2.56 = -7,5a + 2.5b;
DIET ETES
2) 2.40 - 0.8m - 0.4m- 1,5m = 2,40 — 2,1m;

e) By + 2e + 8y— 4.3y = Bly + 2x + Bp= 2e Op.

228718

34 Fase |. Bupawenum, maxscma, ypoenanıs

2er ex dire
Da -Sita:4ta-

AMA) Y O) Uy
a)x+¢ Mat AA

224.5) 69-5,1m+(6m- 1,2)=5,7+0,9m:

6) 8,4x ~ 4,4— (1,6 + 101) = 8,4x- 44- 1,6- 10x = -1,6x 6,
B) 75y+ 6-7,30) $8 = 02p + 02:r)-(317q - 5,5) + 94-392 S3q+ 1,6.

225, 8a —(4b + 30) - (4a - 38) = Ba ~ 4b-3a— 40+ 36 = ab;

a) ec
DEA

226. a) a + (2a-(3a-—5
0) a-(6a-(Sa- 8)) = a - 6a + (5a- 8) ]

127. (Tx ~ 13y + 8) ~ (20x + 6y) = 17) -13y +8—20x—6y=-31- 19y +8.

128, 3anuuieu sneao xpamioe 3 8 anne: 3p, rne p — moGoe uenoe «seno, à
kparnoe 5 8 suze: Sn, rae n = moboe uenoe wHcno. [Iponanencnne panıo
3p -5n. Bocnonsayewca NEPEMECTHTENDHGIM cBolicTBOM YMIOXEIIMK, HME-
em: 3p : Sa= 15 (pn). Buspaxenne conepur miomierent 15, anaser ro
npoussenenne xparao 15.

229. Tlycre nepsoe serios «nono Gyaer mers BHA 21, a Bropoe Gyner HMETE
sun 2m, Toraa 4x npowseenenue Öyner PaBnO Zn - 2m. BocnonssoRSeuIHeS
EpeMeCTITEASMEM CBOFCTEOM YMHOXEMHS, monyuacm: 2n + 2m = rim =

(nm). Nocne npeoGpasosanni BHaHO, uro 1amnoe npowseenenHe
kparno 4, T. K. Bmepens CTOKT MHOKMTEM 4.

230. Ann Toro, WTOÓA NPOBEPHTE, ABNAETCH AK UNCTO KOPHEM YPABHENKS, HALO
HONCTARITE E Ypannente 270 HHCNO BMECTO NepeMeHHOH # POBCPHTE,
suinonsiseres 1H pasencreo. EchH paneHcTso stinomiseTcs, TO 270 HCHO
sanseTes Kophem ypaDHEHHR.

a) flozcrasiw e nantos ypastenne avecro x dHeno 1,9.

Hneen: (2x — 3,8) (4,2 + 3x) = 0; 2 19-3,8)- (4.2 +3 - 1,9)=0;

3,8 2.8): 9,9 = 0; 0-9,9 = 0. Panencreo nuunoanseren. Cneaonatenuno,
wucno 1,9 ABAJETCA KOPHEM JAHHOTO YPABHENNA.

6) Tlogcrasnx » AEMNOS ypastenne BMECTO x MCD 2.
Flonysaen: (2x - 3,8)(4,2 + 3x) = 0; (2 -2-3,8)-(4,2+3-2)=
0.2 10,2 = 0: 2,04 = 0. Pasenereo He Bsinosnseror, ua, NHERO 2 He
ARNSETCA KOpHeM ITOFO YpaBNeHHA.

8) floacrapim 8 HCXOAHOS ypashenne BMecTo nepemennoh x wueno (1,4).
Unicom: (2x = 3,8) (4,2 + 3x) = 0; (2 -(-1,4)) — 3.8) - (42 + 3 -(-1,4))= 0;
(28-38) - (4.2 - 4,2) =0; 6,6 -0 = 0. Panencrao ssinomseres, Cneno-
BATENISHO, ANCHO (-1,4) XRIAETCA Kopheu aaunoro ypasnenus.

E) loncrasuM 8 HexoaHoe ypannenne UNCIO (-3) BMCETO x.

men: (2x = 3,8) (4,2 + 3x) = 0: (2 -(-3) = 3,8) -(4,2+3-(3))=0;

‚Bononsumansne yopannanin x nee 1 35
(6-38) - (4,2 - 9) = 0; -9,8 - (4,8) = 0; 47,04 = 0. Pasencrao He BHITON-
Haerca. Sauer, aucno (-3) He ARNAETCA KOPREM HANHOTO Y PABHEMKA.

231.) + 4x + 3 = 0; Kopnamn 3TOPO YPABHCHNA ABAAIOTEA TOMO —3 #1;
6) + x = 12: kopuamm TOTO YpaBHenHa ABAMOTEA TORO À 11 3.

232. a) Pacxpoem cxoGK € yuerou 3HaKe, nepeñecen ace enaraewbte, KOTOPHIE
conepxaT x B 1enyIO CTOPORY, 2 KOTOPble He CoepxaT x 8 npanyto. Hmeew:
31+7=(9+x)+ Dx 3x47 = 3x +9; 30- x 20 =9- 7. Ympouaem m mo-
nysaew: 0 = 2 - nesephoe PABeHCTRO. 3HAYHT, ypasneume He uMeeT KopHelt.
6) Packpoem ckoOku € YIETOM 3HAKOB, MEPEHECEM BCE CNATAEMBIE, KOTO
pete conepaar x 8 AERYIO CTOPOHY, a KoTopuie ME COXEPx2T, B MPaBy1O,
Himeem: Sx~ 1 = 4 (x +2) (9x1): Sx — 1 = 4x + 8-94
5x-4x -x=1+8-9. Ynpoctum m nonysaem: 0 = 0 - nepnoe pasencreo.
Jhauur, ypammenne HMeeT GeckoHeunoe MHOKECTRO pewenHit.

8) Tleperiecem caaraemoe x B JeBylO CTOPOMY, PARMOXHM HA MHOAHTEDH.
Hmeen: x? =x x? — x= 0;.x(x— 1) = 0. TIpoagenenne mnoxureneñ Toraa
PABHO HyMO, korna XOTA Obi OAHK H3 HHX parer Hymo. Tonysaem: x = 0
maux = 04. e.x = D)

A -2 - ner opuel.

233. Ypapnenna [x] = -Imbl+
20,2 y mac bd =-1 el

234, a) ==
B) lal - 17 = 0; a = 17, a

235. a) 7x +9 = 65; 0) (+2) (11 B)2x+$=3x+5,

236. mx = 5; ecan m #0, To ypaBHerne KMeeT ENHHCTEERHLI KOpeHe;
ecnm m = 0, To ypabnene Kopheli He HMeer, NET TAKOTO 3HAMEHMA Mm, MPH
KOTOPOM ypasnenue Hmeno Öbt MHoro pesen.

237.p-x= 10; ec x = -5, to p=-2; ecmx= 1,70 p= 10; ecau x= 20, Top = 0,5.

238. a) Packpoem cxoÓKH € yuerou 3:aK0B, Nepeuecem BCE craraembie, KOTOpHE
conepxar x 8 HEBY1O cropony, a Korapite He conepaar - 8 mpapyTo. Hme-
em: 3.8x —(1.6- 1,21) = 9,6 + (3,7 - 5x): 3.8x — 1,6 + 1,2x = 9,6 + 3,7— Sx;
38x + 1,2x + 5x = 9,6-+ 3,7 + 1,6, Mpeoßpasyen oe wacra. Mony'aen:
10x = 14,9. Nonenum o6e yactx na 10, nonyuaem: x = 1,49,

AS +9) -(62-3,1y)=7,2y + 24
45y+9-62+3,1y-7,2y=28 1.4y=0; y= 0;

1B) 0.6mm — 1,4 = (3,5 + 1,7) -(2,7m-34),0,6m-14=3,5m+ 1,7- 2.7m +34,
0.6m — 0,8m = 5,1 + 1,4; -0.2m = 6,5: m = -32,5;

1) (63a~08)~ (164170) = 2a~ (a3), 534-08-1,6+47a=20-a+03;
10a - a= 0,3 + 2,4; % ,7;4= 0,3.

239. a) x1) (7) = 0; (x +2)-(1-9)=0;
x-1=0umx-7=0; xt asm x-9 = 0;
CAPES nee

O ne xweror xopHell, T.K. no onpenenenmo
-3- rror0 ne MoxeT Gare.

36 Traea | Bupawenun, moxösemea, ypaonemun

B) (R= 1) = 7) x5) =O; Da)
Ommai-S=0, x=0ummx+3= 0:
5 120.253,
240. a) Ecnn ms BOSEMEM 1 HOACTABHM MOGOE NONOXHTENEHOS HCHO BMECTO x
H NEPEMNOHM, TO Y HAC BCETAA NOAUHTCH NOTOKITENKHOE HCHO, à KOT
Ra ette npaGawn 9, TO HHKOCHA Re NONYaHM 8 pesyaBTaTe HyAb. BHATT,
TOIOKHTENLHOE HHCNO HE MOXET BTE KOPHEM YPADHCHA.
6) x + 3x +1 = 0; xopens ne MOXET Berre NOROROFTENBIEIM
241, a) 015 -(x-4)=9,9-03-(x- 1); 6) 1,6-(a-4)-0,6=3-(0.4a-7;
0,15x-0,6=9.9 - 0,3x + 0,3; 1,60 ~ 6,4 - 0,6 = 29-21:
0,45x = 10,8; 1,6a-
<= 24 0.4a
B) (07x 2,1) - 0,5 — 2x) = 0,9- Gx
O,?x~2,1 0,5 + 2e = 27 0,9 + 0,1;
2.72 = 2,6 = 2,7x ~ 0,8; Ox = 1,8 — ner pewenux;
8-3 (2-0.4y) + 5,6 = 0.4- Gy + 1}:
6+12y+5.6=12y+04; 12y= 1,20= 0,4 +04; Oy = 0,8 — Her peters,

242, a) (2x +7) + (ox + 12)= 14; 6) (Sv += pre,
OxtT-x4 12= 14 EOS
x= 14-19 By
x=-$: zat.
m)5-0a-20=60-1; 5) 12m + 1 = (7m — 3) +25
Ta=-14; 12m + 1 = 14m 6;

a; met m
243. fipu a = 0 ypasnene ne weer peurennil, nostomy wen nonesHTE 06e

6
=. Tax xak kopen» nonxen
a

Seite KENIA 4MCAOM, TO 3OMJ YCROSINO yaoanersopsior TaKHe LEMA
3maveHHa a, Kak |, 2, 3, 6.

244, Tx. 13: 7 € OCTETKOM, INASHT, Kopene ne ÓYXCT MenbiM COM.
245, Myers x —xpontxos a pepe, rorza 1000 — x —xyp Ha depwe
4x +2: (1000 —x) = 3150; dx + 2000 — 2x = 3150; 2x = 115
x= 575 — Kponnkow Ha epme, Torma 425 — kyp.

246, lycra x neraneñ naroronnn I] pabounii, Tora 1,15x geraneá msroromna I
paGounit, x + 1,15: = 86; 2,15x = 86:
x= 40 ~ aeraneñ narorosnn Il paGoxni

247.

acts ypashemua ma a. Tonyssen: ax = 6,

16 neraneñ — 1 paño

Bano Crano
Y ywacror x+9 TEUER 51,5 pasa Gomme
fit yaaetox x 3-3

Bonomumensnse ypamnonn x 20060 | El

PORTS LS Ge Dx + 12= USK 45,05% =16,5,x = 33 kycra
cmopogyHit — ma ] yaacrxe, 42 aycra — ma TI yaactwe.
248. Tlyers y Muum x stapox, torna y Avapes » 4 pasa menture, sem y Mom

(enenosarenuno, Fr Mapox). Ecnx Mina otnact 8 mapox Annpeio, Torza

Y Hero ocraneren (x— 8) Mapor, a y Anapen CTAHET (E+) Mapox, Tax
ax y Maui craner e 2 pasa one, uem y Anapes, TO MOXHO cocTaBHT®

ypannenne: x-8=2 (E+9)rscpunsenccoas=8= à +16. Yn-

poumeM, Epeneca à AEBYIO CTOPONY CAACMBE, KOTOPEE COAEPKAT x, HB
Rpasyio, KoTopsie He cozepikar. Hine: E =24,x = 48, 3uawwr, y Mena

48 mapor, a y Anapen Zr ‚ec, 12 MapoK.

7 481 12 mapor.

249. Tlyors ysenmk nomex Gun mpounTaTs KHATy 3a.x ane. Tora Kontaecrso
‘erpaxwit 8 nepaow enyuae paso 40x.
C apyroit croponbs, xoraa yaennx veran e aen na 15 crpaun membre
(re. 25 expanuu), om surran xuury na 6 aneñ zone, T. e. (x + 6) aueh. B
TOM caysiae KOARIECTBO GTPANKU 8 kuitre paso 25 + (x + 6). HaBecTHO,
"TO KONHYETBO CTPANMI, MPOYHTAHHDE B MEPBOM H BTOPOM EMyYEAX, OSHO
mo me. Cocranun ypanmenne: 40x = 25 (x + 6). Penn nonyuentos
ypanmenne, Packpoem cxoGxu Ht mpueenen nonoGnite unes. Meet:
40x=25x + 150; 40x - 25: = 150; 151 = 150, orxyaa x = 10 (aueh).

Oreer: 10 anced,
250.

Kanennä 8 nens | en Bcero waneant
Mo naany 40 x 40x OAHHAKOBCE
(Ha canon none © 3-3 TES)

40 = 60 Ge 3} 40= Gl 180; 205 = 180; x= 9 pre — por mue aca.

251. Flyer» sanymannoe eno x. TlpnGasmw x Hetty 7. Tlonyaaew: x + 7, Te-
eps sty cyumy ymnoxaen na 3, Mueem: 3 (x + 7). Jlanee #3 storo npons-
BexeHHR ALIUNTAEM 47, NOCHE Hero NOAYHEEN ATYMARHOE UNC, T. €. X.
rx, nonyman ypasnenne: 3 (x + 7)—47 = x. PeuiM maitioe ypapnenhe.
Pacxpoew a nen CkoGxH 4 npHaenes nonoßnsie «nens. Hmeent: 3 (x + 7)—
48 > x; 3x+21-47=x; 3x—26=x, 3v— = 26, 2x = 26, omyaa, nonenns
Ge ACTI ypannemms xa 2, HAXOXAM x= 13, 370 l ECT 30LYMANNOS uncno.

Tnasa It

oyna

$4. ynwunn u nx rpadnin

252. B 3T0fi sanaue x apnaetcx He3aBHCHMOÏ Nepemennoni, a $ — 3ABHCHMOR.
inowans npamoyronssmke pasta nponsueenitio ero anit cropon. Hme-

em: $=9 x. Hafinem sHaveHHe OMAN NPAMOYTORBUNKE NPH 3HANeHHH
x—4 (cm). Tloneranım aro yeauenae à coornonienne S= 9x m nalen
5=9-4=36cx?. Amanorunmo, ma x = 6,5 cM: S=9 + 6,5 = 58,5 cm, ana
x=1500:5=9- 15 = 135 cm

Queer: 36 cu; 58,5 cm’; 135 cm.
4, 105 = 70 + 2.4 = 168 m;
= 266 KM.

253.5 70% een
ceca 1= 3,8, 10.8 = 70-3,
254.V=a.3; ecna=2,r0 V= 80m;
can a= 3,5, 10 V= 42,875 em’.

255,

fi 20 man 1420 mn 3 4 30 mm
Ss 4,5 km 9,5 M OKM
Oônacre onpenenena gym O Sy < 150.

256, B raunoï sanase x —nesapHcHMan mepeneimran. y — sarmcnman. Halnem
BsicoTy cochsı m sospacte 10 ner. Zins TOrO nocmorp#M na rpadux 1 yan-
Anm, ro NpH x = 10 y = 5 m, COOTRETCTREHHO, AHANOTHAHO HAXORHM SH
enne y npH x = 18,75 m, npu x = 90 y = 28,75 m, npu x= 120
35 31:25 m. Ina Toro, wrobia HaliTH, Ha conexo supocna cocHa 34 npo-
MEXYTOK BPEMEHH, HANO HAÏTH €€ BAICOTY B HAHATBUBH MOMCHT BPEMCHH
HD KOHEUHBIÄ H 43 KOHEYHOTO 3HANENKS BBICOTHL BBINECTE HAMANSHOS.
Veen ana x of 20 10 60 ner: mpu x = 20 y= 10, np x = 60 y = 25. Tlony-
gem, «To BLICOTA cocts! wamenmnach na 25 — 10 = 15 m. Ananornuno, za
07 60 no 100 ner: npux = 60 y = 25, npn x = 100 y = 30. 3nawnr, cocua
ampocna na 30-25 = 5 m.

Oroer: a) 5m; 18,75 m; 28,75 m; 31.25 m6) 15m; 5 M

257.

o BA 3 100
a 1 [2 3 0
— apryMENTOM SEC ABARETEA 1, OCTRTOK 7 SABHCHT OT AHANEHNA A.
~ OÓnACTE OMPENENENNA — BOE HaTypamsmuie uma.
= made dyin «ON MOTYT MPHAMNETE AENA:

1253,

54 Ojea un apague »
258. Hesanicnmol nepemennoR sanseves 7. 3uaveHnaMen apryMenta CMyaT

‘nena n= 1, 2,3. 4, $, 6. INAGEHMANO QynKuun ARAMOTCA CRA
270, 310, 300, 360, 340. 3nawenwo n= 2 coornererayer snauenne m
-ahavennio » = 4 cooraererayer anauenne m = 300. B rpersem mecaue Gb

10 nuınyuneno 310 anekrponnur, a narom 340 Inexrporumr.
Qrner: n= 1.2,3,4, 5,6: m = 230, 270, 310, 300, 360, 340;
Ann n= 2m=270, ann n = 4 m = 300;
8 xpetien mecaute — 310 nur; 5 mrom — 340 rum.

259, Tlycrs sepes x wacos BOX! B pesepyapax craner NOPOBHY
380 + 80x = 1500 60%; 140x = 1120; x = 8 - sepes 8 cos.

260.

261, Haïaem sHavenne (pyHxuma, cooTeeTcTeyiulee THAYEHHIO aprymenTa,
pasnomy L. Jura store noneranum 8 bynxumio y = 2x +7 anauenne x= 1.
imeem: y= 2 +7 =9. Ananorumno, ana x = -20 y = 2 + (-20)+7=
=-40+7=-33, ann x = 43 y= 2-43-47 86 + 7= 93.

Orver: 9; -33; 93.

262. Haiinen snasenne ymin, eooraererayionee anauenMio APEYMENTA,
paomomy 10. Jlna Toro NONCTABAN 8 dynkunio y = 0,1x-+ 5 suavenue
x= 10. Hmeem: y =0,1 -10+5= 1 +56. Ananoruamo, ana x = 50
p=0.1-50+5=5+ 0, a aan x = 120y=0,) - 120 + 5= 12 + 5 = 17.

Qreer: 6; 10; 17.

40 Fresa 1 Pros

263. Cuasana nonerammm » gopnyay y = 12. nepnoe suave apryucımax =
x

2

Hafíxem cooruercrayiomee emy snavenne yum: y = —— = -2 (7. e. mp

x=-6y=-2). 3anonnaem rain Xe 0ÖPaDOM ocTanstte Kneri TAG

muy L =-3; opnxe-3pe 2 4 npn x=2y= 2
= 3 2
“syn 2 ara puro) 2 impar ape E
mpx y= À m2 mp6 2 =2:apusei2y= E
= DE HO UE II CI CI EE
ASA a A
264,y= 0-9
AAA
E Is ts CI A EI IRA E

265. Monerasmn 1 coornomenme y =x (x 3,5) nepsoe skavenne x, ynoanersopato-
inte Heparencray O <x 54 (1=0).Jipu.x=0y=0+(0-3,5) =0. Crexyromee
-sravene x (c amaron 0,5) Gyner: x= 0.5. Tip x = 0,5 y = 0,5 -(0,5-3,5)=
205-(-3)=-1,5. lance: mpux=1y=1-(1-3,5)=-2,5;apux = 1,5
Pe LS (1S ~3,5) =3 npn x= 2 y = 2 (2-35) = -3; mpux=2,5
Y= 2,5 (25-3) =-2.5; npn x=3y=3- (3-35) =-1,5: mpax=3,5
923.5 GS-35) = 0: npux = 4p= 4 (4 ~3,5)=2. Pesyanranıı muro
‘Aenui mprmegenta x rabnnue.
= 706 Tost 715] 2 125] 373574
Y ofasiasfafo[asfasto 2
266. a) OGnacrsio onpenenenns 3708 yHKUHH, 2azaHHOB fopmyaoh y= x +8,
ABnmorca PCE uncaa.

6) O6nacrsio onpenenenns yum, zanannoh popmynoñ y ‚m

astres pee uneaa, Kpome x = 7, r. K. Mpx = 7 anamenaren YHKUNH pa-

sen nynio.

ax

Lise: my 222, moGoe weno,

3+x 5

®)

267. Tlonerannm 8 dopuyay y= —Sx +6 amecto y uneno 6. Mlonysın ypanne-
mue © nepementiol x: 6 = -Sx + 6, Peuune ero, Haiinen x= D. 3hawwr, y = 6

$4. Spon u ux Daun 4

pn x= 0, Ananornauo, ana y = 8: 8 = 52+ 6,omysax= 2 4

(ree. naa. x=~0,4 y = 8). Ana y= 100 nme: 100 = -Sx + 6u2= = =

268.

18,8. Suauur, y= 100 apa x = 18,8.

E 5 3 ° as g
2 = E ° 3 6
Tipn x = -0,5 staserne Gyaxuma Haine, MOJCTABMS 8 cooTHOWeRHe

3s seauauy x = -0,5. Mneen rl ( 1-4 Ananornuno, Aa

2

3 amx=9y= 2.926,
Toncrasue 8 dopuyay y = + BMECTO Y 4HCAO (-2), onyaun ypabHenHe
© nepemennoß x, Peine ero, waliaem x: -2 = 2x Hx = 3. Ananormino, ¿uu

y =D nonyareu: 0 = uso,

269. Ecnu y =-6, 10 -6 = 0,3x— 6; x = 0;
ccm y =-3, ro -3=0.3x— 6; 3 = 0,3x; x = 10;

can y=0, ro 0 = 0,31 6; 6 = 0,3x5 x = 20.

270. m= pP; a) ecnu Y =240 cal, Tom = 240 - 0,18 = 43,2 2;
6) ecnu m = 64,8 2, 70 64,8 = V -0,18; V= 360 an’,

27.5 = 6y; a) ecm v= 65, ro = 6 - 65 = 390 um;

6) ecau s = 363, 10 363 = 6 - v; v= 60,5 xr.

272.s= 60-12, ecm /=3,5, 105 = 60-12-35: 5 = 60 — 42; ¢= 18 KM;
ecau s = 30, ro 30 = 60-12-45 127= 30; 1 = 2,5 4.

273. y= 1050 - 100x; 1 $x < 10, on Moxer Kymwre oF 1 20 10 xapanaauiel.

274, Myers x Kur coGpanx CEMMKNACCIMKA. Toraa 1, Lx KHr copank weeTH-
knaccntn; x + 1, Le = 315; 2,Lx = 315; x = 150— mr coBpamt cemukrac-
mu, 165 Kulır — ECTHKNACCHNOS.

277.

= 15] 1 [ost] o [Tos Ti T157T 2
GTi Test 4 Lars Lo assi los]
278.
El y 1 2 3 4 3
y 3 4 5 7 8
»
f
,
H
s H
H
H
3 H
Hl
H
bdo :
H ba
aldo 3 5

279. Cocrawun 12674

ayanennii dynkunn € warom 1. mee:

x 1

3 3 a 5

y 6

3 2 15 12

$4. Dyno u ux papa 43
OTMETHM Ha KOOPAHHATHON MIOCKOCTH TONKH, KOOPAMHATE KOTOPEX Yı
ans 8 Ta6nnue. CoenunuM Hx nnapnoï ieh. Mlonywmm Sckns TpaguKe

yuca, sanannod Gopaynot y = À npu I sx< 5.
x

x =z n 1 3

y LS 0 05 2

281. Sous rpagura npunenen sa phcyuxe (Gonce Toansıli rpadpurx H30Gpaxenr
B yueÖnnxe). Aaa Haxoxnennsa sHaweHHË y Honomayem rpabux, Hanpu-
ep, Hepes Touky À och x € aßeumecof x = -3 MPOBENEM neprenaMKynsp K
‘OCH x 10 nepeceuehuis ITOTO nEPTEHAHKYAAPE © rPAHKOM dy nur 3
Toe B, OnycTn #3 TOWKH B trepnesanyaap Ha 0C6 y. Ochoanne Toro
nepnenankyanpa (rouka C) uMeet snasenue y = -2. BHauWr, npH x = -3
avenue yann peso y= -2

ana x = 0,5 y = 2, nun x = 3,2 y = =], Taxum o6pasom, sanonusen Tabamuy.
Inawenna Hyukuın nonoxamenet npu x = 1,5; -1; -0,5; 0: 0,5 m orpaus-
Ten an x = 3; 2,5; 3; 3

x 3 =15 1%, ° 05 32

y 2 0,5 1 1,75 2 =I
282,

Fi = 35 ° 1 35

y is 24 aras 1

28.
a) x 3 2 ° 7 3
Y 0 1 15 3 2
ol = = 0 2 3
y 4 3 2

==, y= 02

2,5, y = 0,75; x = -1,5, y 025;
yO x= 1,5, y =0x=2,
®y=05.2=0, 1.25 y=
v=25.x=2,75.

285.

286. Ha noopammaroÑ mnockocra nocrponm Town Af(-2;-1), 0.3; 6), P(6:-3).
Hocnenogarensko coc rows Mu N. Na P. lonyaum nonanyıo MNP.
Mlomsayacı nocrpoent FpAchHIKOM. BUINOMHM OCTABLLMECX JARAMA.

y

54. pea u ux apar 45

2) HroG wahr stasenne dynkun y PH JAHHOM SHANERHN x, BAZO: WS
OSI À Ha OCH x € JRHAEIM AHANEHKEM x NPODECTH NEPMIEAIDRYIAP AO ero
nepecereuna € Tpachkom u 19 roux B nepecestennn nposecti nepnexmutky-
sp X ocn y. Toraa monyamm HeoBxonhMoe sagenne byaunıı y (rouxa C).
Bynen muero: mph x = 1,5 y = -0,3; pax = 0 y = 1,8; npu x = 4 y
1=5,5y=-15.

6) Teneps HeobxonHMo KaltTH Suavenne x, KOTOpoS CooTReTeTayer
IAMNOMY snasenmio y. [Ins TOTO HEOÓXOANMO BHITOMMNTA OGpaTHoe no-
erpoenke. [lo och y orMewaew ayxuoe ananenne koopammarsi y (rouxa D)
N STPOMM MEPNEHARKYNAP K ITOR OCH 10 nepecevenns c rpaphuom yn
ut 5 rouke E. aren ka TOWKH E onyexaem MEpneHankynap Wa oc x. Dor
nosanıe F Toro nepnemakynapa naeT HeoGxonEMyto Koopanmary x. Bue
NOAHKB Take nocrpoenua, nahen: Ana y = -2,5 x = 5,8: AA y = 0 ecré ama
aasenuax = 13 # x © 5; mn y = 45 Tanke ma suavenna x= 2uxr= 33.

287. flan Toro, sow onpeneMitTs, MPHNAANEKET AH TOYKH pay y,
ARO MOXCTABHTE HX KOOPAMHATH B ypannenne dyHkuH. Eons pasencrso
BepHo, IMAYHT TOMKH npHaaneer rpaËHky Gym u HaoSopor. Ton
crass xoopannarst router 4 (4;2). Mueem: 2 = 2-4-6 nan 2 = 8-6 un
2=2 - panencrao BEPHO, Maur, TOWKA À MPHUARNCAAT rpadany hynK-
nn. Ananoruuno, ana row B (1;-4): 4 = 2. 16 wan 4 = 2-6 naw
—4=-4- pasencreo sepuo, naar, TOUKA B nparaaiexr rpabnxy SyHK-
cn. Ananoruuno, ana rouen C(I; 4): 4 = 2-1-6 nan 4 = 4 — panenerno
Hesepao, mar, TO=UKA C He npHaremeT spabKKy dy. Tpadumy
roll yat TakcKe mpumamiexar, HanpHMep, Tout D (0; -6) 4 E (3; 0)

Queer: A - npunannenser, B - npasannemr,
C= ne npanaanensr, D (0; -6) u E (3; 0)

288. A(-5;-4), -4-6;2=2—eepno,d € years
BA: S414 nopuos B € Cyaan
NA, 4=2:1-6,4=-4- ue nepno, Ce Fyn
DQi-2) —2=2-2-6:-2=-2-aepno, D € Pyare
HG3) 3 2-5-6: 3 4—we sepwo, E E Pyare
289,
E IO IO CI O CO [7] [9] pupae
2 4 12
rfelajsfr 2 [21518 [1 [2
> ä 7 3 IE

ES Fae ll Opos

Svs 5; y Bas

Npux=

290.) Ecan V=0,10m= I xr, 6) ecnu V= 1, 10m=2 xr,
B) macca 1 akvakocmH pasta I Kr; Ch eonh m=3 xr, 70 V=2n.
21. Ay
100 4
60
204
Ta 6 to 14
» x Armen EIA Ona | 10.7 wun
66°C TEC, 10°C 190°C
ol y ec oc 95°C
x 2 min 3,600 | _ 7,5 mn

292, a). Mepes Touxy oc Y < Koopasınarof SO nposerew nepnenauyasp x OCH
Y. Touka nepecenennia roro MEPMEHAHKYAApA e rpaburann ym à
Syayr suaucnma mpolizennoro TOpMosHoro nyrw; ana O4 ~ $= 30 à, ana
OB -5= 70 M. ana OC-5= 160 mw
6) Yepes Touxy och S, € koopataToï 60 nPOBOAHM NEPNEHAMNKYARD K OCH
S. Touxn nepecesenHn TOTO nepnenankynapa c rpabukom DyHKUHA n8-
AyT OTBer na CIOCTADAENSNÍ 8 JANAME BOnpoc.

Aas OC: Vs 30 kuta, ana OB: V £ 50 Kw/4, ana OA: VS 80 mis.

Omer: a) 30 x, 70 x, 160 m; 6) 30 rt, 50 xml, BO Ka.

$4, Cyr u ur pags 2
293, a) Tiepenecem enaraemoe (-2x) 5 2EBYIO YACTE HCXORKOTO ypABNIEHTA, à
sHcno (-2) - B npasyio. are MPABEAEM B AARHOM YPABHEKHH NOZOÓHBIE
eins. Monymaen: 3,25 - 2 = —2r + 3,13; 3,7x + 25 = 3,13 + 2: 5,71 5,13.

Paanemum 06e vacru ypagnenux na 5,7, Hueco: x= = =09.

© Tlepertecem cnaraemoe (-73) 8 1e8ÿ10 WACTD ARHHOTO ypannıenun, a unc-
10 8- a npasyro. Umeew: 4,2 + 8 = 8 - Tx, 42x + 7x—= 8 ~ 8; 11,2x=0,
‘orkyna waxonum x = 0.

B)-27x = $— Sr; 278 = 5;

5 =
py is 1=04r-25; 06

294.

Buna Crano
Irpy2oabie 1x 15-12 va 17 main Gomme
Inersome | x ZO

(+45) (1.5: 12)= 17 Sx +45- 1,51 + 12= 172 0,5040;
x= 80 - 80 nerkossix, 120 rpyaoubix, scero 200 Mau.

295. a) Ynpocrum neByıo 4aCTL 3TOTO HSPABCHCTAS u CPABHHM € HYNEM NOAY=

veses pesynurar, Nonysaen: 3

0 7,1 6, 80-7#3-72 4 1
-20.7,1 MIET 81 rocne npeospasosanit
3 124 12 1273 een

mean. 2 > 0, Catone or irc ep

6) Cnasana ynpoctan nenyio «acta nexozuoro kepanencrns. Hmeem:
7+ 2426 : (11,8 + 0,2)+ 2,3 =7 + 2424: 12+2.3= 7 +202 42.3 =211,3.
Bano, "70 anauenne neooh «act sannoro Hepasencrea Ganbuie 200.
Cnenonarensno, yreepauenne 7 + 2424 : (11,8 + 0.2) + 2,3 <200 nesepao.

85. JInnetinan dyucuna

296. V= 120 + 0,5x - anueituas samucnmocrs.

297.P=2-(x+x-3), P= 4x-6 > nnneinaa dynmuna;
S=x (x 3); 5% 28 - 3x = nenmuctinas Gym

298. Tax ka yaettnk Kyrna x mapox no 10 p.. TO on crparun (10 - x) p. 3ua-
sur, y wero acranocs 125 - (10: x), To cers y pyOneñi. BHauWT, momen 38-
ero popuynoñ sasHcHMocTs y or x. een: 125 - [Or = y. Fra sanncn-

4 Face i. Dyer
WOOT ABRACTCA THRETNO pyskinel 10 ONPEZEACHMIO, rae xX — Nesannch-
Max nepementas, ay ~ 3ABUCHMAA.

299. a) y= 2x ~ 3 —auneñimas,

E 6) y=7-9x - anneiwan, k

8) Oynxuus, sanannan hopmyroi

x
7 + },aanaeren neo no on-

Peaenetono, tax ar x — esmas penas; k= E nena,

Y =
1) Oynun, zazannan Gopmyaoii y= À + | we annaercn mmweñoit aa

ENMOCTBO, TX. Ta QYIKUHA He COOTEETCTOYET oßuemy any y = x + b
Annerinoh 3ADMCUMOCTA. HC3ABHCAMAN NEPEMENIDA Y HaXOAHTCH 8 3HEME~
Hatene, a He B Uncnwmene aannoR &ytıxum.

2) Oynkunn, sananıan Dopmynof y=x°— 3 we ABIAETCA AHHERNOR, T. K.
He COoTBercTByer oSwemy Bray y = dx + b nunelistof yum. MOTOMy
WTO TIEPEMEHHAR x BXOAHT BO BTOPOH cTenenH, a 1OMHA (no onpenene-
to) 8 nepsoñ

10x-

€) yuna, zonamııan Popuynoh y = „sangercn aunehnok,T.r.

moxno npeoßpasonars x Buy y = kx-+ b, pamtenns coxe unit 8 npanoR
1
vacro Qopuya 1 5. Heu y= 2x rex — nesannciaa nepenen-

vaa, ay = zannenman, amena k=2, b= 2,

5
300. Ann Toro, «rrOßst MATH aHaNeHHe y, COOTBETCTEYIOLLEE x, HAnO NONCTABTA
BMECTO x 8 opMyay KoMKpeTHOE Snayenne. Flonyuaem: np x = -12
y=05-(-12)+6=-6+6=0, Ananorumno, aan x =0y=0.5-0+6=6,
daa x= 34 y= 0,S-344+6= 23.
‘Dna toro, robes MAÍÍTA, pit KaKOM IHAYERHH x sHaNeHHe Y MpHHAMaeT
coorserersytouiyio BENHAHNY, HARO B hOpMyny BMECTO Y MONCTEBHTA STO
MAVEINE, PELONTO Ypapherne # Beau x. Mmeem: y = 0,5x + 6 npu
y= -16 noayuaem ypasnenne: —16 = 0,5x + 6 unit 0,5x
44. Ananormano, ana y = O nucem: O=0,5x+6 Ha
x= 12, aaa y = 8 nonyuaen: 8 = 0,5x + 6 nan 2 = x, T. €. x = 4

Omer: x= 0; 6; 23; y= 44; -1

301. a) ecm x = 1,5, ro y = 6; ccm x = 2,5, 10 y = 6; cnn x = 4, 10 y = 1045:
6) my = 4,5, ro x~ 2: ecnn y =0, 10 0,8; een y = 1,5, 10 x = 0.

302.

303. Oymegra y= -Ix + 4 mmelinas, nostomy ee Tpadhsıkom ABNXETCA npaMas.
Menonsaya hopmyay y = -3x + 4, Hainem koopaynarst ABYX roux Tpadhn-

4
a: ecm x= 0,70 y = 4, can y = 0,10 x = =. Ormerm roma 4 (0: 4) 4

8 ($9) Nposeneu uepes aru ros npauyıo. Iipaman AB anaserca

rpabakom yaa y =-3x + 4,

so Frage I. Dyer
304, DI y TABS. yk:
Dy=45, (A
305.
306. a)x=-25,p=65;x=08.y=32:x=3,5,y=5;
8) y= 70, x=-3y=-10,x=5y = -30, x = 7
307. a) x= 5, y= U7Six = 10, y= 25;

6) y= 85, x= 50.

308. 8) Jax Toro, “roG HaliTH To¥Ky nepevenennn € ocbIO aBcuNcC rpabKKA
Gym y=-2,4x + 9,6, nano 5 ay 3aBHCHMOCTS BMECTO Y MOACTABHTE
anawenne D, Taxitw o6pe20M, nomyyaem ypannenne: O = -2,4x + 9,6. Haxo-
Anm H3 ITOTO ypaahennn x = 4. NAT, Touka nepecesenKa Toro rpadAaKa

© 00810 aßcuncc parra x = 4.

$5 Duneanan pour si
‘Aaa TOTO, "TOÓH onpeneanTs ToNKy nepeceventia rpaÿHKa € ocbio opal
MAT, HANO B YPABHEHHE rpadiika PYHKUBN BMECTO X NONCTARNTE 1HASEHNE
0. Veen: y = -2,4 - 049,60 + 9,6 = 9,6. 3nawr, np y= 9,6 nponcxo-
ANT nepeceuenhe rpadiska @ynxuN c OCHO OpAHHAT.
9, = -0.7x- 28; A(0; -28) u B(-40; 0);
2x + 6; A(0:6) m B-5;0}; 1) y =—Sx + 2; 4(0: 2) 1 8(0.4:0).

Ar - 12 - ec rpae nepeceraet 0c6 0x, 70 y

6) B(-15; ~25); -25 = 1,2 -(-15)— 7;-25 =-25 = 8 € Cyt
8) C(-10; 5}, 5 = 1,2: (-10) -7; 5 #19 = Ce Tears
53 = 1,2 300 - 7353 = 353 => Be Dysart

312.

313.2) 3 -(0.9x-1)-(x+06)=-0,2 — 0)7-(3,1-0,1))=3-02%
27x-3-x-06=-02; 7-3,1+0.1y
39-3=-02y-0,1y,

314,0) 2218

5 5; 6: 7, 8; 9: 10,

— mpaennenan apo6s, ecnu m = 1; 2; 3

a Fraga 1. Omar

7

o— 06 12345,

) op Hempannnsian apo, ecan m

315. { Gpurana—x; M Gpuana — x + 10; ti] Opnrana 0,3 - Qx + 10); acero 65 aeraneñ,
x+x+10+03-(2x+ 10) = 65: 2x +10 + 0,6x + 3 = 65; 2,6x = 52; x = 20.
20 neraneh wrorosnna | Gparana, 30 neraneñ - Il Gpurana, 15 aeraneñ—
111 öpnrana.

MEaln+(n+ nt int: A+ DA
9) (a+ 4)+ 0145) + (nt 6) =3n + 15.

317.5 = 121 -npaman mPOnOPUNORANBROCTE.

318. C= 2nR - npamas nPONOPUNOHANSHOCTS.

319. a) Oyaxuns, sananıan bopwynok y = -Sx, sensercx npAMOR mponopumo-
HANLHOCTHIO, T. K. Oa samaeTea DopMyno anna y = kr, rae k= —S,x— ne
‘abucHMaN mepemenman.

6) Dynkuns, zanaınar HopmynoR y = x", He xnnaerca RPAMOË nponopuno-
HANKHOCTEIO, Y. K. EC HEMN JANATA POPMYAOË BMX y = kx, NOTOMY TO
PeMEINSA x HMCET STOPY1O CTENENb.

8) y =x/5 — npamaa npONOPUNOHAADHOCTE:

E) Dyna, sanannas Dopmynoll y = x +5, ne Annaeten NpRMOÏ nponop-
tsMonaMbHOCTHIO, T. €. CE HENEIK JANET POPMYNOÍ y = kt, NOTOMY uTo Ona
meer COOÓOAMBÍ "UNEN 5, HESABHCALIMÍ OT x.

320.

a) x

$5 Nuwoouan dynes 3
323. Hafen koopannarı eaxol-nvOyas Tour IPAQUKA, DEMO oT nanana

Koopannar: amx-2,10y=-4. 1. Orueri rouxy À (2; 1) a

npOBeneM sepes Hee 4 HAYIA10 XOOPAHBAT npaMyto (PMC.) Dra paras —
rpadx dymkunm y =-0,5x.
‚Ana Toro, sToGw Haliru sax y. cooteetorsyiouiee x, pastomy (-2),
ago CPES ToaKy x =-2 Och x NPOBÉCTH nepnenäuynap K OC x. Mor
Neprienamyaap nepecener rpadi dysiuwm 8 Touxe B (-2; 1). Has,
y= | —cooTecroTwyrouiee snaueme ana. Ananorwano, au x = 4:
Ci-2ire.y=-2ammxe 1D (15-05), 1. y= -0,5.
as Toro, «706 onpenenuts, MPA KAKOM x HaNEHHE Y * |, Halo Hepes
TouKy ock y nponecTu nepnenaikynap, KOTOpEIA mepeceser rpAbHK yHK-
unit 8 rouxe À (2; ~1), 7. e.x= 2. Ananorumo, ana y = 0: F (0; 0), 7. €.
350, a8 y= 2,5: G (5,25), 1.0.x=-5.
Aaa Toro, 4706s OTBETHTS Ha BONOC, CYUIECTAYET 1H TAROS x, MPH KOTO-
pou y =-150, nano noncrabhTs 8 @opmyay y = -0,5x BMECTO y sHaHeRHE
(-150) u, peumn ypannenne, nañra x. Hweem: -150=-0,5x, x = 300, 7. €.
Takoe x cywiecrayer.

g

6) ana y=-1 x= 2; anay=0x=0;
ana y= 2,5 x=-5; cymecreyer x = 300.

324.

54 Eneas 1 Spurs
325. y Ax,

6 Pesssases,

326. a) cu = 4 CA: fu = 2 Maca; 6) Son = 20 104; Spey = 30 KM;
B) Vaca = 5 KM Yen = 15 KO
1) 30: 10 = 3 — po crompio pas rıyr» penocumeanicta Gone, uk rewexona.

327.05 Fs 1000; ye UF,
15
328.40; 0; -1=-05-0:-1#0SAe Tina

05 Bees

12 Ce Tias
2=-2>D€T,= as

329.3) y

“4s ; A(6; 2) E(0; 0) - npunannewar Fi.

6) y= Sx; B(-2; 10); E(0; 0) — npunaanemar Fi 5y-
330. a)

$5 aneinan durara ss

5 y a y
24 »=09% 2
2 x x
+ = ++ >
2 2
2 al y 2

m) Tax xak unico K<-O, stor epa «py mun, ana opmynoë
y = ke, Öyner pacnonararées 8 I m Hl KOOpaKHATHBIK serseprax. Tarma
OSpasom, nonyuaem rpadux hymkumn.

y

331.

e) Tax war koappnuneirr k< 0, ro rpabur hynkunn, sagas Popmynoh
9 kx, 6yner pacnonararsea 80 I] 1V koopannarttnix ueraeprax.

Tax o6pas0m, noayaacm rpadux hyakumn.
y

yoke eo

Tax ax parate 1 I near 11 IIT koopmumaTauix METBEPTAX, TO 311AK
koxbpmunenta k Gyaer nonomuremumım. Touka À (2; 6) npunannenem rpa-
Dany OTIRIDAH 1, MOSTOMy MOMEM JATUACATA IOBHEHMOCTE TOR y HKAM,
mala koxbbHusienT &, Ilan TOO MONCTABMNS KoOpAHHaTE) TOSKH AB Ypas-
nenne muaa y= kx, Hee: 6 =k: 2,1.¢. k= 3. Tlonyuaem hopmyay y= ix.
‚Ananornuno, ana rpapuxa 11. Touxa 8 (2: 2) npitHaanemur Tony rpadx-
xy. Hen: 2 = 4-2, 7. €. k= 1. Dopuyaa y =x.

Tax kax npamsie MI y IV nexar 80 Ha [V Koopannarnbsx Yerseprax, TO
mao KoogyptmenTon k Gyayr orpuuaremmute, Towxa € (4; -2) mprunan-

opuy-

exar rpabuxy yen M. Monyaaen: -2=k- 4, 1. €.

56 Froea tt Oyun

mye + x. Tosxa D (2; -4) npunaanexur rpaduy IV. Vineew:

4=k-2,1.0.k=-2. Dopmyna y =-2x.
Omer: |-y = 3x, I~ y= x, Ill y =—x, 1V y =-2x
332, a) 1 = 17x = (0.84 +2)= 6) 5-0.2y=0,3y-39;
Dix 0,8 - 2 3,4; Sy = 44;

—2,5x = 44
x= 1,76.
333, a) -21 + (4- 10a) - Sa = -84 + 2102 - $4a = -84 + 1560;
0)28— 10d + 4 «(d+ 18) = 28 - 10d + 4d + 72 = 100 — 64.

y= 88;

334.a)5a>0; 6)-104<0; ma+6>0 r)-a<0 ae 9 -4<o.
a

335. a) Yro6ut sucre, xakono sxammoe pacnonoxenne rpadkos yma
Y= 1x-Auy= Tx +8, pacomorpum ypannenne 7x- 4 = 7x + 8 au 0 = 12
auauwr ypannemke He HMeer KopHel, u TpabHKH Öynkumd napannerumn
6) 10x +8 = 1x + 6; 20r = -2; x = 0,1 = eamnorsemnos pewenue, amaste
papu ¿yuri y= 10x +8 Hy = -10r + 6 mepecexaioren.

8) YroGin meute, KAKOBO mAHMHOE pacnonoxenne rpagnxon «py sun
y= 3x- Sy =-6x + 1, paccmorpHM ypammenne 3x -$=—Gr+ 1,9x= 6,
6_2
x
973
byrixunh nepecexatorca.
1) Ax = 4x5; 0 = -5— HOBEPHO, peiiennl ner, sua rpapure napan-

— ypannene meer enorme Kopentb. Juawr, rpagux

renee.
336.1) y=-20:+ 13; 2)y=3,2e- 13; 3)y=-8-20%
yA Sy=36+8; 6) y=~3,6x.

MapaanenoHut — (1) u (3), (4) m (6); nepecexatores (1) u (2); (5) 4 (6).

337. a) Tlapannensuna rpauy yann y= 0,5x + 10 6yayr rpapux, y Koro-
Pix yrnoBsIe KoshPkunenTBi CAMHAKOBH C ARMA. TAKHM OÓPazon,
ITAM rpacpakann QYAKUMÁ ABJIMOTCE: y = 0,5x — 6, y = 0,5x + 4, y = 0,58
6) Tiepecexavor rpadux dymunn y= -1.5x Te rpaguxu, y KOTOPEIX yrao-
sue xoodpHuneHTa parniwaroTeR. Taxim OÓPASOM, nony¥aeM, YTO ra

y=0,5x +4, y =0,5x, y =3 + 1,5x nepecexa-
sor rpacpiak dy y =1,5x.

338, y =2,5x + 4: a) napannenen: y =2,5x - 7.6; 6) nepecenaet: y =3x + 1

339, 9) y= SH 75 p= Sx~ 14; Oy hy Bvt.

§ 5 lune bya #7
340. 8) 10x -8=-3x 45; 0) 14—2,5x= le 18; 8) 20x—70= 70x +30;
13x= 13; wax = 32; Sar =-100;
x=1=2y=2 ey;
nepecexaioren 2 (1; 2); nepecexarorca a (8; -6);
Di-8=250+4 plat 26:
12x 12; 13x = 26:
1=1=>y=2, 1=2>y=28;
nepecexaiomen (1; 29): nepecexarorca 8 (2; 28); mepecexaiores 1 (44:6).
34L.2)y=-6x+9;y=2x—7=nepecexarores A(2; 3);
5) y =-0,5x +2; y = 2,5x - 10— nepecexmorca B(4; 0);

By 02-09 qx — mapannenuni;

Dex; y =-3x + 3,6 - mepecerarores C(0,9; 0.9)

342.

Ima 6x + 11 - nepecexaroren 6 (0; 11);
Oy == ix - 6 — mepecexarorca u (0: -6).

344. a) Jlanmste rpaquin sua y = 3x — b umeror ont m ToT KE yrnoBOR Kod
uauew: (k= 3). Mostomy onu Gyayr mapannensnut. Yuen, «To BenHaHKA
b ana a1ux rpadpuxos pasa, Tax Kak snauenne b— 310 TO sHaveHHe,
PM KOTOROM rpadux nepecexaer Och y. TO Take TONKH nepecenenun Gy-
avr pasamamsn. Mpa &= 1,2 dynxune aMeet sun y =3x + 1,2. Es rpadan
nepecexser oct x 8 ToaKe x = 0,4 1 oc, y — 8 Tome Y= 1,2 (mpaman 1).

se Fresa i. Operas

Tipn 5 = 0 dymkuux nonnercn npaMOË nponopunonansnocTuN
Y= 3x. Ppadiek ce npoxoaier «epes mawano Koopannar (npamax 2)
Tipw 6 =-4 yuku meer ex y= 3x - 4. Tpagix ee nepecexaer och x

rouxe

; W och y a Tome y=—4 (npamaz 3),

6) Jamie rparhirks auna y = kor 2 HMEIOT OANO H TO xe sHaNeHHE b

(b =-2). Mlogromy 31u rpapnku Syayr itepecexara och y 8 Hoi H TOM Ke
Towne y= -2 (+. npnx= Dy = 0-2 =-2)

Tipu k= 1 hykuna nmeer aun y = x — 2 x nepecexaer oc x B TouKe x= 2
{mpaman I).

Tipu k = —1 dymxuns onnesipaerca bopmynoë y= x - 2. Fpaduk sro
yuan mepecekaet oct x 8 route + = -2 (npaMan 2).

pn & = 0.4 dyaxuna uneer aun y = 0,4x — 2. Ira QynKusa nepecexaer
och x BTONKe.x = = 5 (npamaa 3).

345, a) y = 0,8 - 1.6 > y=0,8x - npoxoauT sepes L SII KoopannarHee yrnsı:
0)y=-0,4+ 1 > y=-0.4x — mpoxomer uepes Il x IV xoopannariste yea.

55 Mawönen pur $9

346.8) y 0) y
=1%-20 8
x yn 30x
>
ya lis
-20

= AO; 2) 1 B(-1,5:0) x. rpaqux nepecesmer oct Oy 1 rose (0:2), 10 =2;
TK. NpauK nepecekaet oc» Ox 8 rouke (-1,5; 0),

0 = 1,58 + 2;-2

Su aho plz:

CO; -t) DE-1: 0}, arpa nepecexner oca On route (0-1) 70
‘ra. rpafux nepecexaer oc» Ox 8 roue (-1;0),

rosa llano yr.

348. lyers.x Tepua mpuscam w | emo, roza 0,8r r 3epha npuscam no I new.
x+0,8r= 1440; 1,81 = 1440; x = 800+ aepua npunesam | news.

39.0) 2n-(2n+ 2); 6)(2n+ 1). (2n—1).

350, a) Tar kak a Wt b paix 3aKoR, TO HX nposenemue ÖyAer OTpHUETERS-

ntm, Meem: ab < 0.
6) ab<0; 8) -7ab>0; D1-ab>0.

Honoanurensmme ynpaxnenun x rage IL

351.2)

3,6, or.
der:

352.0: 5=k (3 ocr.) n= Sk +3,
359. y= Sx-+ 10: x #0; conn

coax =7,10y=45,

pam; 8) 4 = 30 Mm fy
Sum a)n= 1,5 aca; 7 = 3 935 mn.

355. x - nesasnesas, y = 3ADHCHMAN nepemenitan;
a)ecnn x = 3,5, 10 y= 4; G)ecmy=-3, 101 = 3x2 dix = 28
ex x= 28,709"

356 iy Ss aa ay

2121 0 [2 4

y q 7 se Lio Jı Pa TETE

357, Halizem suaveume, Koropoe npusumaer y npx x=-1,4, Zax roro noncra-
un o Gopuyay y = -0.5 (8 — x) amecro x suauenne (1,4). Tlomysaen:

su Foes I. Oyneyuu

y=-05-(8+1,4)

9,4=-4,7. Ananoruuno. ana x= 2,6 neem

y=-0,5- (8-26) 2,7, npu x= 8.8 nonyuaem

YDS +(8-88)=-— -(-0.8)= 04.

Aa toro, «706s onpenenyms, shauenue, KOTOPOS npuHwaeT x pH

y =-3,4, ago 8 hopmyny y = 0.5 (8 - x) noncraeurs BMecro y sHancuHe
(-3.4). Mlonysaem ypammene: -3,4 = -0.5 (8 — x) unn 3,4 - 2 = 8- x. Pewan
370 ypasenuc, HAXOXAM, ro x = 1,2.

Ananornuno, ana y = 1,8: -1,8 = 0,5 (8~x) um 3,6 8x, 7. €. x = 44;
mpn y = 2,4: 2,4=-0,5 (8 —x) ua 4.8 = 8 x, 7. e..x = 12,8, Tax 06pa-
30M, anonnnem TaGmuy.

x 14 12 26 44 38 128

y Ar | 34] 27 | 8 04 24
7

358. a) 3uamenarens ynxunn y ofpautaete B HONE 8 TOM cnyuae,

4
conn x = 2 me x = 2, Inasır, OÖ1aCTBI0 Onperienenn aanmıoh yin
ABNAIOTOR BCE UNCIA, KPOME ~2 u 2.

5) Bano, sro Hu par ae rames pyrnau oy He oSpamaerca
=
BY, naar, OÓNACTANO onpeneneiia JM y MILI MansiOTCA Bee MCN,
359, a) Ecau x = 10, Toy 6) ecm» $0, ta x = 0;
ecnu x = 30, roy = 19: y= 180, To. x= 20.
360. a) Ecan x = 2,5, roy = BO; 6) ecan y= 20, ro x = 10;
8; can y= 36,10: = 8.

Oys— 1-41), -3 x83;

Zononmsmensue ynpanveniun x anage tt st
By 3x +37; -3.sx52,

362. a) MIpx=—0,5 y x = 3 anavenun yum cosnaaaior:
6) npux<-0,5 ux > 3 sHaxenna sropofi dynkumh Gombe, dem aHauenna
nepsoñ bynkumn;
8) mp -0.5 <x < 3 snaseuus propo dynKunn menbule, deu aman

nepsoñ dynKunn.

363, y a) Ecnn h= 5 cm, 10 V228 1;
20 can h= 10cm, ro Ve Ta
18 6) ecnu V=4 5,70 46,504

econ V= 10.3, 10 h= 12,5 cm.

3 6 9 12 15 18

364. a) Ha rpapuxa Buano, «ro paccronttue oT 2oMa 20 OSepa cocrasnaer B KM.
6) Jo oscpa peiGonon wen 1,5 vaca u cronexo we (7. e. 1,5 4) on zarparan
ma oÉparbif nyre.

8) Koraa paceroanne Seino noctoxato (no rpapiky), peiGonon HaxomHncA
na onepe, TO ects 6,5 uacon.

5) Mo rpacbuny Brno, wro sepes | Mac ROCHE BLIKOAa HS Koma OH GEIR na
Paccronnnn $ kM oT noma.

a) Yepes 1 4 15 mins nocne werxona peiGonos Geen Ha paccromannk 6 xo OT ROMA.
€) Cpench cxopocrsto HASBIBAETCK BENHIUHE, PABIAA OTHOWEHHIO BCETO
YTH KO BCEMY BPEMCHI anınsenns. Bec nyT» pasex 8 KM, BPEMA ABRO
mua Tyga paso 1,5 4. Suauier, cpeatinn cxopocre HA nyTH K 01epy

” E + + wa, Bpema auioxewota oSparno panto 1,5 4.

Shaw, cpexHan CKOPOCTE Ha OÓPATHOM nyTH Ya

Oraer; a) 8 em, 6) 15.4; 1,5 5; 9} 6,5 9; 0) 5.0

a Cross I. Dymo

DRS: SE ve, ss wa,

365. STnefiarre hynkumn: a), 6), 1), e).

366. 1) Een x =-25, ro 2) een y = 0, 70 x = 20;

ecnux = -12, 70) cena y= 1,70 x = 25;
ecm x = 45, ro y =5; axe y mpx 5
com x = 60, 10y= 8; Om 32,

367. a) Tax Kak 3ABHCHMOCTE y OT x annaercn annelinofi yHkuireï, TO ora
#neer sun y = kr + b. Hanecrnsı stacesun rol ynkunn: np# x = 0 y =-8
a np x = 2,y = 12. oncragu nepsoe sHauenne 8 hopmyny Ana dy
8 =k-0+bumm-8 =b,1.e.b=-8. Teneps ya dynkuna meer sun yde 8.
Tlonerani 8 210 cooromenne eropos snasenue: 12 = 4-2 - 8 van
12 +8 = 2k, orkyna k= 10, Taxi oGpasom, onpeaennnn ana STO zanı-
cumocmm y= 10x - 8
‘Teneps nerko sanonHn, OCTABUNILCA COOGOARLIE KNETKH AANON TAM
Flonywaem: nn x=~2 y= 10: (2) -8=-28; ane x=4 y= 10-4~8=32;

aw x= 6 y= 10:6- 8 = 52. Pesynuraru pnecenst 8 raßnnuy.
x =2 o 2 4 $
y 8 E 12 32 32
368.y=10x+1.
369, m = 400 + 5x - amneitnas hymkuns.

370,

ip a) Ecanx =-4, to) =
ecmx=-1,70y=2;

ec x= 4,70 y= 5

6) ecamy =-2, 10x > -10:

ecam ~0,5, 10.x= -7,

y=6,10x=6:

8) A(-6: 0); B(0: 3)

3M.Ecmx
ecan

ecnu y= 1500, ro
com y = 1200, To x

372.a)

373.) A(12; 10); 10= 1,25: 12-55 10= 102 A € Prisa
© K(-20; -30); -30 = 1,25 + (20) ~ 5;-30=-30 > K € Preis
8) PG:5X 5=1,25-3-559 125 > P € Taras
1) Q(20: -20): -20= 1,25 - 20-5; -20 # 20 = Q € Tye ise
374. Bonn Tossa nphaanexur rpagmky. TO € KOOPAHRATA yaounernopsior
ypaunenmo, sueur: ~1,4 = 3,5 +a; a= -0,4; A(-0.4;—1.4),
375. Ana roro, stout nocrpours rpagux ym y = x + 3 (rne 4 S x 58),
nano cocrannrs ra6nuuy, Nonyuzen: npu x = 4 y = 1 + 3= 2, np x = 0

y mue yo 843424305.

x [4 ° El
E E 3 5
Tereps crpoum pagar,

Ma rpabaxa BHO, UTO ora QYEKUBS MOXOT UPHHHMATL TAKHE
HENAO suamerux, KAR: 2; 3; 4; 5.

“ Fasa. Opaque.

y= Sr
a) ecma=3 0,10 y = 45 KM

een x = 3 4 40 main, T0 y = 55 KM;
Oecan y= 50 kw, To x = 3,4 4.

377. v= 331 + 061: ecan 1 = -35°C, ro v= 310 Mle; ccan 1=+30°C, To v= 349 Wie,

378. a) Venosue nepecenenma rpabka amenos pyme octo x onpenc-
IRETCA TEM, YTO OPAMHATA y TOMKH nepeceNeHHA rade Lorna GT
pasa mymo. Taxim o6pas0m, nomysaen YPABnemie, MONCTABIXA BMECTO y
uauemne D » popmyay y = 100 — 25x. Amena: 0 = 100 - 25x. Peman sro,
Ypauntetine, noayuaens, aro x=á, 3xaunT, rpagx Dyneun nepecexaer
‘oct x 8 rouxe A (4; 0).

6) y= 7x + 49, roura nepecenenna € ocho Ox: B(-7, 0);

00x, rouxa nepeceuenna c ocuta Ox: C(O; O)

7$x, rouxa nepecegemha c ocio Ox: DÍO: 0);
2) ra Qynkunn ne aRBiICHT OT x, ee rpadnx npeacrasnaet cobof npaMyio,
napennemnyio ocu x. Moxtomy rpabax DyHkunH, sanaHEBIA bopuyaoñ
y =-AS, we nepecesaer 00» x,

37.2)

380, Tax Kax rpagpmn Aannerx pyaxunh napannenerta, To k=-0,4 >
Y= 0x + 1: 2450; 19); -19=-0,8- 50 + 1;-19=-19> Me Tuer

381. Fpagaxn nanımıx Dyneunf mapanrensnbs > À = 1,5 > y=1,5x +. Tax
ax A(2; 3) npunannenur rpadney yaaa y = 1.5x + b, 10 3 = 1,5 +245;
5 = 0, cneaosatenbuo, nckoman hynkunn y = 1,5%.

382. Tax ak rpagux eTopofi Gym napannenen och 26cuncc, 70 370 dyHK-
una anna y = b. Tax kax MS; 8) npnnannenorr cpadany Oynkunn y = b. To

> nxomaa pynkuna y

Tononnumensnuse ynpexwenun ares It 6

6) l6x-7= 21x78;

8) 10r-7=5; DO. 14;
10x = 12; x= 1402 y= 14;
Hm 12S 5 (1,2: 5); D(140: 14).

Bet ire 5x2.

Hanano Koopannar next BRYTPA Tpeyronsnua. 3T0T BBIBOR MOKHO 10-
TY HTS H He CTPOR NPAMBIE: NO KOOPAMHATEM nepecenenna rpabHKOn €
ocbio Oy. 1) (0,2); 2) (0; -2); 3) (0:3).

328718

Taasa Il

Crenens € narypansnbım
nokasarenem

§ 6. Crenens u ee ceoïcrea

385. a) 0,9 - 0,9 - 0,9 = 0,9; 6) (6) - (6) > (69 (-6) = (-6)5
1) 5-5... Weed,
ET

O e a a)

Da hy (a=) a BF) Lov) CY A um GV
386. a) 3,5°= 3.5.3.5 3,5 3,5 - ocnomane 3,5: noxaareas erenem 4:
6) B emere { 0.1) ocuorate creen "ueno (0.1). a nokaseremn cren
2) RUE = NOM - X04 — ocuonamue BU; noasazezn creneni 2;
£41003" = (100) (100) - (100) (1001 ocuosane = 100;
y a

1
3] Senonnne erenen

a) B ampare nokaiarens erene-

mut mero $.
387.0) 27 2:2-2

113 = 243: ay (87 = 60,84; 0} LSY = = 3.37;

Fa ng
ves
23 muy,
388. a) 25° = 625: DET RYT = MB:
a) (0.9) = 0.729; e) RAT = 5,76: #8)
389, a) 4.28! = 74733 Gr 0395Y © 619059207968:
a) LADA ISI TOM M208 (005333333
AD 07. 3 = 64, 557094643,
390, a) 8:49" =5195,5308 1608 CS

1) 2,73 27,47 9154 93IR2RSUAS: lu TND 608, 203319817.

¡ERE A E AE E CE TT
2 fats te] 32 [ea Te 52 | 103 |
AEREO TES MITOS

$5 Canons u se ceotemea
392, a) HroG npencrasyTs Jane HCD B AnZe KBanpara, NANO mono!
coorserersyioune “nena, Torna ierko cooGpasurs, ro 0,81 = 0,9

2 2 on
25 (5). 20 09 (18 (2 2
(a): 3 25 E (5) add

Gema o6pautena 8 nenpasunsayio); 0,0004 = (0,02).

0,16 = 0,4 144 =

8) 10= 10); 10
1) 125 = 5; 62
393.8) 8-27; 6)81=

a) 0,001 = 0.1;

394.2) 71° >; 6) (-25)'< 0;
398. a) 7 -5?=7-25= 175; 0)(7-5)
08 =-0,064, a) -3-29= 3.32 = -96:0)-6- 12)=-36-(-12)=432,
396. 1) 34? — 175 =1156-175=981; 6) 605 +78" = 605 + 6084 = 6689;
1) 42° 9 = 1764 -9 = 15 876; 1) 18? 27 = 324: 27 = 12;
10 75° + 25" = $625 + 625 = 6250; e) 59° - 36? = 3481 - 1296 = 2185.

2 2 2
5 25_25 sy _(1s) _ 228
2) 93] =o. 36 (9.2) 2] 22825625.
ann. 9(2) 57 9 (93) (3) 7 = 562
#)(-10) = 1 000 000; n-10°=-1 000 04
a)4-5=4- 125 = 5 9-5.2°=-5.32=-160:
16) 2%. 15=-16-15=-240; 3) 2700 - (0,1)? = 2700 - (0,001) =-2,7.
398. a) P+ 3 49427~ 76; DOT

8) (6 +8) = 14? = 196; ¥) 10° —

a} (10-37 = CA 92-3=16-9=7

wm) 11-3'= 11-81 =-70; 3)(6~8)° =(-2)'=-32; uy 4-2? = 64-4 = 60.
399, a) —L + (2) =-1-8 = 9-8-(-1'=-36-1

)-8' + (3) =-512-27=-539, — rm 10-5-2%=10-80

ay2-3°-3-2*= 162-48
212
A
-(2] -6
(3)

302-P-04-2=54-64=—k

114; e)2-5'+3.2=250+40=290;

m)8-0,5'+25.02=1+1=2.

68 raga I. Cmgnen © namypansieis moxazamenou

x= 1,8 CIP =8,1=0,8-0=0,x=3,8-3%=216,
5 1, 70-1 = 69: a = 10, 70- 100 = -30.

‚Ana Toro, “TOS: nañru anauenne Buipamenna 0.014, amecro y nomcTa-
BHM B Hero KOHKPETHOE sHa¥eHne. Monyuaem:
npny=-2 0,01 - (-2)' = 0,01 - 16 = 0,16;
pa y=3 0,01. 3*= 0,01 -81 = 0,81;
mpuy=10 0,01 -10'=0,01 - 10.000 = 100,

402. a) Bent x = 9, vo 9 = 81; -9 1; OF = 81;

36; 4-4) = 36; >

= 64,4 =-64; (4) = -64;

ee.

403.28 + +x) mx =—1, TO-1+1-141-1
ecaux=0,700+0+0+0+0=0;

10, ro 100 000 + 10.000 + 1000 + 100 +10 =111 110,

404, TOS] sorincanTs aHadenns BuIpaxtenns Ze — 51 ++ 3x, RORCTABHM AK
be Ben! x, YUHTMBAR NORITMC BOSBERCHHR B crenenb, [any anax=5:
2:5t-5.5+94+3-5=2.625-5 125 + 25 +15 = 1250-625 + 25+
+ 15= 665.
Ana x = -5 naxonmm:
2 SNS (SP + CSP +3 -(-5)=2- 625-5 -(-125) + 25-15 =
= 1250 + 625 + 25— 15 = 1885,

405. a) a: LES 3) De.

406.4 2 0 n (x - 8) 2 0 npn mo6uX suasenax x, T.K. KBAAPAT MOGOTO unena
ere WACIO nonOMITENENOE HH paBHoe YRC.

407.4 +1 >0n3+(5-a) > 0 npu nos a, rx. a >On (5-a)>0,1 13 ~
TonoxnTenbHble UMCRA, a CYMMa NONOKHTEALHEIA BBIPAKEHHH CTE BENH-
wna NOROXITENENAA.

WR ar +B
PE

409. a) Dro BEIPaXENNE MOHO NPOMATATS TAK: CKBANPAT CYMMEI AHCEA X My.
6) Dro BBIPAXENNE HHTICTCA TAK: KCYMMA KBAAPATOR MACEN X HP.

8) «KBaupaT pasHOCTH ancen x u JD. 1) «PA3HOCTE KBANPATOB UHCEn X Hy»,

A) 370 abipakenne MOXHO DPOWATATE Tax: «xÿG parnocrH Hncen x u yo.

€) DTO Buipamenie AHTACTCA Tak: UCYMMA KYÓOB UHCEAX Hy.

2) 310 DISPAXENNE MOKVO POSHTATS TAK «Y ABOCUMENÍ KBNPAT pastora

aucen an bw.

3) Y poemas cymwa Kaaıparos uncen an b.

410, y = 1,27 - 30 e 02600 Ox: 1,28 - 30=0; ¢ 0cmo Oy: y =1,2 + 0-30;

12:=30; y=-30 = B(0; -30).
1=25 34050).

$6, Cmenew yes cxovemes El

CAES CEE
5x = 4; 2=-02
£208 > y=-19; x=-0,) > y= 82
A(09;-1,9% BIO, 82).

41.2) y pres u y=-1x-3 mapannemens, ta. ky = ky

Le
2 2°
2 2
8) p=Ëx+4 u y Exa, nepexaiorex » ome (0; 4) rx bi
BLEIB
»F-1=7.
spp!
DEZE

415, Warner
16. ey =.
amé te

et

Di

eee =m, dpipipp=pt et
De ale |g PEO

419.2) mim = m; 6) ata’? = a’; eat;
Dam = nl; RP TT, 05-515. $5= 511

420, 9) St. 25 = 5". 5 93.2 2) 6! 36=6";

n2-32 2 04 0,16 =0,45 $) 0,001 - 0,1
421.2)2'-2=P=32,08.4=: 256, w) 8-2? = 2'°= 1024; 1) 16 - 3:
422, 9) 3? 3° = 37 = 2187; 6) 81 -3¢=3*. = 34

8}9:218 927-243-3.3
423, a) € =.
= ote a Aged; DE"

DE Shyer, BRR Be

425, 9) p° pt Dada ta:
Def 10: 1010 e)23#:23 2,3"
426, a) 5° : 5° = 5? = 25; 6) 10'%: 10 = 10° = 1000;
RS
sost.a5-09 as (if -(

102,73

73? = 2,73;

0 noes I. Cmenons ¢ Hamypanehoe noxa9amenew

0512:

ve ue

429.3) v'x
oy

430.2) 3x" = 3

pp avast
eek

ry Mate

AL a) BR = bt,
432.29

CNRS REENT IEEE

$6. Gmenans wee csotemen it

1
035

10+ 35-245 Km;

494.5 = Ton conn (=3 u $=
ecrire Su, rose 70-5 =350 Km;

comu 34.5455. 705= 105 0

435.a) 60°20; ES B)a?+4>0; rylat4y20; a)-a-S<0,
436. A(T, 196) 196 = 7° -3. 7°; 196 = 343 - 147; 194 196 - Bepuo, ta
‘sur. À npumannenur rpaduy byoxann y = x = 3x
B(-5; 200) -200=(-5) - 3 -(-5);-200
BEPhO, sHauuT T. B npunamiexar rpapury DYHKUMN y. wir.
437.40. cm’ - 108 r.

TSew -xr.

200 -

35-108

= 202,5 r - macca xyexa rpanırra osemom V=75 cm.

438. a) (93 =Y "6 (abc) = ac, 1) (2x) = Bs) Gay = 94; a) (5x) =-1250;
e) (10abP' = 100035; ae) (-0.2xy) = 0.0016x'y 5) (0,564)? =-0,1255%%,
439. a) (mn) = min’; ar ENS Nay = 80%
DID} = 1000): e) Cab] = 160 ben) Camy = dm 3) am)‘ = ah,
440.8) (2- 10) = 8000: © 2-5) = 10000;
8) (3 - 100)! =8 100.000.000; — r)(5 7 : 207 = 490 000.

461.2) dm (a) a = a a ea? = la = (A). == aa
Hart =ara (a) =a (-a):(-a)=~a-a-

492. S= ecmia= 25,10. D => yeennures » 4 pasa;

ecatt a = 3b, 70 6° => yaennunrea B 9 pas:

006° > yaenuneren B 100 pas;

ccan a = nb, To S = (nb) = mb? > ynenmunres ur? pas.

443, Tlyer» neponanansras wine peGpa «ya Gyner pasta x. Toraa » rom
cayuae o6veu «ya Gyner pasen. Ecan peópo xyÚa ynennunre 8 2 pasa,
To ono Gyaer paso 2x, a o6veM vroro «y6e 6yaet pasen (2x). Bosnexem 9
crenen nponanenesine (2x)°. Hmeeu: (2x) = 2-2 = BP. Cpasui nossıl

3
oben xy6a (A) € epson oßzemon (e): À

, Te. Oben

KyGa yoennunnca » 8 pas no CPARHCAMNO € epson.

Ezaw peópo xy6a ynemummm 8 3 pasa, TO oHo Gyzer pasno 3, a 06veu ra-

xoro xy6a Gyner pase (3x) = 3*- = 272", 7. €, ananornano, 06veu «yon
3

yoenuunnen 8 ZU 227 paa.

x

oan pe6po xy6a ysemmrs 8 10 pas. ono 6yner pasno 10x. Haxonum

n yea I. Cmenone © vamypanewsa noxasamenos

obren raxoro xy6a. Monyuen: (10x) = 10°» 2° = 100027. Bu, «cro m
rom cnyuae OÖBeM KyGa cran » 1000 pas Gonsue nepsonauansnoro.
Ecan pe6po ncxoAnoro ky6a YBennarto & n pas, ono Óyner panno n x.
Haiiaem ans 3roro enyuan ob bem Ky6a. Mucen: (nx) = a's", Tlonysaes,
"170 oem rakoro KyGa 6yner 2 » pas Gombe mepoonavamsnoro.

444, a) = (on); Gay = (ay); yz = (xyz
DEAD = (ab); MER; e)00271m = (0.3m).

445. a) 2*-5*= (10)' = 10 000; 6) 4-25? = 100° = 1 000 000:

?
9025°.4°=025- = 1" 1; »(3) age!

VS ISS.
6) (5) TT

8) 0,2*- 50’ = (0,2 - 50)° - 50 = 10° - 50 = 50 000 000.
446.2) (0) = x; Hey ax; 8) (a= a8,

ayy’ Sur rast
Dit
Ae,
aya
aa.

DIS
ea =a".

) 625° = (SF = 55,

Be 122%.
2-16 29-32",
“à.

455.) «O° = Mariam Bla) (a) = a"
VA a) (Pme) = me) (= x.

486, a) {dj = a" Dri ANA
Day aa aa.

457.9) 2 GPP =x"; YO BA OY OV EP NOY OP =

B

n
mej y
458. a) 75 =

(os)? 252 0

2 cay
D at ma

459.8) abi<O; Mae B)-ab?>0; ma+#>0 a)(a+b)=0.
460. a) Kaaypar narypanbnoro wena moxer oKaHuHpaTéca Ha 0; 1: 4; 5: 6; 9,
6) Hersepran crenemt HATYPANBHOTO cna MOMET OKAHTHRATECR Ha 0; 1; 5: 6.
461. y =k + x + 5,4; AQ3,7; -2).
Tx. A npiannexur rpaduky sto hynkıma, TO

-2=k-3,7 + 9,4; 3,7k=-7.4, k= -2 > y= -2e + 54.
462. a) ecm. x=-2,70 y= 6) com y = -0,5, 10 x = 0,5;
L1oy=255; cca y= 2, 10x =-0,5; =1,5; 2.
Toy=2.
$7. Onnosnems

463. Omiounenam maamores a, B, A, €, M, K, 2, M.

464. B crannapriom site JAMHCAH OHOWIEH: a, FA.

465, 8) Br = 82° - kopnunent 8; 6) 1,2abc- Sa = 6a'be - xombámunes 6;
1) 3xy - (-1,7)y =-5, Lxy? - xoopdmnnenr -5,
1) 6 + (-0,8)c = 4,80" — koxphnunent 4,8:

20 2 nn: 450 = mnt roda:

o qe Jer 052 - woophmnen 1.

466. 2) 9y'y =9y*; © 0,15pg - Apa? = 0,6p'q°,
1) -8ab : (-2,5)6" = 2028"; 1) 1048 - (-1,20°) = -12a%8”,
2) Zn 0,4mn = 08min, ya - 0,5 = 4.
467.2) 5°, com x= 0,5, 10 5 - (0,5) = 5 -0,125 = 0,625;

6) -0,125)!, ecm y > -2, ro -0,125 - 16

2) 122}, ccmnx=-03,y = E, 1012-0.09-2 = 0.18;

DIN comal y À, (DS

3
468. a) 3,Tm”, ecan m = 0,4, 10 3,7 - 0,16 = 0,59:

6) -0,5m, ecau m

6, 70 0,5 : 0.216 = -0,108;

2 nasa th. Omenans € yamypanesuM noxasamenem
8) 306. con a = -0,1,6=4,70-3.(-0,001):4= 0,012;
2 1 LB

D Ey? com x a oo LPS
ES 2 2194 2

469. a) ecaw m = 3,2; 2 = 1,8: p = 0,85 ro 2, Im’np* = 23,7710592;
6) ecan m = 0,61; = 32; p= 4,7 ro 2,1ménp' = 2596,10657376.

470. a) 36 ecan x = 1,1; y= 1.9, 10 3x°p = 6,897:
6) -Bm'n'; ena m = 0,8; n = 2,2, 10 -8m'n' = —76,76109698.

471.5 = 5m + m = Sm.
472. V=a-2a-2-2a= 8e

473. a) Crencnbro ontouren uassisaerex CYMMA nokasareneh CTENEHER ncex
BXORAUHX B HETO MEPEMENHEIK, B APHHOM CNYUAC CTENEHE MHOTOMACHA
pass + 6= 11.

9 Habe - crenem 3 8) 0.8mm ~ crenens 6:
1) able? creneus 6; a) -Gm’-creneub?; e)23-crenens 0.
414,9) AI 25 A(-7,-15) 5 6) A(-7515) (7:15);

15) 22, al (74-18)

8) A(~

475. Bonn x =-3, 10 y= 2;

conn x= 3, T0y= ecnuy=-6,10x=9;

saa bros ecna 10,2, 70x = 15,2;

477.8) 4x 7y= 28x; Br 5x = 40 m) Dab? Far
EIN
2) -0,676 -(-10a) = 648s ©) baht Sn = min,

$57. OOmounems

15

478. a) - Uy - 0,3
8) Ary (or) (y)
479, a) 3,5. 2m = Im;

480. a) -0,8nrn -(-0,50'2’) = 0,4m'n*;

By ae
nax'b -(0.6axt

=0,360'b",
= 9bx? = Shade;

1) ab: (-Tab°)- 4a"b = -28a%b';
€) “Sab - 3a? -(-4b)= 108a*d°.

503 (as) A

) eat; 1) ab- ab’). ab'= a"
na asa; emm aña) > at) = mn
481. Gab? = 3ab* -2ah= ab - (607) =-6b -(-a'D’)= 6a (ab?)
482.2) 124 =-2r 61 = Ax! > ay?
9-1 A a).

483.2) Be)? 6) (4m)? = 16nF: Die = Ral,
“GIS BLA, a) (abe) =~ al’. aveo = ab
484.) (nr) = 16m; 6) Gay? = 907 1B) (0.6m)? = -0.21m n°
IS AA aaa.
485. a) (Sy 6) dar y = 644 x",

8) 2 nahe = apte".

486, a) 811° = (7)
B) 0,091"? = (Ur,
487, a) 64x" = (A);

18) -0,008h" = (-0

»

6) 1214=(11a'y,
Cap

28].
NE] }
50.001" = (0,134);

Lora 2e).
3:

4,6
En =
15

n

488. a) 97 10m = (Oma):

DE 2 ch)
489. a) Lox" Fin = nF

CES 1000 o

SRG 2 NE 6) 1 006 000m = (1 000m" F = (100m.

491, a) 25a! (3a) = 250 Ja = 2250": GAN ho BIE

8) Hp! (pi = Sp", DCR 6,15 = O15:

A

fl!
kz:
*) À

16 den. Conan € nomypansreus noxasemengu
492. a) (xy) -(-3xÿ9= Ir) 6) 0,50 - (26) = RW,

8) (0,2m'n)’ - 1000m'‘n’ =3m nr) -7e* (DAY = 1.120,

DEN 2) 02078 se
dar al a) far 79

a [een] ammm!) | pa -E21p1): -12p'4

493, a) (0,26%) - 5b = -0,045",

6) 0,012". (104) = 100";
3
” ( 2) -8la* = 30000! ;

1 2ab)* - a by=-1Ma "0 e) -0,6x"y" - (0,5xy*)? = -0,1 Say",
Te.

494.

Fumo [Tenens Trans

frewan | 1851] 15 185 = 15x | 8 1.5 pas Gomme

itexmaa | 23771 18 x 237- 18x
1,5 (185 - 18x) = 237 - 18x, 277,3 - 22,5x= 237 - 18%
22,5 - 18x = 277,5 - 137; 4,5x = 40,5: x = 9 - uepes 9 aneñ.

495. [lycra 8 nepsom osowexpa#name raprodena Gyner 8 1,2 pasa mente,
ew 80 BTOpom, epez x une. Toraa K JTOMY MOMENT 8 nepBoM oBOUIe-
xpannnnine Gyner maxonuracs xapropena: (210 + 901), a 80 BTopoM —
(180+ 120%), Hapecruo, so sepez x Ane 5 nepoom opowexpantumntue
Guano 8 1,2 pasa mensuse kapradens, Hew vo BTOpoM. Orciona nomyxaen
ypaneune: 1,2 - (210 + 90x) = 180 + 120x. Peumm aro ypaznenne. Pac-
Kpoen cxoGkw pmaenen monoGmne unen, Hem: 1,2 - 210 + 1,2 : 90x =
= 180 + 120x ns 252 + 108x = 180 + 120x uan 120x = 108x = 252 - 180

na 12x = 72 oreyna x= 3 = 6 (auch).

496. Mloxcrasmm koopannateı x x y rous À (0; 6) 8 ypaneune y = ke + b. Vises
= k-0 + b, orkyaa naxomum b: 6 = 6. lance noncresmm 8 ncxonmoe
eue KoopanuaTia roux B (x = ~4, y = 0) u nonyuennos ananenne b

ypa
6

). HMeem: O = -4k+ 6. Hañinem orciona 4k = 6; k= £ 715.

497. -0,3x + 5.4 = -0,7- 8.4; x= 13,8 > y = 1,26: A(13,8; 1,26).

498. Ala; -3) 814; 5)
2) TOUKH cumMerpicanes OTHOCUTEMO 00H aßcuncc, A(A; -3) > Bid; 3);
6) TOUKH CHMMETPKUHLI OTHOCHTENLRO OCH OPAHHAT, A(-4; -3) > B(4; 3);
8) TORH CHMMETPITIHBI OTHOCHTEABHO HAYANA KOOPAHHAT, A(-4; -3) + B(4; 3).

$7. Odwonnenss n

499. 8) 3.468 = 3; 27.601 = 28; 8,51 =9; 105 = 11
6) 605,718 = 606,7; 4,0389 = 4,0; 11,05 «11,1;
18) 745,1 = 750; 999,95 = 700; 8,04 = 10;
1) 661,38 = 700; 1740,5 = 1700; 7550,1 = 7600.
500. a) Henonssyem pheyno 42 yaeGtmxa m nalen:
pu x= 0,75 y = 0,55; npu x=-1,25 y x 1,55;
npa x= 1,25 y © 1,55; mpux=-22 y = 48;
npux=22y= 48.
6) C nomoutsto phcytika 42 ann RAMMSIK sHavennil y HAXOAHM COOTBETCT-
syiowne sens x: mp y =3 02 1,7: apKy = 5x4 22,

501. a) Ecru, 1.4, 10 y= 2; 6) ecam y= 4, Tox 2H x= -2;
ecan x = -2,6, 70) = 6.8; cca y #6, 70x 52,5 mx 2-25;
conn x= 3,1, 70 y= 9,6;

B)ecnt y<4,10-2<x<2;y>4,10x> 2x <-2,

502. a) Ecnux = -2,4, 10 y 2 5,8; TOR AUX SLA;
ecau x = -0,7, r0 y= 05; 9, r0 x = 0,9 4 x «0,
can x = 0,7, 10 ÿ 5 0,5: s)ecmy>2,70x> 14 4x <-1,4;
ecan x= 2,4, Toy 5,8; ecnuy<2,ro-14<x< 1,4.

503.5 = a’; ecan a = 36, mo S = (3) = 96? > yaenmuntea 5 9 pas;
‘ecan a =0,1b, mo S = (0,15)? = 0,018" > ymerswurea 5 100 pas.
504.9= a; ecm S yrenmunace 8 4 pasa, S = 4a! = (2a)? => yoenirun 8 2 pasa;
can Sysemmnocs 2 16 pas, S= 16 = (da) => yaenwunrs 1 4 para.
505, a) Henonsaya pueynox 44, nailaem sink RAHMBX x COOTRETCTOYIOULME y:
apn x= LA y= 2,7; npn x=—l4 y= 2,7;
npn x= 1,8 y 5.8; np x= 1,8 y= 5,8.
6) C nomowbio pncynxa 44 ans HANK SHA TENA y HAKOAHM cooTReTCT-
sytouute x; np y= 4.x = -1,6; np y= 4x + 1,6.
$06. a)ecmx=-0,7,10y=-03 6) ecan y=3, 10x = 1,45;
eon x= 1,2, 10 yw 1,6 eon y=~3, 10x=-1,45;
9) can y > =3, tox > -1,45; ecam y <3, rox < 1,45.
507.V=a, ecmma=2b,10 V= (26) = 85" = ysemawren 8 8 pas;

N
commas 15,10 v-(46) 259° ~ ywenbuneten 827 pa,
Tycrs peßpo xySa Gyner paso a. Torna ero o6rem Syaer pasen a. Mocne
nineneinn peGpa xyóa ero oGem yaenunnca 64 pasa, 1. . cran paren
64a? una 4 = (4a)!. To ecrs pepo kyÓa crano pagno 4a, oTKyaa cneay-
ET, TO ono yeeniounnoct 14 pasa.

28 Fraga I. Cmenene ¢ nartypanenem norasamenem
509. hy a) can x = 0,7, 10 y x 0,3: ecanx=-1,3, ro y > 2,2;
6) ecnmy=4,10x=—L6

$10, a) ToncrasiM koopännarsı roro À (-0,2: -0.008) 8 ypasnenite y = 2.
Nonyuaer: -0.008 = (-0,2)', -0,008 = = -0,008. Paper
rao aumonnaerca. Cnenonarenbno, rouxa A (-0,2; -0,008) npuannexur
rpadny hyakımın y =».

si. hy a) 0,67 > 0,6; 6) 1,5°<1,5% 8) 2,7°<2,7,

512, 5, = (3a) = 9a",
Ecna na S= 4? rpeGyerca 20 r, ro ua S, = 9a? norpebyerca 8 9 pas Gomme,
Te, 180 r kpackn
513. Y, = (20) = Ba.
cnn = a? nanoniaerca 28.45 mu, TO 7, = 8a’ nanomaeren 1a 360 wm = 6 9,
$14, 2) 0,13" =(0,3)'% 6) LO" < 1,9% 9) 5,6 <(-5,6)% 7) -08" = (0,8)",

$7 Odounanss »

518. 83x = 0,5% 19,2 = 19.2;
4 = y= -20,4 — Touxa nepecesenus rpapusos A(=
516.) u = 6,39, 6 = 5,46, = 16.39 - 5,461 = 0,98;

5) a= 0.1. b = 0,208, = 10,1 - 0,2081 = 0.108:

8) a= 43,62, b= 46,48, = 143,52 - 46,68 =

Na=5=75.>115-7,51=0.
517. 0,00813 = 0,01; 1,00399 = 1.00;

62,128 = 62.13; 39.0986 = 39,10.
S18. a) 0,64 'b Lab Y = 4.80". 0080-60 Y = 28.80v.

$8. AGCOMOTINAS u OTROCITEALHAR norpeutoers

519, Hañigen no rpaguxy Qyuxumn y = 0 (eM, pue. 44) mpróaroaccumbie snaue-
un y mpi x= 0,2: 1,600 1,9: ap x = 1,6 9-80; mps = 6 y =4,L:
pn x= 1,9 = 69. Tlo dopriyne j= x naiines rouHute éme 970%
dyna: npn x = 6,2 yr 0,008; pu xo 1,6 y = 4,096; pn = 1,9
y* 6,859, Mpiréawiemioe <uawenne orakudetes OT TOANOTO SAME B
neprou cayuae Ha 0,008 (0.008 — 0 = 0,008), a0 nropom caysas - na
0,004 (4.1 - 4096 = 0,004). aw mene cyan a 0.041 (6,9 6.859 =0.041),
robe jar adcomoTyIO MONPEIDHOCTO. MK HARTA MOAYAb PAIHOCTH
Tomaro m npaéaeeuntora suave. Hrax, n nepsox cayune aöcomornan
norpeuroere pasta 0.008, wo ropow — 0.004, 8 TpeTneN ~ 0.041

520. Ecau x = 06,70" = 0h y=036: 1036-03]
ecam c= 18, 101232 10324:
ex = 2.6, ro Tire 6.76, 1676 6.71 = 0.06,

SA, 17,26 17,3: N726- 17,3, = 0.08:
12.034 12,0; 112,034 12,0) = 0.036:

865487 IN.654-8,7.= 0,046,

522. a) Oxpyramu mico 9.87 ao eau, nonvuaes 10, Fenepı nañiaen a6co-
MOTUYIO HONPENINOCTA, UPHÖHTRENHOTO MANI, NORYUEMIOTO 1 PSY A
rare oxpyraenna. Hagen: 109,87 = 0.13.

6) 124 = 120::124 - 120124;
e) 0,453 = 0,5: 10,453 - 0,5

(0.047: 19 0,19% = 0.20; (0.198 — 0.20) = 0.002,

; i
sa. Leon: a £203.10

33|__67
Der

80 Frage tt. Cmenena € namyparanan porasamenon

1 1 1_333|_ 667
8) veep ère

524. US 0
hada

525. ZABC= 125°; ¿MNK = 43° ¢ roanoeruio h=
526, 3anaua na nocrpoenne.
527. 17,9 mm - urranremnprynes À = 0,1 ama;
18 ae — mmannMerpoBoR nuneHkofi f= 1 min;
17,86 mac = MHKPOMETPOM 1 À = 0,04 mm.

sa. mo its

5 Kr — ToNMOcTE Hsmepexus 0,5 Kr.

t
A
E ra

o005= 5-1, 1 nn ch=0,005

1000 ~ 200° 300 ~ 200
$30. Nyere x 4 wan newrom, Tora (x + 2) y exanı Ha asroßyce
60x + 2) + 6x = 252; 60x + 120 + 6 = 252; 6x = 132; x = 2 — 2 aca mums
neiKOM, 4 vaca exan ha anroßyce.

Boe aa
= =; -

a gar Dae 1p.
37791 _ 37791 _ 2223
Se 2223;
97" 17000 1000
1314_ 7914 _ 3657 _ 3

—=0012.
6095 609500 304750 250

mal
[6 100] 300 1007

of

= =121.

$31. a)

533. n) Ha rpafırkos anano, STO apeMs ABIDKEHNA nepRoh MAUI panno
24 50 MN, a BpeMs ABHKeHHS BTOPOR Mauss paro 1 4 30 nt
6) Panbiue Havana cooe ASMKEHNS NEPBAA MALA,
8) CKOPOCTE IRAKEHAR KAMAOR MAUIKHBE MOHO HaliTH, pane six
npofineunsih nyT 200 x Ha spema, sa koTopoe où Geta npoRnen. Tora
200 _ 200 200.17
2 D 16
6 6

exopoere nomenun nepooñ aus! para:

58, Abcomomnan u omwacumennnsn nozpeunocms sr

E 10 (ou, Cops, sem ops ann ana

200 _ 200 _ 200,3 202 21333 (os).

ER
z 2

1) B ropon B npw6sina parie atopas MONA,

2) Tonka nepeceuenna rpaduxon oatavaer BCTpeuy MauuHH (erpeue coor-

BETCTBYeT ORME H TOT Ke MOMENT BpeMeKH i ONHAAKOBOS MpoliaeHHOe
paccronmne).

534. a) Oxpyrans wncno 5,3 20 enunnu, monyuaen 3. Torna a6contoruan no-
rpewmocrs pasta 5,3 — 5 = 0,3, Tenept nahen ordocurenbayto norpeu-
HocTs. OTHOCHTENAMON norpeutnoctsio nPHÉAHMENHOrO HAMEAUX HAS
BaeTcn oTHOWEHHE a6comornoÏ norpemHOCTH K MOAYIIO nPMÜRMKENNONO

3-4.

anonenma:
Bi

D98%10; 198-1=02;

B)196=2 1196-21 0,04

NTS 1785-81-05; 95. 00025- =625%.

estamos uns ME „aom- 0%

536.2525 «2,5, 2825-24 nos

=0,01=1% .
25 25 4

537. Ecan x = 0,8, 10 y = 0.6; y = 0,64; pesó 0°

56-24 _ 0,04.
= 1.6, 70y 2.6 y= 2,56; LA. 15%
seam = 16, 70p + 26 y= 2,56 TT = a DOS = LS

= 0,067 = 6,7% :

538. 1= 17°C erowoersie 0,5%; E 0,029 = 2.9%

539. Omnocutensnofi NOTPEIUNOCTEIO MPHÓNIDAEANOTO rater HASBAETCA
oTHoMeHHe a6comomof NOTPEMIMOCTI X MOAYIMO NpHÉMMXEMHOrO 3nawE-

ES] Fras Ill Cmenems ¢ namypansnum posasamenen

via, Haliaew eiawane aScomoruyio norpeiumoere akenepiMehTansHoro
peaynorara: 7,8 ~ 7,6 = 02 (ricw'. Tenepb waltzes ornocreabryro no-
022,1
sumoers, Hueeur mu 0,03 = 3%
Te 76 76 38

LA

= 0,00019 = 0,02% .

S41. = 0.15 uw: fy 7 00! ms AN 267 = 6.9% 5
= 500 «x: M 5 9.0013 = 0.13%
34 000

6,7% > 0.13%, iomepeiuna TOMA BOAOCA CAEJANI Meer KaveCTBEIIHO.

5
542. 1.5 kr = 1500 1: — = 0.0034 = 0.34% :

1500
5
2 0,002 = 0.2% 1 0,34% > 0.200.
2500

2300 15

543. Eos y; = 161.0 x, = dx, Te. aBenpteca Touin A mente aGcuttec
Bed pasa,

a
CETTE:

ET

545, C ven Op: (0: 9.1: Coco On 26x +
EN
Aonomuresminac ynpaxnenna k raane HL

B46. a) FP eno, nk. 12 + 162 28 = 36,

Gd Dedede EEE ZZ NET:

00 100.
547.36 + orammpaoren 6: 15° - onmmumaeren 5: 31° - orammmnaecs 1. Ch-
Hi mer (267 + 18°- 31% ~ orammnaeren un 0. aime
pin mars: 2C A MOCTH YT sufeTO KpATRO 10. LA, Öyacr AMEL um 16

+64 Dep

sa

Sas 20 à Fear Pie
a) 225 = (RT 215+ 3F 5 We ss este?
CAES “ae

Aononnumensnete yrpasnanun x anaeo it E

$50.0)6=2+242=2742; 0422

0) 18=2+2+242+242+2+242=2%+2,

551.8) 121 6) 32 = (2) 8) 0,125 = 0,8",

1) 625 = 5%; 8) -0,216 = (-0.6): 9034
552. a) 0,0012°, ecn y = -0,2, To -0.03:

6) 1000)”, ecam y=0,1,70 I;

B) dy, scan x= 5,y=2, 7025-16 = 400;

D y ecan x = 2, y =-S, 10 3 -(-8)- (-125) = 3000.
Se HI" =-1; DDP Den".
554. a) Ky6 uncna pasen 5 pasen 5° = 125, a ky6 sens (-3) pasen (-3)

=} -31=-1 : 27 = -27. Toraa cyuma xy6oa uncen 5 u (-3) paoma

SH = 125 + (-27)= 125- 27 =98,

6) Halınen cymmy anyx aannuix ancen. Mueem: 9 + (-L1)= 9 11 =-2.

Torza xy6 cpu Tux anyx seen panes (9 +(-11)P=(2)==1 -8=-=8.
585. a) (0,03) > 0; 6)0>(-1,257, 8) (-1,75Y <(-0.29); 1) 0,98" < 1,02.

556.2) 2°<3;8<9mal; 6) 5° <2%; 28 <32 na 7;
B) 2-3? < 3-2: 18 < 24 na 531) (11 + 19) > 11° + 19%, 900 > 482 na 418,
587. a) (12) > (-12)'; = DESTA

558. a) een x = 1,5, rx = 1,5? = 2,25; = 1,5? =-2,25; (x) = (21,5) = 225:
com x = 2, 70 x = (2) e (x) = (4-2) = 4

(xP = (15) = 3.375:

Ea) = (42) = 8,

559, a) Uncno 10" aceraa nonomirensio 1 Gone, 1460 paBxo aecaTH. 3Ha-
ur, WVICAHTENS NAKHON MPOOH BCerna GYAET NOAOKHTEMBHLIM AUCIOM..
Muero 10” Bcerna saxan4upaerca 9menom O. CnenoBaTenLHO, ecna OT ITO-
ro uncna OTATA |, 010 Gyner conepare OAHH ACBATKA. TAKHM OBPAIOM,
‘axcnirrent nanıroh 2pobh 6ynet aemiteca na 9 naneno. Més nokaan, ro.
Anauenne AAHMOÁ APOGM GYAET ABAATECA MATYPANSHIN HICAOM.

6) Ananornuno Ne 559 a) uncno 10” acera nonoxuTento. Cymma undp

rakoro “nena Öyzer pasa |. CnenosaTenbHo, ECU K ITOMY WHCIY MpHGS-
HT» uncno 8, To cynma np JTOTo «nena craxer panta 9. Torna no npi=
may zennmocrn sueno (107 + 8) Gea octarka aenra Ha 9. 3HauHT, 8-

107 +

8
erne apoön ABINETEE HATYPANBRBIM AHCNON.

560.3) x* = 81; sopmn:
8) Xi x = 2; nop: 2
mx = 3a? = 4x = 12; xopmn: 2;

300 + 3x" — x — 3 = D; Kopuu:

84 Fosa I. Cmanaws, c namypenbreum Aoxesamenen

‘$61. a) 7 + 1 =0—x =-1 — pewennä ner, TK. 20;

6) 2x® + 3x8 4x + 1=0—x 20,120: x 20, a cymma NORORHTETEREX
ace He Paba Hyni0, noxToMy peiennli ner.

562. (2x +3) = 0; 2e+3= 0: 1,5.

563. Ecnn aneno x Gyzer NOAOKHTERKEKM, TO TIPA BOIEEAEHIH ESO BONO
crenens, xak HETHYIO, THK H HEMETAYIO, NOMYSHTEE MOTOHTENKOS HHCHO.
3HawIT, KAMAOE cnaraeMoe HAWHOTO YPABHCHNA ÓN ZET NONOKHTENLEBEM
MCAOM, a CYMMA MONOXHTENETILIX HHCEN He MORET Über PAPA yo.

SS
enn x $0, ro x° 2 0; x*2 0; x >0 > cymma scex caaraembix Gone Ky-
na, 2 0; 0 20; -x 2 0, a y Hac pasno Hynto, IHAUHT, npennonoxenne
x < 0 nesepno. Cnegonareasio, orpunarentauix xopneï mer.

566. a) a° a. IS = Vr = eR =.

S66.2)2-8=2"; 6) 16-64=2°- 2°= 2"; 8) 7.343 = 7%, TBI. 3 = 3,

567. a) a = aa”, Da = aa 5-00 7

mn amet

569.0) 00:00 6) 7:7"

sndezeñxe ll,
satiasa 1) 12%: 12% = 12

u.”
570. a) 13°: 13% = 13°= 169; o EL 238.2? 9.4236;
F2

95.5 _30.5 3

DESEL ER! Dos
N
18 25t = 510: 5625 Ps 3.3
DES 25 des

=
571. a) Tlpencrasim nenmucoe 6°”? kax 6"- 6. Hmcen: =

PE
3

572. a) (217 — 43,07 - 4) + 5.

2
3

3

6) 17,83". 6,4 + + 2,8 64+04= 6,8.

573. a) Tipencranmw nanHoe DbIpeoxene 8 Brine kBanpara sena (-1)". een

en: 17 (er)? -Pacepoen exosen. Nonywaen: (a)? (199

Banonwumenense yapaxnoreun « 27000 tt

574, Econ r yoennsnrca 8 3 pasa, To S yeenwmren a 9 pas:
cam r ynennercx B 7 pas, TO S ysemmauren » 49 pas.

$75. Ecan r ysennuuren 8 2 pasa, TO Y ynennuurrcn 8 8 pas;
cnn r yeenisurren 2 4 pasa, To Y yuenmentca 64 pasa.

À — Bépho mpx 21060 x;

6) lx? =x? —eepno tomxo pu x = 0, a npr x < 0 — ReBepro.

5
S77. 8) 4: 2,5% = (10) = 100 000; o 6 Een

»02°-5’=-02°-(02:5)-0,2°.17=0,04
1)0,4'°- 2,5" = (0,4 -2,5)" 2,5 = 1°. 2.57 = 6,25;
a) 0,2° : 25° = 0,2? - (0,2 - 25) = 0,008 - 5°

y e s=(1) (Es) de s1=81.
= = 9 al
$78, a) 10" <2,1x 10°<2-107; 6)62>2", rx. 6"-6>6" 4,
B)25°< 29.3% SO 1) 63> 30. 5%, 6395 159.39 rx, 6I"> 45%,

879, a) (IP OC =35 AY DAI
580.8) (°F - (Gx) a, IAN
DEA a, NCP ae

582, a) 4-2" = 2;

5) 8°. 16 = 25. 28 = 26, Na,
ES Re
PROPRES

$85. a) Flyer» nepsoe uncno Öyaer pasmo a, sropoe wmcno Öyner paso b, To-
Pha WX KBaApATB pastes coorsercrsemno ay BF, Mo yenommio: al + b= 0.
‚Aannoe pasenerso ssınonnaercn mpu a =0 u b=0, r. x. ecnx a u b Gyayr
OTAHME OT ana, To ancna a? ub ÓyAyT Nohonmenknk, Te. He MARYT B
eyune 0.
6) flyers onno uncno Gyner panuo a, a stopoe uncno Öyner passo b. Cy-
Ma THX AByx uncen pana (a + 6). Torna KBanpaT cyMME uncen aH D pr
nen (a + bY. To yenonmo: (a + bY = 0. Keanpar uncna pasen HyAO, ecm

ES asa il, Cmaneme © mamypanenam noxasameneur

SINO 270 SHEAO PaBHO nymi0, 7. €. à + 8 = 0, 3naaNT, KBanpar CyNME ABYX
UNOCA PABEH HYNO Toma, Korma CYMMA IUX MHCEN PABHA Hy (T. €. KOT
28 IT fea HMEIOT NPOTABONONOAELE 3HAKH: @ = 6).

586, E

mn ancao @ oxanunsacrca |, TO a” Toxe okanungaerca 1. Dro cnpagen-
0 A HUCEA, OXAMUNBANOUIMACA Ha 5, 1 6 HHO 0,

587. a) 3% = (3%) =81'— OKAHAMBACTOR |, Tak Kak ECMH BMCNO Y OKAHINEALTCA.
1.10." Tome oxanunnaeren I;
UN 1) ~ coctour us REBATOK. a Mayr. cyna up AE2ATCA na 3
nam, 110° 1) xparno 3.

588. Ecan a= 0.10 7° = 0 6) cca y = 2 10-40 = 32;
ect a= 1.107 ecaux = -3.10 108;
cema==1,10-7; , 10 -32 000;
eau a= 1. 10 4.007, “012. 70 0032:
eect a= 02, 10 0.056: comix = 0.8.10 À

589. a) Ee or -6br35 ‚70 -4,5-(-6) Hew:

co <s(-5)(-

scan a

6} ces dy 8 100.001 + (4) 9 = 0
1

een los 125, 100,001 (19-125 © 0,125:

gear Rn 0,100,003 (18) 05 0

590. a) dar —crencun 9; 6) ¡Gabe — evenen 6: ma
vy ser —crenem dix) Sv" -arenent ti e) 2.4 - erenen da

-erenens 18:

Bonomnumensune yoparnone «20800 I 81
591. a) Sab - 0,7bc - 40ae = 140090 = crenene 6;

D-04504 (3e) Sab = 4.5a°b'd - erenen 6:

8) -19ab - (-I6abc) - (-0,5c) = -15,20
1-06 - 30’b'= -30°0° - erenem 10;
2) 0,6x'y : (0,59%) = -0.3x'9* - crenens 8;

e) 032m nt (sr)

- grenens 6;

a — erenens 20.

592.) Say: Sx’y; © 59°; Sy; Sy.

593, a) 8 y 0209 = 1,604; 6) mn? - 0,5 = 0.5m
B)-2Ar'a -(0597)=12:%07; 1) 1,2597 - (Day?) - Or
2) ~2,Sabe : (~abc) - (3,4a°b) = 8,5a*b'e°,
€)0,8a%bx - (O,Aab*s?) - (0,5ab'0) = 0.1607"

594, a) Nipeucraëum 8 aaHHOM oanounene CTerenb nepeMeHHoR y 8 anne 2 + 1,
crenent nepemennolx 8 auge 4 +1, ameno 100 xax 20 - 5. Flonyuaee:
1004 y! = 20 - Set ly" t=20-5x*-x- y? y= (20x ty) (5x9).

0) -20xy=20r y (1,53% 2) dy =20xy (024); 1) x = 20 y - 0.051 y.

te,

595. a) Bade = tac” - 2; By? =

596, a) (1028) = 1000°6°, O2‘ = 0001",
se 1) (-05ab*e) = 0.062500,
597.0) 27078" - 3a'%? = BI = (30/6);
6) ~64a*x"' - (0,251) = 160 = (ax;
8) 0,0180 «(-0,1bc%) = ~0,0018%9 = (0,187),

opts 3 iat 27 3 2,6 Y
Hox: 204 379 gra (re).
598. a) (-0,2y) - 50° =-0,9; 6) -606° (0,57 = 7,50;
Deren (Gao erator:
» plz DE + E07 A + (100087) = 649,

599.2) ab): (-3ab) =-1080%6: 6) (0,20) (Sr
2) (3x)! = 243x597; 1) 0 sacy - (24/0) = 2a’;

38 Fnaos Il. Cmonans c nemypama nonesamanou

= €) JE x 2) CHE Les,

2 ? a 3;
ws (Bas) coa

502 y

Dee = 64x")
» (se (tas)

601.2) 3h" = 3 - (atm);

602, Ab) € Fg amar, y= (4),

= 16 PA; 16); ro AH) € Ta.
603. a) 0,23 > 0,23%, 0,23 > 0,23"; 0,237 > 0,23%
6) 1,47 < 1,477; 1,47 < LAT 147 < 1,47,
604. a) A(a; 5) € Pied + Bla; 6) - MpHHAMICKHT;
Cía; -b); D(-a; -b) - ne mpunamexar, T.K. -b < 0, a y>0.
6) A(a;b) e T 2 D(-a; -5)- piano;
Bla; b); Cla; -b) ~ He npunannexar.
Tak kak rpabuk Dynxuak y = x CHMMETRKUCH OTHOCHTEBHO HAYANA KO
Opannat, TO roakoÿ, cummerpmanoÿ A(a; b), aunaerca rowxa D(-a; —b). A
no yenoëmo, Aa; b) € T2 amar, De TP

605. a) ecmO<a<l>r00 <a <a Gjecma>1l,r0a<d <a;
a)ecm -1<a<0,r00<e'<ah r)ecma<-l,oa<a<a

Ledo;
“lebe:
1 Litt 15] A,
ccmy=0.1,10 À af a mE
1 1 _ 31H i
0.111,70 ont,
ecm y= 0 to an} 6 al So:

606. a) y= 5-01

— |

Flononwumensnase yrpazosenum x e000 I

© y=

sem y= 036,10 |4-0,] aa
ecnu y = 0,364, 10 load) E Sas:
ergeht a ch oot a mw’

sai Cc 2 =0,18- Toanee.

550

100 i

608, 31; 319 Gecronennue nece apoGu, Onn ne moryr Sata pre

Garenne Mann HAN, 010 NPABHIAM OXPYTACIA ACCHTHREIX
Apo6eñ 3,142 — camoe rosnoe.

609. }1,361 - 1,4= 0,039 < 0.1, ur.a.

7
10,4375,
610. 75 =0,4375

3

A= 0.0375 <0.1 5

A tt LED 1
200

en el AS

8000

4 17 _2|_ 85-32]
A (3 3- EJ

,0025 < 0,01;

000$ < 0,001 .

À +040 04-07
=o 3 À.
dul to] 70°
612, c= 244, jet} Rene Ed,
7 2 2 3
jaz] Boel bed
2 2 2“

#0 Fnaeo ti, Cmenans ¢ amypamensse noxasamenent

613. 2) 38,9 + 40; Em 0275=2,75% ;

6) 4219 + 4220; = a À = =0,00024=0,02%

0,5
63

Vamepenita Mach skenesnomoporkHoro BAFOHA CAENAMES TOMHEE, T.K.
0,19% < 6,67%.

19%: m. 0.0667 = 6.67%.
ts

614, 22 = 0,0079

01% 2 Lx 0,492<0,5.
SIS. Top = 01% = ODI: x = 0,492 <0,5

Hsmepeuun cnenanes € rounocra1o 10 0,5.

Tnasa IV

Muorounenb

$9. Cymma u pasuocro mnorounenos

616. a) -6x "9% ~5y5 LL; 6) 25ab; ab”: -u'b; Sa, -7b.

647. a) 10x- Bxy- 3ay = 10x ~ 112) 6) 2ab Tab + Ta? = Sab * 70°}
st + Be;

Cy St = 2e + y 3
1) Bab’ + Gb ab} ~ 2a’? - dub + T = Lab! +7.
619.2) 8° + 12p! + 4p! Sp! + 3p" = ap! + Lan = Sp
6) aa’ + a? ~ 3a? + a anda daa
8) Bux’ + Bex’ = TEE = But + at
1) 30-48 — 08h Ab? - Zah 3h + h-3
4 BR = 1 = Ga 02h! = 1,

620, a) 20% - ax? - at —
6) Da sancn muorosaenia u CTAMMAPTNON aie NEPENNOXAN OIEA
# mpavenen noadGnLte arebi mmorounena: Sy 247 Sx 0 ur er + GON
+ = (Ieee 001%) + ES Ay) = 1640 = Ire.
ameruns ro 8 CKOÓXAX Guinn anne NOAOÖNLIE seu
621, a) Ss" aaa
ee x 10,70 (107 +7 = 100+ 7 = 107
Do ab - Ihr ab? + 6 = ah ah +6:
cas -3,h* 2,103) 2002 6= 1846 +6 = 30,

622, a) Gaal" + 4a) yl = Ba a Der + a

ecan = -3, 102 (ua) 4 (23) = 20-29 Se 54-32-57:
atleta peat 2
em Zap Hb 106-2) ot Dr4-1=3,

623, Kean 0 702-041 di
exam x = «2,102
ee 3102. ES T= 1d do

4.702 b= 32417 33;

2 + 120, mpi cindy made x TK. 20 8 2 +1 > 1

2 Frase IV. MiozouneH

Tax O6pasom, HAE x, NPA KOTOPEX MHOPOANEH OTPHUATEAEH HAM
paper Hynıo, ne cyulecrayer.

624. x’ + y? + 1 > Onpn nıoßom x Hy, TK. > 0, y" > 0 npm MOBOM x Hy, a
CyMMa TpeX NOMOMKWTENLHBIK CAAFAEMEIX BCETAA NONORATENNA.

68.2) a 10+b Sa: 100+b-10+c

626. a) Jaxermn, sto noboe “meno B HynesoË crenenn pasno eaunnue, Caeno-
Baremo, “weno | = | -x° meet AYREBYIO cremenn. Janee PACTONOR
creneux no y6sisatouiell: naTaR, UETBEPTAX, TpeTER, nepnan u nynenan. B
wrore nonysaest: -80° + 17a" a + 3a 1.
6) Ananormino Xe 626 a), uncno 35 =35 x” mueer nyneayıo crenenb.
PacnionaraeM cTenenu no yOLIBAIOLLIEN: wectan, HETUEPTAA, BTOpAR H HYRE-
sas. B pesynérare umeem: —e*— ct + 50° + 35.

627. a) SameTun, «ro MoGoe SHENO B nyztesoñ crenern paso esunmue, Cneao-
BaTenbHo, uncno $ =5-x° mueer nynesyio creneub. Max, nanmensuran
Tenens NEPEMENMOR ~ Hynesas. Jlance pacnonoxHM erenem no B03pac-
‘Tarouteli: HyaeBas, rIepan, BTOpas H serseprex crenenm. B wrore nonyua-
emit Sat + 12re-5 + CH
DI li p.

628. a) dd? - 2a" + a 1; crenemo 7: 6) Sp’ — p - 2; erenens 3;
8) 1 —3x; crenens |; 1) Axy + xy? - Sx? + y; crenenb 3;
a) Rey + Sp — 11; creneno 5; e)ay + yz +.x2— 1; crenem 2.
629, a) ir 3y +5; OF + 2a -36+8,

630. a) x" + 4,23: ecnu x = 1,97, 10 1,977 + 4.23 = 8,1109;

63218 - x7; eon x= 2,17, 10 321,8 2,17 = 3170911;

a) a‘ + 26; ecan a = 2,3; b = 138,9, 10 2,3' + 2 : 138,9 = 27,9841 + 277,8=
05,7841;
¥) 3a - b°; ccm a= 806,2, ro 3 - 806,2 - 1,7° = 2418.6 - 14,9857
= 240440156 = 1,71.

634.4) 03y =70; y=2335 5

9. Crowe u paswocms uwozawrenoe 93

633. a) cont y = 240, 10 240
8) ecn y= -100, 10 -100 = 0,01 - x; x:

634, a} (20 ~2)+ 20; ©) Qn- 1) + Qn+ 1) + Qn +3).
635. a) COCTABHM CYMMY 3THX NBYX MHOFOWNEHOS, saTEM pacKpeM CKOGKE m
nphecaen MONOÓMBIE REN:

(40517) + (0 Br) = = See 740 = Bee SP 13-7.
(Tax Kak nepen CKOÖKaMH CTOHT sHaK «NOCH, TO STEHE KOTOPBIE 38x10
Her B CKOÖKU, SANHCHBALOTCA € TMM KE SHaKaMH).
6) CocTasum pastocrs manne MHOFOYIENOS, PACKPOEM cKOOKH H MpHBE-
em nonoënsse “nen
(Gy? ~ 9) = (Ip ~y + 5) = 59° -9- 19 Ty 5 2-29 y 4,
Tax ak mepen BTOPEMH CKOÓKAMI CTOKT 2HaK LHC, TO AR, 32
Karovennbse 8 CKOKH, JANICHIRAIOTER € NPOTLBONONOMKLIMK aHaKaNIS,
636, a) Qa—5a+5)+(0-4a-2)=20-5a+5+a-40-2=3a 9 +3
© (20 - Sa+ 5) - (a? —4a-2)= 20 - Sa + $—d + 4a+2=a'—-a+7;
8) (a? - da ~ 2) - (2a? -Sa+5)= a — 4a~2- 2a +S0-5=-0+a-7.
637. a) (1+ 3a) + -2a)= 1+3a+ a -2a= a tat
6) (20 + 3x) + Cx #4) = 2 + 3x +de 28 264 4
8) 075) + (57-27)
DE -b+7-(b +b+8)
2) (Bn? = In) — (7 + 8m ~ Zu)
ea + Sa +4)-( + 5a-4)
638. a) 5,2a - (4,50 + 4.84") = 0,7a~ 4,84;
6) 086 +7,46 + 5,66 ~ 0,26" = 0 + 136;
B) 80 + (4,6— x) — (5,47 -1
GA + BP + 5,5 1.60 + 8,5;
DAY +4 0,59? (877-247) 73y=p +44 057 By 24e
= 19y - Lay 4.
639. a) 18 - (10x - 5 + 18°) = 18x - 10x + 5- 18 = (18 - (Br) - Lox + 5=
=0- 10r+5=-10x+5,
6)-12e + Se + (c+ 110)= -120°+ Sctc+ Me = (126 + Me) +
+ (Se +0)= 8 +66.
8) +b--@-b+1
+(-1-1)=0+2b-2=2b-2.

bi (ADA

9 Fnaa IV. Miozosne net

HUIS W)- Gy - 15) =15- TP = + +155 +27) +
+(15+15) Sy +30.

(640. 2) Hafinens cyuny asıpamenuä (a + D) u (a— 6). Caoxum nx. Jarem pac-
‘poem ckoBKi u npHBesteM nonobme «nens. Hen: (a + 5) + (a— 8) =
=a+b+a-b=(a+a)+(b-b)=2a+0 2a, Teneps aranoruno iañ-
eu pasutocts AByX ncxoanux shipaxennit: (a + 5)- (a-b)= a + b—
-atb=(a-a)+(b+b)=0+2b=2b.

6) Chaana wañinem cyMy suipaxenuti (a — 6) u (a + 5). ua aroro cno-
KM 37H Ana BEIPSENIA, pacxpoeu CKOBIH H MPHBEZEN NOJOÓ SE TENE.
Tlonysaew: (a 8) + (a + b) = a = D + a+ b = (a+ a) + (h=b}= a+ 0 = 2a.
Tenepo awanorwano staliem pasnocTs aByx nani spore: (a — 6) —
(arb)=a-b-0-ó=(a-a)+(-b-h)=0-26
8} Ananoriwno Haiinem cymmy soipaxewnti (a — 5) 1 (a —6). Mee
(a-b)+(a-b)=-a=b+a=b=(-a+a)+(-b-b)=0-2b=-2b. Par
OCT ABYX HCKONASIX BeipanccHHf pata: (a — 6) = (ab) ==a=b=a +
+b=(-a-a)+(-b+5)=0+(-20)= -2a.

1) Hafen cymny suipaxenuli (a —b) u (ba). Moryuaes: (a — 8) +(6=a)=

-b+b-a=(a-a)+(b-b)=0+0=0, Paanoere Nantikıx aByx Beipa-
ren pasa: (a 6) (ba) = ab b+ a=(a+a)+ (-b-5)=2a~2b.

641. a) (AE Arz AA
+(242)=0+0+02 0,72
) (a* - $ab) - (7 - 3ab}+(2ab— a") = a’ - Sab - 7 + 3ab + 2ab-a°=

(al) + (-Sab + 3ab + 2ad)-7= 0+ 0~7=-7, 47.0.

642, a) M+ (Sx°— Day) = Gx? + 9xy—y% 6) M- (dab - 389)
M= 6€ +9xy-y = (5x? - Bay) M= a - Tab + 86° + 4ab- 3b";
M= 6x + Ixy y — Se + ay, Mud? -3ab + 5b};

Mec + lays;
8) Te? + 6)- M

643, a) Sé — 3x -9 + M= 0;

©) SC -3x-0+ M Se + 3x +27;

8) SP 3x0 + Max 5x + 6; M= 21-380 + e+ 9; M=—Sr + Sx +6;

Nr -9 Mer Sx+6; Max 8x +6 50 + Br +9 M= APIS.

a) (a? -0,45a + 1,2) + (0,84? — 1,20) - (1,60? 20) = a" ~ 045a + 1.24

+ 0,8 - 1,2a— 1,6" + 2a = 0,20° + 0,3$a + 1,2;

©) (7 = 1.75y - 3.2) - (0,37 + 4)-(2y-72)=ÿ 1757-32-03 —

dp 7,25 0,7 3,18%

8) 6xy 26 — (By +4 H1) ~ (ay = 2 = 1) = xp = 2a? pair

tay +2 + = tay:

4c +6.
Sx? + 3x +9;

$9, Opus pasooo mnozounenoa ss
1) 42ab" - ab + 6) + 3ab° - 4b - (Sab - ab") =—2ab* + ab - b + 3ab° - 4b—
= Sab + ab? =(-2ab? + Jah’ + ab) + (ab~ Sab) + (-b ~ 4b) =2ab' - dab ~ Sb.
645. a) 80°b + (-Sa°b + 4b") + (a'b — Sh" + 2) = Sa'b— Sa°b + 4b" + ab — 5 +2 =
= 4a°b — 2
Data te ea 2
646. (5,20% -3,1ab + 8b') - (opos 2308070 3,1ab + 8b’ —
— 6.9ab + 2,30°b- 85 =

2-57 160-
10:93

EAN) # (Bay +
3) ee x = 025 ny=4, 1020
6) cenu x = 5: y= 0.1, ro 2 (-5)- 0.1 » 1

648. Cocrasin pashocrs a8yx Hoxonibix Mmorounenos: (0,74*+ 0,20 - 5) -

= (03x! + — 8). Janeen nonyuentont puipaxenti packpoew cod A TPH

peaem nonofne wnes. Houyaen: (0,207 40.28 5)—(-0,30 + — 8)
TAF + QD = $+ O Se! = x2 + 8 = (O7 AA (OL — 2) + (8-5) =
À +) 43 ex
HeOTpHUATEABHBIE 3HANELHA, T. K. HMGET METHYIO CTENEHb. Uncno 3 nno-
AKurrenon. neAOBATERLND, Mpa CAOAEIMON ABYX THX BETA BCETJA MO
AYHHM MOAGANTENGIOS IMOYEIE

0+ 372443, Bextmanna x! acera pumas

649, Nas TOTO. NTOGM BOIACHNTL, NETAS AN 3ANAYE AURBIS, HOIRCHTHN, AB
eur au ramos Bupaxenne or nepexsennol b. Alas atoro yripocTHM Bupa-
Reus, pacxpus cxoGK H puna roo10ÓÓme unen. Mlosyuaes
(la = 6h + Sabi) + Sal + Tarb ab) Matar Rabe) = Ta = 6h +
+ Sah? + 50° + Tath + Jah - 10a’ - 70 4 5a‘ 100) r
+ (bah Th ab) + (Sab + Bu ~ Kab") = 2a’ + 0 - 0= 2a", Buano,
TO HCKOANDE BUIpaxeinte te COMENT nepeteimioil D, BIT, ono He 38
Bucht OF bu ero avenue MOKNO MATI, MIA Niaeune NEpeMEnNoR a.

Fraser. veux ne pa
650 era
Marten nel

Me

(651. ¿lun zoxaarentcraa crasara pacxpoes 8 AaMHOM Aupaenm KOKI,
saresı mpunesen AON “Liem. [seen

Oday IS pl

% Fava (Y. Mrozoxneris

Ao [za el oy] sy +=
= (0,637 0,60) + (0 dy + Om) y = L Sy + 1=0+0- Y 1 Sy + 1 =
==? 1,5y + 1. Brno, «ro Hexomsoe suipaxenne He COREPIEUT nepe-
MENO x. BHasir, IMAMEHME SICKOAHOTO BLIpAMCeHIAA HE 38BMCHT OT X.

652,2) 1,7 - 108*—(1-38) + (2,3 + 76’) = 1,7 - 106° - 14 30? + 2,3 + 76? = 3;
6) 1 8 ~ (36-26%) + (1 +38 ~ B)=1-B-3b+ 26+ 1436-8 =
SC + 26° 6) + (364 3) + (1+ 1)= 0+0+2=2

653. a) x+ p+2= 5a? + Gb BA + 2ab+ 36° + 9a! + dab = 10d? + 12ab + 28;
6) x—y—2= 50 + 6ab— b* ~ (da? + Zab + 38) - (9a? + dab) =
= Sa? + 6ab ~ & + da? - 2ab 36° - 9a? - dab = ab.

654. 9) (23 + 3x) + (Bx — 41) = 15; 23 + 3x + Bx 41 = 15; Lx 18 = 15; 11x=33;

(19+ 2x)— (Sx 11) = 25; 19+ 2e—Se+ 1] = 25; 30 3x=25, 3x5

8) (3,2y ~ 1,8) —(5,2 + 3,4) = -5,8; 3,2y - 1,8-5,2-3,4=-5,8;
27-52 =-5.8: -2y = 06; y = 0.3;
1) (05: 15,8) = 12,8 - 0,75 1 —0,5x + 15,
0.51 + 0,7x = 12,8 = 1 = 15.8; 0,2x = 4; x = —
2) 3,8 ~ 1,5y +(4,5y - 0,8) = 2,4 +3: 348 1.5y + 45y- 0824723;
3+6y=3;06y=0,y=0;

e)42y+08=62y=(1.1y+08)+12:42y+08=62y-1,1y-0,8+1,2

28-0,7x

42y- 6.29 +1,1y

B+ 12-08:-09y=-0%:y= À

655. a) Ry 3 ~ (5-25) = 43;
By-3-5+2y=43

Hy -8= 43;

10) = 12.3;

y= 123;

D-& + (4+ 3x)= 10-5 D L3e-2-G,3e+5)=2e41;

Br + 443x4+x= 10; 13x-2-3,3x-5-2:=1;
—x=6 A
2-15
656.233 - 2 -x+4= a
6) -5y' + ay? + By? = 2p = (Sy! + 37) + (47 —
Sri 52
6) 30° + 20° + 50° -4= 50° - (4- 3a* - 20°),

$9. Gps u passoeme mnosounenos 97
688. a) Tiyere nepsoe uncno Gyner x. Toraa ea MOCNEAOBETEMDAEIX HaTY PAR
sax anna, cnenyiouDAx 3a menom x, Gyayr (x + 1) u (x + 2). Cxnansınaa
pu oTHx una (x, + 1 atx +2), nonyanem: x+ (+ 1) +(x+2)=x+x+
+1 4x+2=3x +3. Janne «cno kpario TpeM, T. K. 06a craraemers (3x
4 3) paras Tpem. Macao 3x + 3 KPaTHO TpeM Mpx MORIA sHaMCHHEX Ha
ypanshoë nepemennoh x.
6) Myers nepnoe merypansoe uncxo Öyaer paBo x. Toraa Tph cnenyio-
Aux 3a mu HaTypambetrx «nena Gyayr (x + 1), (x + 2) (x + 3). Crop
ia mena: x, (x + 1), (+2) m (x + 3), noayuaent: x + (x + 1) + (+ 2) +
+(r+D) arre Feb 24 et 3 = dre 6=(dx+4)+254(r+1)+2.
Vis TOR sanHcH BMAHO, TO CYMNA METEIPEX NOCACADBATENENBIX AATYPalıb-
XX CER pi NENCHAH Ha 4 ner B HaCTHOM MMCRO (Y + 1) B ocTaTKE 2,
Le. cymma he kparma 4.

B.Toy=32:y= 3,24:
,04 aGCOnIOTHAR NOTPELIHOETE;

660. 2) 6(20- b); ecan a = B-5

2:
ms(232-4)

© 15.[24+2)-30458 scan a=1,5=02,10 3-145.02=141=2
373 3

f= Br

Gé.) ep. À Lena

1 1
0) Er as

80270 : (-$a 6) = -0,2a°b* - 25ab* = Sa"
D DSP AE = 118% + tec 20
662. a) + Deza.

$10. Tiponspezenne onnonnena n suorounena

663,2) 2x (7 - Tx—3) = 20 - 141 — x:
6) ~4b? (5b? - 3b ~ 2) =-206* + 128° + 867,
8) Gat a + à) (5a) = -15at + Sa? Sat,
MO -24y +6) - 1,59= LS - 3,67 + 9;
D) 0,57 + (2 - 3x + A) = x4 + 1,52 26:
©) (-3y' + 0.69) (1,5)

A-2718

> Tees I. Moaourenst
“664. 2) Bocrontayencn npanm1oM YMOKEHHX OJIMOIENA HA MHOTONSIEH, T. €.
YMHORAEM ONE HA KEN EH MHOFONICHA K CICIANBIBACM NONYAEH-
ae npoisenenn: 3ab (a 2ab + 8) = 3ab- + 3ub -(-2ab) + 3ab- B=
= 30'b - Gab? + Jal.
6) =p (Py AO
©) 2,54% (da? ~ 2ab + 0.26") = 100%b - Saló” + 0,5’;
Nal + ax - a?) (ax) = Deis - 30s? a;
2) (6,3x°y - 3y? - 0,72) - 10x"y" = 632°? — 30 ~ 2x°y7;
a (Sp'g —15pg - 2g) = —Tp'g! + 2,1p 4° + 28p 9".
665.0) Fx UA PIDAL a

® Head ae
1
dail ETE deta:
5) Soil 2a? 2 5 2), Lai joe. hab:
Bar say? Loy ¿Ple ay à latyé 4 Las
5 208 (so 277 ) 20 y a Pay.

666.2) I (a? +x -5) = 330 + 15
6) (1+ 2a~a*)-Sa=Sa+ 10a*— Sa’;

a) Léus-09+6- 10x*y - 0,6x'y? + dy:

1) -Jadz (a? = Zax + x? - 1) =-3a"s + bax? - Jax" da
A) (x'y —2y tay? a = ZEN + Bary 4 Bay's

0-2 a 8-014 35)= -1sd + 030-0908.

667. a) 3 (2x 1) + 5(3 -x) = 60-34 15 Sea x + 12:
ecamx=—1,5, 10 -1,5 +12= 10,5;
©) 25a~ 4 Ba 1) +7 (52a) = 28a~ 12a + 44 35 ~ l4a=39-a;
scan a= 31, mo 39 - 11 = 28:
8) dy ~2 (10y~ 1) + (By - 2) = Ay - 20y + 2 + 8y -2 = By;
ecnu y=-0,1, 10-8 - (0,1) = 0,8;
1 12-(2-3p)+35p-9-(p+ I)= 122-12 3p + 35p- 9-9 =
=24 - 36p + 35p-9p-9=-10p + 15;
ecnu p= 2,70 -109+15=-10-2+15=-5,

668. a) 149 + | - 6(2 - 11) = 145 + 1 ~ 12 + 666 = 806 — 1;
6) 25 (2 - 3c) + 16 (Se ~ 1) = 50-750 + 800 16 = Se + 34:

$10. Mpoussodemue cdnowrana u unaaownene »
3) 14 (Fe 1)- 7 (dx + 1)= 98x 13- De 7= 2h
1)36(2-»)-6(5-2y)=72-36y-30 + Ly = 42-24.

569.8) 14y + 2y (6—y) = Nay + 12y 2)! = 2672)
037 -27(5+25)= 39 - 10y-4y"=
B) 4x (x = 1)-2 (20 1) ar dr 4 +2 = Ae +2;
1) 5a (a - 3a) - 3a (a - $a) = Sa’ - 15a? - 3a’ + 15e = 29;
À) 7b (de - b) + 4c (c- 76) = 28be - 78? + 4c? - 2Bbe = A’ 107,
€)-2y (0° - 29) - (Py + Ay) = Dey + dy? — Py 47 = 30 y:
=) 3m? (m + Sn) 2 (Bm? —1) = Ba’ + Sn Lónén + Zu? = 3m’ —
36m (nn + n— 1) = mn Gt e

670, a) 6x (x— 3) -1 (2 —x) = 66 18r2x +7 © 7206
9-0 (3a —5) + da (a? — a) = 3a + Sa? + da - dd = @ + a2;
9) ax (2x ~ 3a) x (ax + Sat) = Zar? - Bax ax’ - Sax = ar Bar,
Am? (0? = ar) + Bu Cnt — m?) = Am + Am + Benn? - Int =
= 4m ~ nee? - In‘,

E IS
ecmx=3,103-311.3=27-33=-6;

103-(3P-11

mint 2;

ecanx = 3) = 27 + 33 = 60;
OI a bayer yy
ecm x =4;y=2, 104? 2?= 16-8 =8.

672. a) Ynpocrum cnayana nasınoe aupaxenne. Jin 3TOFO YMHOXAEM ODHOWIEH
Ha Kankabiii “10H MHOTOUTTEHA, 3ATEM CKAAUBIBAEM NOMTYNCHHEIE MPONSBERe-
mx: Sx (216) — 2,5 (Ax —2) = 5x: 2x + (-6)- 5x 2,5x - 4x - 2,5% -(2)=
= 10x? - 30x - 10x" + Sx = (107 - 10x?) + (Sx - 30x) = 0 - 25x = -25x.
Tloncramnnem amasenne x =-8. Monyuaem: -25x =-25 - (-8)= 25 -8 = 200.
Tloctasnsem suavenne x = 10. [onysaem: -25x =-25 «10 = -250.

6) 5a (a - 46) - 4b (b ~ Sa) = 5a! - 20ab - 4b? + 20ab = Sa? - Ab",
cm a = 0,6: b= -0,5, 10 5 - (0.6) - 4 (0,57 = 1,8-1= 0,8.
673, a) (3e) — a’ (1 — Sa) = 9a*- a? + Sa = 14a'- a;

;
1 1,2 1,3 2,13 2

o (-L6] of 1-26-45? 12-18-0420 + Lp? 2207-2;

»( +) { ge) rares

e)x(léx— 2x) — (26) = 1677 - 2 4x! = 166 - 6%
10,20) - 0,0 1c! (4c? — 100) = 0,04c° - 0,04? + e* = ct

674. TIpaMOyTOMKHK, H206paxewnetit ma pcynre 8 YSEÖHHKE, COCTOMT H3 JBYX
NPAMOYTONLHHKOB, NROLIANH KOTOPLIX papel a - DH a» c. C APYTOÏ CTOpO-
Nel, 37a UNOUIAN HEXOABOTO MPAMOTOALRNKA panıa a (D + €) 7. K. omita ero
‘cTopoua passa a, a apyrea (b + c). Tipnpannaem ary mona a (b+ c) cym-

100, rosa V. Mnozosnenu
Me nnouaneR AByx Manııx npamoyronsunkos ab u ac. Cnenosatensno:
atb+c)=abtac.

675. Ynpoctum nantios Buipamenne (pacKpoes cxo6xH 1 nphpenem nono6iuie
UNER) H YEEANMCH, WTO naNHOE BispaKeHHe 8 NPCOÓPAJOBAMNOM BHRE HE
comepxuT nepemenkofl x. Hen: x (2x + 1) 0 (+ 24 (0x4 3)=
A ED Er Ir! tye er ie xt

e +P) + (2x? AR) + (x — 2) +3=0+0+0+3=3, Buano, wro no-
Ayyentioe wuipaxcere parno 3. 3HawHT, NPH mOGX shaseHHAK MEpemen-
HOR x 310 Boipamenwe NPHHAMAET sHaTeHHe, pasnoe 3.

676. B 2aNNOM BupaxeHHA PACKPEBACM CKOGKH, YMNOKBEM OHOSTEN Ha KAK-
ak unen welorownena, SATEM NOAYUENHE MPORABEAIENNA CKIANBIBAEM.
Mueeu: y (3° y + 5)= (29 +39 16)- yb y +2) = 37 = ÿ + Spy —
—3v+16- A PV) + (Sy - 3p 2y} + 16 =
=0+0+0+16= 16. Tlocne npeoGpzzosaniti anno, «ro » aaHHOM mai-
pakem ne CONEPKHTCA nepemernofñ y. CIEnOBATENBNO, IHAvEHNE BEIpA-
XEHHR He ABHCHT OT Y.

677. a) a (b-c)+b(c-a) + c{a-b)= ab - ac+ bc ab + ac — be = 0;
Qa(b+e-be)-bc+a-ac)+e(b-à) = ab+ ac~abe~be+ abc + he ac =0.

678, 2-6) -3 (x Dé 12-30 + 12x38 8-3 = {8 +3) <0.

679. a) Sx +3 (x 1 6) 3x 502 - x) = 54:

Sx+3x-3- 6x 3x- 10+ Se = 54;
2-3= 11; 8x= 64:

14x=7; x58;
8) 8( ~ 7) ~ 3(2y +9) = 15; 1) 06-050 - D=y+ 0,5
By 56- 6-27 = 15; — 05 + 0,5 = p + 0,5;
2y-83 = 15.
2y=98;
y= 495 yn 04;
a)6 + (2-40) +5=3 13x €05 (2y~ 1)~ (0,5 -0,29) + |= 0;
6+2-41+S=3-9x ¥- 05-05 + 02y +1 =O;
dr +9x= 3-13; Lay
Sx=—10;x »-0

680. a) 3x (2x - 1) ~ Gx (7 + x) = 90; Gr - 3x— 42x — Gr = 90; -45x =
6) L5x (8 + 2x) = 3x (x + 1) 30; 4,5x + Bx? = Be + 31-30, 4,5% 3x
15x =-30; x = -20:

8) Sx (12x —7)— 4x (1Sx— 11) 30 + 29x; 60 — 38x - 60? + 44x = 30 + 297,
9x - 29x = 30; -20x = 30; x = -15;

$10 Mpouseodene odyounena u mnozownana 10!

1) 2a — 6 (13x 9) ==13 = 138 (Gr) 2417807 S413 TE + Te

181-135 =-13: 65x 1

13;

5
681, a) I-2x+1)-2x+13)=72-41=x) 0) -45-2a) + Ha-4)= 62 a) — Sa,

xr +3~2x-26= 71-44 -20 + 8a + 30- 12= 12-60-50:
82-23 = 1x4; 32+1la+11
-19r=19; 2a=44;
2-1 a=2;
Bay 1) 246) —5)=9y —8(3 + pr) 15x +6x (2 - 32) = 9x (5 — 2x) -36
12)? ~3y— 12) + 10y=9) - 24 -8y; US + Ie Re = 45e 18 — 36,
IIA

24;
ve,

682.a)4(1-c)-2(3- Se: 8)-3 (2x + 1)-(8x+5)
4-4c-6+100=1; 61 -3-81-5
6c=1+2 —ldx= 20 + 8;
éc=3 dx = 28;
c= 0,5; ze
8)3 (x +7)=61- 1 D20+)=8-5
151 +21 = 61 — 10x 14+2x=8-
25x= 40; y=-
<=

683. a) YartoxuM o6e acts AAHHOTO YpaBHeHHA na nanvenbuee oGuee xpar-
x

Hoe snamemareneñ apoßel, T.e. na uncno 12: (+) 12=14- 12 nan
Fete F114 12 um Be dun 14: 12man Tem 14 12, Pasan

1412 _
7
6) Ynonctn o6e sacra roro ypamnewos HA HokMeNMLibee OÖLLIEEAFRITHOE Ha

Ge uacru sroro ypammenna na 7 u mañínem x= 2-12=24.

mesreneï npobel, 1. e. a «ueno 8: (2-2) 825-62

Less;
8

3

1
32.

3
5) Yunloxms oÖe HACTA JTOTO YPABHEHNE Ha HaNNeMEIBee ofluse xpATHOE

da -a=5.8;30=40, orayaa

rasa IV. Muozosom

‘suamenateneli apoGeli, y. e, Ha aucno 4: = == I) diy=4y- 4

Ay-y=4;3y=4, orxyma y=
©) Yathoxcin OGe sacra JTOrO ypasnenva Ha nanwensuee obiee KpaTHOe

mamennreneñ xpobeñ,r. e. ma meno S: (22+ 3)-5= 2 $/(2+3)-5=2x

~15, omyza naxoann 2= =
, ENTE
A) Yon oGe HacTH ITOTO ypasHenHA ha nanmensuce ouiee patios

suamenaTeneli apoGeñ, r. e. ma aucno 15. Mmeem: ES STS:

€) Yunoxhm Be Yacrn 3TOTO ypamienna Ha HaMensiues oGuee KpATHOE

anaxenarenel 2po6eli, 1. e. na uncno 9. Monysiaem: Egea] 0-9;

Lo 9+4-9=0; 5x + 3x + 36 = 0; 8x + 36 = 0; Bx = 36, oryna na-
rosa se dns
[er

2x) Ymnonmm oGe sacra 3TOTO YPaBnena Ha nanensuee ome xpaTHOe

Suamenareneh apobeñ, 1. e. Ha ncno 36. Hee: E. D 36= Los

36414362 10.36 160 + 36 = 150, a + 36= Ga = 36.
3) Yon ße sacra ITOFO ypanienois Ha Hameriuee oÓuLCe parte

awamenarenei apo6eli Y. e. a co 24. Monyuaeu: En)

= nn; 10m = 3m = 8; Im = 8, ovyna exo m

1) Yaotoxuun 06e aac roro ypasnents Ha HanMenburee OßLIee kparnoe

$10. Mooussedonue odnownene u amozoxnene 103
Inn
mitigé:
( +)

shamemateneï npoGeñ T. e. He wucao 14, Hueem:

4 7

In gan

Mas 142 2.2 ;3n += ds 10024, “Loos.

wi, nor

684. a) Dlepestecem enaraembie, conepacuuine nepemeHhyto, & OY HACT ypaanenna:
6-5 2-1

775 =2. Yanoe oGe sacra ypannenun na haumennuee o6uiee

xparuoe anamenarenei npoGell, 1. e. na uncno 2

6x-5
7

xpoen CROÖK u npnBEneM nonoBnue nen:
4x —8 = 42 unm 4x = 50. Pagena 06e uacru na 4, nahen x

2-21 mam 3 (6x ~ 5) —7 (2x — 1) = 42. Pac

um

8x-15- 14r+ 7= 42 un
2.

685.5) 1533 (3x4 5)-5 (x4 = 15; 92+ 15-58-5= 15:

cunts
4

2p-1-2p-2-6

+6:2p-1-24+ 1)

2 A12:302-n-4@-n-2u36-3-0402

2842-2: 28;.0= 28
860) 1-*=2 = de: o 30 3 a «ja;
CRE
6-Hx-3)=2(2- 2) +24 Xa+ 13)- 12a = 23 -a)+ 15a;
3x +9= 4-25 +24; 3a+39—
15~3x=28~ 2x; 39~-9a= 6-39;

Jr + 2x = 28-15;
3:

xtl x-1 x43]
1.2.23 18;
95077 2 |
x4 1)= (x 1) = 36-94-27;
6m+3+36=3m-6; 2x +2-3x43= 36-927

3(6y + 7) + 4(8 - Sy) = 60;

~ 15;

18y+ 21 +32 ~20y= 60; 6a-9-15;
2y + 83 = 60: 25a- 6a= 5-24:
199 =-19;

a=-1;

Ar -4)- 7-9 = 70; 420-134 9e= 6(e + 3);

224-8 - 7x +63 = 70; 8e-4+90= 6c + 18:

1Sx= 70-63 + & Ve-6e= 18 + 4;

ISx= 1 Ne= 22;

xl; e=2
688.

Mesa Kon-20 | Crommocta

Orspsiren on. 15 wr 15x TER xon
Kongeprs | @+x) «on. 1ur 10-23
Bnoxmora_ [3 -(2 +x) kon Tair EHER}

15x + 10-(2+x)+ 8-02 + x)= 168; 151 +20 + 10x +16 + Bx = 168;
33x = 132; x=4.4 Kon. row orkpema 6 Kon. - konzepr; 48 xon. — Gnorsor.

689. Flyer mensura cropona narmoro Tpeyronsnnka Gyner passa x cm. Toraa
ase apyrue CTOPOHA Oyayr papnsı (2x + 4) cos (2x) cm. Toraa nepumerp
Tpeyronsinka (1. e. cyMMa MH ETO cTopoH) pasen x + (2x + 4) + 2x, Ilo-
sTynaeM ypapnenne: x + (2x +4) + 2x = 44 pau x + 2x +4 + 2e 44 uam
5x + 4 = 44 nn Sx = 40, orkyna x = 8. Hanmensuras CrOpoHa naHHOTO
Tpeyromsuna pasa 8 cm. Haxonuw 20€ Apyrne CrOPOME: BTOPAR CTOPO-
ma: 2x= 2 : 8 = 16 (eM); rpersa cropona: 2x + 4 = 2 - 8 + 4 = 20 (cu)

510 Mpousoedenue oônounens u aveo wrens 105
690. Fiyere 8 nepauif acne 8 Marasune Geuno NpOnano x T OBoLLIeh. Tora 80
Bropoll new Gino nponano Ha 3 T osoweñ Gonbuse, T. e. (x + 3) + oBomeit,
3a nepssie asa ana Ósino nponano (2x + 3) T osoweñ. Toraa 3 Tpernä nen
S 3. 18,5

5 5
a Zar +3)= 2204 2.32 2242. Manecrno, uro 3a ace
pora: © (2x + 3)= 2 2x + = 9 +5 Mirecreo, uro sa

pH una buno nponano 98 7 onouieh, T. €. x + (x +3) + (55,5) =98,

10x

Peu nonysernoe ypaonenne:x+x+3+ E42 = 98 mom x txt

3

10x s 10x 3
10% 2993-3 a,

7 =98-3- 5 Man de + == 95 — à. Yumoxi 06e uacrı ypas-
"ena Ha naumenguec OGuiee xparnoe ahamenareneñ upoßeh. 1. e. Ha

cos en (20082!) 52955) uma 2 9

=95-9

3 Quan 18x + 10x = 855 - 15 wan 28x = 840, orkyna naxo-

sum x: x = 30 (1) - Konmmecrpo onouieli, NPOAAHHBIK 8 nepas nem. Torna

20 aropoñ nene Guuno nponatio: x + 3 = 30 4 3 = 33 (1) osomeñ, a D zperut

„102,5 300415 _3t

nene Ös1o nponano; 42 EARL
9°39 3 9 +

691. Tlycrs Bo BTOPOM capae Gbuno cxoxeno x + cena. Torna 8 nepsom capae Guuno

(Gx) r cena. Tax xax nocne Toro, Kak ua nEpaoro capaa Gino sarro 207, a 80

Topo noGanzeno 20 7, 80 BTOPOM Capac OKasanoce ; ‘Toro, «ro ocTanoch

I nephou capa, mono cocrans ypasienve: À x -20) = x + 20. Per

LM gro ypasnerne, YMnoxHM OÓS HACTA JTOTO YPABHEHHX Ha HAAMEHD-
ee oßWuee Kpatuioe anamenareneñ npoGel, +. €. na uncno 7. Hees:

5 c= 209-7420) 7m IG + Mme

= Tx + 140 mm 15x - 7x = 140 + 100 mm 8x = 240 unn x = = 30 (7) - Ko
aHuecrso ces, koropoe Ohio Bo BTOPOM capae. Torna 8 nepsom capae
Sbino 3x =3 - 30 = 90 (1).

106 Faw IV. Muozounensi

692,

Meraneho ac] Bpema__ | Hopma.
mo nnany BART. 3 El
e npnmer. HOBOrO pesua Ed) ner. 6 TEL)

Bx = 6(x + A); Bx = Gx + 24; 2x= 24; x= 12 — neraneh aa 1 ane namen Gein
oGrasunats roxape no HopMe. 12-8 = 96 neraneñ 8 nenb nome Burn oßraun-
BATE TOKAPE NO HOPME.

693. Tiycro ana roro, STOÓÉI CKOCHTE Ayr, CKAUMBAA 110 SO ra 8 Jem, nOHano-
6rreca x auch. B nepsom cnyuae, korna Ópurana ckatunnana no 50 ra 8
eto, e monanoónnoct x nuef, T. e. nnowans panna 50 x ra. C xpyrol
croponu, ora roman» pasta 60 (x- |) ra, t. ., cxauumeaa no 60 ra B
zen, Opuraza YMPABAACTOA 3a (x — 1) aueh. Tax kak MINO AYTO B repBOM
N BTopom caysasox panes, sane ypapuene: 50x = 60 (x 1). Penne nony-
venoe ypasttene: SOx = 60x — 60 sun 60x — Süx = 60 Ha 10x = 60, orkysia
x= 6 (ane). Toraa nnowaue ayra page 50x = 50 : 6 = 300 (ra).

694. Tipnmen 2a.x mun BpeMs, 18 XOTOPOC CNOPTEMENKA mpoGerana AHCTAHUO
{co cxopocrsto 250 m/s). Torna speux, saTpasneaenoe e10 ha npoßere
amcranuwy co cxopocreto 300 Mu. Gyner past (x ~ |) mu.

Nyre a nepaom cnyuae Haxonun no dopmyae: s, = 250 - x M
Tlyre no sropow enywae pasen: s, = 300 - (x— 1) M.
To ycnosmo nyru s, M 5, pas. Hrax, mes momysnal ypastenue 2505 =

00 (x - 1); 250x = 300x — 300: 300 = 300x — 250%: 300 = SQ. orxyna

nonyaaem x= 6 mun. Torza ana aucranuum pasta s = 250 - 6 = 1500 (0).
698.
y 7 5
(Or rypbaan nol 45 wo it 1
npueana ve 15 sm (La,
yen | da ET Gone
2-4 LL 36:00 82 71x20, Paocroanne oF Typ6an ao npmana 9 KM.
47357 4l
66.
y 7 5
ESTO Do | ru Tax xm] wa 20 Gone,
Moroumemuer| 16.0 | x4 Tor ew

16x — 12x = 20; 4x = 20; x = 5. Mepes 5 4 MOTOIHKINCT NOTONuT BErIOCH=

$10. Moouseodonve cômouneus u unoeonnena 107

menucra, 12 : 5 = 60 xm, Ha paccroaumn 60 KM OT A MOTOMUKIMCT AOTOHMT
penochnenncta.

697. yon, npofinenneie mauamn AO scrpem, pasts; = 52 Thyts, npoFizen-
bi rpys08OÏ Mano 20 Berpeun, paBen 5, = st = 601 (peux, sepea
Koropoe 9TH Maurmu DCTPETHIKCR), a nerkosoÿ = vs (1-2) = 90 (1-2).
Tak Kak 5; = 53, TO nomyasew anneinoe ypastienne: 601 = 90 (1-2),
Pemaem nannos ypagneme: 60r = 901 - 180; 180 = 301, orkyaa {= 64.
Tiyre, more maumman 10 BCrpes, pazent; 5, = vit 60 -6 = 360 (101).

698. a) Sx + 29 =-3x— 11; 8x = 40; x= ~5, orctoma y = 5 -(-5) +29, y= 4;
‘rouKa nepeceuenna (-5; 4);
6) 12x= L,8r+ 9,3; 06e = 0,
‘roxxa nepecewenns (15,5; -18,6).

699.2) y=-28x- I, [Vuerwepra; — 6) y =-28x+4- 1,11, IV sersepra;
2) y=0,05x—I, Ill semepre 1) y= 0,05r ~ 2,5 - I, Ill, LV verzepts,

700, a) y Dy=2.y=2

15,5, orciona y = 1,2 (15,5); y =-18,6;

own nepecenenta: (2; 4), (2; 4); roman mepeoesemma: (0; 0), (2; 2).

701.2) (er) CaP ay) salty;

5
60,146? - (-307b) =-0,10°5” - 900a*5° = 900°.
702. a) mx + my = m {x + y); npoBepxa: m (x + y) = mx + my;

6) kx - px = x (k— pl nposepra: x (k- p) = kx - px;
3) -ah + ac = a (c- bi; mponepxa: a (cb) =-ab+ ac;
1) ma—na=-0 (m + n}; mposepka: -a (m + n) =-ma na.

703. a) OGa nena zarnoro maorounens conepxar OSuIKH muoxarem 5. Cne-
AOBATEABHO, ITO UHCIO MOXHO BLIHECTH 38 CKOGKH! Sx + Sy = 5 (x + y).
Hans muorownen Sx + 5y paanomen Ha npomznenenne sena $ N mmoro-
wenn (x + y).

6) O6a saeHa namuoro muorownena conepxar 06 moxsrrens 4. BE
Hecem ero 3a CKOBKH, Mieem: 4a - 4b = 4 (a- b).

108 Fosa IV. Mnozouenar
5) Oba Siena Aanworo MHOTOWNENA COAEPAAT OGUIM MHOKITENE 3:
36 + 15d=3c+3 : Sd, Bunmecen obit mnoxareno sa ckofi. [onyuaen:
3e43+Sd=3 (c+ Sd)
F) Tipencranum stipaxenne à sue: -6m — On =-2 : 3m 3 - 3n, O6a unena
ABHKOTO mRorounena conepacaT OGUENH mmoxonrens (-3). Bantecem ero 32
‘eKo6KH, Mueem: —2 > 3m - 3 3n=-3 (2m + 3n).
2) Ofia «nena aannoro wHorounena conepxar oBumk MHONHTEAD a. Bis
even ero sa cxoGxn. Mmeem: ax + ay = a (x+y).
+) O6a anena nathoro muorounena conepaar oui muoxureas b, KOTO
peti momen mbinecrH 38 cxoGKn. Monyuaem: Be 6d=b(c— d)
x) O6a unena zormoro mnorowena conepæar oS1mná muoxrens a. Ber-
Meceu ero 38 ckoBKH: 0b+a=a(b+1).
3) O6a uncha nammoro Mnorounena conepxar oßunf MHoxwrems c. Beine-
‘ca ero sa cKOBKH, Hem: cp = € W- 1)
1) O6a unena namnoro Miiorowena cozepar 0ÉWHE MHOXGTENS (a).
Bimecem ero 38 ckoökn, He: -ma— a = a {+ 1).

704, a) Ina Toro, aroGu npeacrasnre aanmall MHOTONNEH 8 Bye nponasene-
Ha, BoMeceM 3a CKOGKH Ou moxvrrent 7. HMeeM: Ta + 7y = 7 (a + y).
6) Jan Toro, YTOÓH npezcTasHTe AANABIÑ MHOTOLIEN B BUS NPONIECACINA,
Bsinecem 3a ckoßun oßumf momen» 8, Mosyuaem: -8b + 8c = 8 (c- 8).
8) Jina Toro, STOÓR npexcTaBiTs MANWE MAOOYIEN B BNE NPOMBENEINA,
ornecen 3a cKOGEH ou muomorrem 12: 12x + 48y= 12x +4. 12y=

2 (x + 4)
1) Ans toro, #TOßM npeactaBnT» AAHHDIA MHOTONNeH B BARS NpOHSBENE-
Hina, Buecem 38 cxoÓK of muoxirrens (-9). Hmeem: —9m—9 - 3n =
=-9 (m+ 37).
a) [Lis Toro, STOGLI MPSECTABUTD ARKH MuorouneN u BHAC NPOHSECAEHNA,
anecem 38 cxOBKH oGumA mnoxorrene 12, Mueent: 12a + 12 = 12 (a+ 1).
€) Ana Toro. 47061 npenCTABHTE Zar MMOTONTEN B BAe MPOM3BEAC-
ia, pimecen 32 CkOGKH GMA moreno (-10). Hateest: -10 ~ 106 =
==10- |= 1e=-10 (1 +0).

705.) Tax + Tbx=7x(utb), 6) 3by-6b= 35 07-26)

B)—Smn + $n = $n (1m); 1) 3a + 9ab= 3a(1 + 36)
706.8) a +a= a{a + 1); Gérer xl)
mette = (Le) ma -a =a (1-0),

707, a) lax +21y=7(2x+3~); 6) 15a+ 10b = 5 Ba + 28);
8) Sab - ac =2a(4b~3c); 1) 9xa + 9x6 = 9x (a + b).

$70.fipoussodense vdnounans u muosownena 109

709. a) x + r= 0,3 FB) = Ox = 0.x =-8;
6) $x x = 05 x (501) = 0: x
8) 6)? - 30y=0; 6y(y- 5)
DIE 12
710.2) 5x + 3,67
CES

103% - 3x =0; 0,3x (x- 10) =

TAL. a) 16° + 16*= 16° (16 + 1)=16*. 17 - Kpatuo 17.

6) 38° - 38° = 38° - (38 - 1) = 38" 37 —kparno 37.

713. 9) B- 7+ PTE) 7 (497 + 1)= 7-43 — neamten Ha 43;
02%-2"-P=2(%-2-1)=2'(16-3)=2*- 13 - nenuren na 13;
8)27-9 +32 (3 RE SER TEE DIE LEE

SIS 1)=9'- (9 —2)=3" - 25 — nenwren na 25;

nie-2" 2 (245 = 20-20 gun m. Em. DP

= 20.55 - nenuren Ha 11.

714. a) Mpencroeion nani norosnen 8 page: à — Xe +x = data |
Tenepb nuntecem 3a cxoGkn ob smonorrent x. Hmsen: 2 x 3x x + x 1=
=x 7 - 3x 1). Muoroaaen pasnoxen Ha npowssenenve onHounea x H
Mnorouneua (© - 3x - 1).
© Tipeacraunn 2707 mırorounen » ame: m? — 2m! mt = pr > | — 2m? m—
— mé m. Hanee smecau sa cxoßxn OLA Mnoxrrens mr. Mee:
mé 1208 em = mm = (1 - 2m — nf). Mnorosnen paanoxen na
npomisenenne onnounena m’ # Mnorounena (1 — 2m — m‘)
2) Npencrasnm ator mnorounen n anne: da‘ - 20 + a = 4 -a- 2e a + a.
Bunece 32 cxoGkn obumh noxymens a. Monywaem: dat - a — 24? a + a=
=a(d-28 +1).
1) Dipeaerasum aan muorounen a auae: 6x? - 46 + 10x = 20. 3-
= 2124 + 2e: Sr, Tempe euneceu sa cKoGKH OGM mnomerre Ze.
Hueem: 27 (3 2x + Se).
2) Anañornano ween: 1Sa'—9a* + 60= 3a Sa - 3a-3a+2:3a=
=3a (Sa? - 3a + 2). (3a cuoGkH Goin Bunecen 06h MROXHTEN 3a).
e) Tlonyuaen: -Im? ~ 6m + 12m = 3m? -(-1) — Im? + 2m + Ben» dm =
= Im (-1 — 2m + Am), (38 cxobxn Guin muuecen Mnoxureme 37).

NS. aye? = c8 +28 =e (Le + 20): 6) Sm — +20 = pe (Som + 2).

10 Fava IV. Muosowners

TT a) 46 = Gre" + Be = 2e (20 30H 4};

6) 1Oa"x 15e -204x=5-2a x-5-3a-a~-S da ax =
= 5e (2x - 3a - dax).

720. a) B aannom npuMepe OGutHM MHOKUTENEM ABNAETCA BbipaKeHHE (a — 3).
Burmocnm ero sa cxo6xw, Hucen: Sm (a — 3) + 2 (a—3)=(8m + n) (a 3).
Bupaxemie pauoxeno Ha nponsvenenie xorowreuos (Sm + a) u (a - 3),
6)" -5)-9@-3)=(p'-5) (1-4).

8) B 270 BSIPAKEHHH ANA TOTO, YTOÖLI BEIMECTH OÉLLMA MHOKHTENL, CHA
ana npeo6pasyem oaHo 43 craraemblx: y (9 — y) = -y (y — 9) (asinecan
anak «munyo» 3a eko6ka). Torna nonyasem: x (» - 9) + y (9- y)
=x (9-9-y 1-9) =1x- y) (y - 9), Hasnos anıpaenne paanomeno ka
IPOMBCREHNE ABYX MHOrOMNENOR (x — y) u (99).

724.2) (0—b)(a+ by 0) a? +.B: 8) (a+ dF; 1) Fc; a) (b= cie) b +

$11. Mpouaneaenne muorounenos

725. a) Jas toro, YToßLI nepeMHOXKHTE ITH IBA MHOTOUNEHA, KYKHO KAKA
‘MACH OAROTO MHOFO4/ICHA YMHOXHTE Ha KAKALIA WIEH APYTOFO MHOTONTE-
Ma 4 cnoxats monyuennsie nponanenenna. Tonyasen: (x + m) (y +n) =
=ayt my + ant mn,
6) Tlepexmoaci a zannmıx muorounena, Tonywaem: (a = 6) (x +») =
= ax = bx + ay~ by,
1) Vieron ana aatınmıc muorownera. Hwee: (a 6) (bp) = ab — bu—ay+ xy.
1) Mepesstorkun mnoromnenes (x + 8) (y = 1). Ameca: (x + 8)(y - 1)=

wert By

a) Yao 18a 2anamx MMorowetta. Tlonyaaem: (6 - 3) {a - 2) =

=ab-3a-2b+6.

©) Hucen: (a +) (l == 0 yt ar

727, a) Pacxpoem cxoGKH 8 nanom esparcen. Hueem: (nr -n) (x + €) =
= mx = me + me = ne.
6) Packpoem ckoGku 8 nanınom ebipaxennn. Tlonyuaen: (kp) (4=m) =
= B= pk—kn+ pn,
18) PackpoeM 8 AANHOM BEIPAKEHAH CKOBKH H MPHBENEM MOORE UNEN.
Hueen: (a + 3)(a-2)= a? +3a-20-6= 040-6.
E) Packpoem ckOSKK B XAMMOM BRIPAKeNHH H MpHBeNeM MOROÖHLIE HACHE.
Tlonyuacte: (5 x) (4 x) = 20 — 4x~ Sx + P=. — 9x + 20.
2) Aañarso PACKPOEM 8 3TOM BRIPOXEHHM CKOBKH H PMBEzEN n0106-
‘ore wrens. Monyuaen: {1 - 2a) 3a + 1) = Ja + 1-60 = 2a = 60" +
+ Ga-2a)+ 1 = ++ 1
©) B aarniom Bupaxets packpaisaem CKOÖKH n NPIBOANN MOAOÖHBIE

511. Poouseedonue unzounenoe mu
‘ent. Veen: (6m —3)(2= Sm) = 12m - 6- 30m + ESm= 3007 +
SMS 12069 30074 21006.

728. Han NPANOYTOTENIK COCTOHT 113 HETLIPEX MPAMOYTOMHUKOR, NALA
‘AM KoTOpEIX paru: ac, be, ad w bd. C npyroï cTopotts, 91a nmowan» nc-
xonworo npaMoyronssitka paa (a + ) : (€ + d), 7. K. Oa cTOpOHA c0-
‘crows us orpeaxon a u b, a npyran — wc n d. TIpkpashnem ary noua
(a+ 5) (c+ d) eye nowaneh Veruipex Meaux MpaMoyrombnKKos, Cie-
opatensno, (a+ b}(c + d)= ac + be + ad + bd.

730. a) Ana ncpemnomcnun ABYX AAIIHEIX MHOTONTEHOS AyAHO KE MITCH
nepsoro Miorowiena YMIOAITT Ha KAKU LIEN BTOPOTO MHOrO RENE:
(QP =p) P+ ya 2e y it + Be yoy y = pr Dey y=
= Zi + y y". 3necs Gann npnsenenbe nozoGnbie unenbı (y) u (2x y}.
6) (Tx + a) (7 - 3a") = 1x - Zar + ax? - 30° = Tut 20 x da.

133. a) Uro6st YMBOKHTE MHOFOWIEH Ha MHOTOUNEN YMHOKHM KAKABIÄ LICH
OAMOTO MHOTONEKA Ha KIKAMÁ rex sroparo MHoronnena, Tonyaaen:
(C-ed-P)(e+ d= codo dore ded d-d d=

e d- 0d + dc - d.Tocne roro 3 morounene npneenen no
robe mena: dar dd dodo ~2ed - À.
DAA a + y

737. 1) Packpoem 8 HAHHOM BEIPDKeHHH CKOÖKIt, YMHOXHE KEKABI SICH O2U10-
ro MHoroasiena Ha camí ¥en apyroro mtorownens. Monyuaem:
5b? + (a! + Sb) (ab — 1) = Sb’ + a: ah+Sb- ab db 5b- b= Sb +
+ ab + Sab? - ah? - 5b), Flpnnenem NOROÖHBIE “VIENE B AAKHOM MHOTO-
unene: 5b’ + ab + Sab” - ab! - 5b’ = ab- ab + Sab.

1) PackpoeM 8 ANION burpaxermn CKOBKH, YMNOKUE KIKE eH OHO
TO MHOTOWICHA Ha KM “ne Apyroro mirorounena. Flonyxacw:
ta—b)(a+2)-(a+b)(a-2)=(0 - ab + 2a - 2b) (a? +ab- 2a-2b)=
=~ ab + 2a-2b— a - ab + La + 2b = (7 — 5) + (ab ub) + (Za + 2a) +
+ (-2ab +2ab) — 2ab + 4a + 0 = —2ab + da.

€) Packpoem cxoGxn D TOM BBIPaXENHA, HCTONLIYA POPMYAY AIR pastoc-
TH KBANPATOS M YMHOXHB kasi HNEH OAHOTO MHOFOWIEHA Ha KIA
"nen apyroro Mhorourena. Hmeem: (x + y) (0-3) (= 1) (0-2) =

PY MO 2 +2) = (1) — 06 — 3x + 2) AA

E A 3-2

738. a) Packpoem ckoßxn (2 NEPROM cny¥ae BOCMONEIYENCA MPABRNOM YMHOE=
‘aa MNOTOWACHA HA MILOTOWIEN; BO BTOPOM CAYUAS YMHORHM OMHO:LNEH 2x
na Kamasılk unen mnorounena (y — 3x)). Mueeu: (2x — y) (y + 4x) +
+2 (= 3x) = py + Bx dy + Day = Ge y + (Be 61) +

m2 Fa IV. Mnocourest

RETA

6) Pacxpoew atom BupaxenH cxoGKu. Jlanes pee em nosOGHEIE Une
et, Nonysaem: (Ja — 2b) (2a — 35) - 6a (a - b) = 6a - dab - ab + 6b? —

~ 6a" + Gab = (bar — 6?) + 66? + (-Aab - Sab +6ab)=0+ 65 - 7ab=68 - Tab.
8) Packpoem » ASMMOM suIpaxennn CKOGKH. B nepsom cnyyae BocnonEsy-
EMCA NPABHNOM YMHOKEME OAHOYNENA a MHOTONTEH, a BO BTOPOM CAY-
‘ae — IPABILIOM YUHOXEHNA MHOTOWIEHA na MHOrOIeR. ee:

Sa (2x a) ~ (Ba x) (2x — a) = 1001 Sa ~ (6a ~ 2x° — Ba" + at) =

= War - Sa? — Sax + 2x? + 8a? = ax = (Ba? - Sa?) + 2x? +

+ (10ax - 16ax — ax) = 3a? + 25? Tax.

1) Packpoen B aHnoM Bsipaxennu CKOGKH, Bote npHEENEM NOTES UNE.
Vincent: 2e (b + 150) + {b 6c) (Se + 2b) = 2bc + 300 + Shc- 300° + 24 — 12b0=
= (0c — Wer) +26? + (2be ~ 12be + Sbe) = 0+ 26? — Sbe = 2b? — She.

739, a) B sition EHPAKEHHN CONEPRUTCA MPONSSEACHNE ABYX MHOTONREHOB.
Vous KA sien OJINOPO MHOPOMARIA HA KDK UM ek APYTOTO MHO-
roanena, nonysaes: (Ba ~ 6) (a + 75) - SSab = 8a? — ab + S6ab ~ 16? — SSab.
Tipumenem 8 3rom mnorowiene nORDÖRBIE went, Monywaem: Sa? - ab + S6ab -
— 787 — SSab = 80” - 76" + (ab + 36ab- $Sab)= 8a? - 18 + 0= Ba — 767.

6) Alanormuno nepemHoxam asa MHoroumena. 3aTeM npheenen MOAOÖRBIE
newbs 8 nonyuemmon super. Maceo: (3x + 2y) (dx - ») + 29°

= 127 + Bay — Bay — 2y + 2y = 120 + (Bey Bay) + (-2y" + 2)
= 12 + Say + 0= 12 + Sry.

8) B nantom eupaxenun conepaorres TIPOMIBEACHME ABYX MHOFONTEHOB H
YMROXKerIME ONMOYINENA Ira MHOTOSXEN. FTOwAEHNO RepeMHOKeR, OAHORNEN
ha KARIM HE MMOTOIERA H KEXA Sch OAHOTO MHOTOHNEHA HA KAK-
si unen apyroro, nonysaent (3p - 1) (2p + 5) 6p (p- 2) = Gp -2p=
2p +5. 3p-5)+ (Sp: p+ 6p: 2)= 6p" — 2p + 15p-5-6p* + 12p.
Tipnsenem B tos muoronnene nonoGuure nents: 6p" - 2p + 15p 5

= 6p" + 129 = (6p? - 6p*) + (15p + 12p - 2p) - 5=25p-5.

745.6) Packpoem ckoGxi e esol # npaBoii wacrax sanHoro ypanneitan. an
TOTO 8 nenoll NACTA YMHOKACM OAHOWIEN a KEX AR AEH MOTONNENA, a
B npasoh 4actH KSK Ab 4nen ORKOTO MHOTONAEHA YMHOKAEM Ha KALI
nes apyroro muorownena, Tonysaew: 2e (x=) = (x + 1) (2x - 3):

Dex 2x B= Dex + 2x Ic 326 = l6x= 20 + De 3x3. Mpueo-
am noaoGnsse wrens Manor ypapnenna:-16x ==x 3: -16x +x

748. Nepaoe Heseraoe «meno o6oataunM (2x + 1). Cremyiouee 38 HMM HeyeT-
hos aneno Gyner (2x + 3), nanee (2x + 5) (r. x. Zr — acerna deruoe uncno,

Str. Mpouraodemue mozounenoe 13
vo (2x + 1) — nevernoe). Maa Gonsumx uncna— mena (2x + 3) 4 (2X + 5), a
ma meri (2x + 1) m (2x + 3). flo yenosmo nonyasem ypasnenne:
x + 5) (2x + 3) - (21 + 3) (2x + 1) =76: (2x + 3) (2x + 5-2: - 1)= 76:
(2x +3)-4=76,2x + 3 = 19, 2x=16;x=8, Toraa nepsoe uncno: 2x + | =
=2-8+1= 17; 3H89HT, sropoe, cnenyioutee sa MACOM 17 HeeTHOE “Ho
10 19, a cnenyromee sa Hi HeNeTHOE «meno 21.

750. Tiycr» cropona xsanpara Gyner panna x cm. Tora OAHa us CTOPOR NpAMO-
yrommuxa pasta (x +3) cm, a apyras cropona pasna (x — 2) cm. Tinomans
Hammoro Npa@oyronbunka panna (x — 2) (x + 3) em’, a nnowaae Kmaapara
pasns x° cm. Tlo ycnoamıo, nnoware ksanpara a 30 cm? Menue AOL.
npruoyromunxa. Orciona nonywaem ypastemne: (x — 2) (x + 3) 27 = 30.
PelunM 270 ypaprenie. Chavana nepeMHoxHM sea MHOrOUNeHa, 3ATEM
npHsenem 5 AAHHOM ypastienun no pone unenbt. Hmeew: (x — 2) (x + 3)—
= 30; ~ 2x + 36-62 = 30: (7 1) + (2x + 3x) - 6 = 305 x = 36.

751, flyers Gpurana aonxna Guna paborens x nei. Torza Konnyecrso Haro-
romnennux neraieñ Go Ge paexo (54x) ur. C apyrof croponkt, nepe-
BBNORHAR NAAH Ha 6 DeTaNeH B ACHE, T. €. HATOTORNAA emcAHEBHO 60 zeta»
nei, Gpurana paGorana (x — 1) aneñ n cuenana 18 netaneñ ceepx nana.
Torna oGuee konmsecreo neranelí Baron cayuze pamno 60 (x - 1) + 38.
No yenonmo, Konmuecrao HATOTOBNCNNENX DeTanel B NepBOM H BTOPOM
enyuasx pants. Orciona nonyuaem ypannenne: 60 (x — 1) + 18 = 54x. Pe-
umm 370 ypabmenne: 60x — 60 + 18 = 54x nnn 60x — $4x = 60 — 18 nan

6x = 42, orkyaa x= 2 = 7 (ane).

752. OGosmasum wepes x Konnecrao nmeï, Koropoe TpeSyetca Öphrane ana
BCTAXWBAHHA SEMA, cnaxıiman exezHeno no 112 ra. Torza a neprom
cnyase nowans se passa (112x) ra, a 20 Bropom cayaae 120 (x - 1) ra.
Mo yenosmo, xonweeTso ra, BCnAXANHOE E epsom À BTOPOM CAYTAaX,
parmis. Orciona monyuacm ypasñenue: 120 (x ~ 1) = 112x. Peutw sro
ypaanenne, Mucem: 120x - 120 = U12x; 120x ~ 112 = 120; 8x = 120, or-

Kyaa x = ie
8

15 (aueh), Torna Gpurane wyawo Gbino Bcnaxar

12x = 112-15 = 1680 (ra),

753, a) Y MHOXHM KAKIYIO HACTE AANWOTO YpaBeHNR Ha HaNMeHLUee bier
kparnoe amanenareneñ apobeñi, 7. e. Ha auco 30. Mmeen:

1-2 so-(? 3x-2 =

Jota) oh 30; @-2)-6=

ns nus WV. Menounos
+10 ~ Gx~2) «5; 6x = 12 = 20 15x + 10; fe + 15:

20+ 10+ 12;
21x = 42, ornyna x= 2 =2,
0) Yom O6e nacre roro ypaBhcntia Ho nalmensuuce ouee KpATHOE

namenareneh apoSelt, re. na weno 12. Tlonywaen: (

2x-5
4

12-12 {+ 1): ana 5)-3- 1276 1)-Anmiar- 15-12

= 4x + 4566 dre 4 + 15+ 12 um 2x = 31, onyaax = a

5,5.

755. a) B asyx vropuix craraemeax sbmmecen 3a cxoGki OBUIKH mttoxmrens 3:
x (b+ 0) +30+30=x(b+c)+3(6 +0). Tenepe suaim, «ro 06a cnarae-
MDX UMEIOT OGUIAÑ MHOXATEE (b + €). Biinecen ero 3a CKOBKH:

(6+ 0)43(6+0)=(6+ c) (x +3). Bupaxenne pasnoxeno Ha nposane-
enue anys moroanenon (b + c) w (x + 3).

757.) Crpynmupyen newt DTOTO morounena Tax, STOGH CAACACMEE 8 Ka
0h rpynne uMenn oSuukil MhoMKTENG. 3aTeM auneceM 37H OGWHE MO»
xurem 3a cro6xu. Mlonyuaem: ab ~ Ba — bx + Bx = (ab — 8a) + (hr + 8x) =

(6—8)—x (b—8) (8 nepaoë rpynme Ostno auineceno a, no Bropof

(a). B wore mueen: a (b-8)-x(b- 8)= (6-8) (ax). Morounen

pasnoxen a npowssemeHHe 1ayx Mnorounenon (D — 8) 1 (a -x).

763. a) Ana Toro, “TOS MPOBECTH BUUNCNEANA HaNGonce PAUHOHARBELIM cno-
COÑOM, MY crpynnapasars anemu, conephaue OBUNN mnoxGrrens H
suinectH Cu mwen sa cxoóxu. Dance cnoxuM uncna a cxoóxax.
meet: 2,7 +62 =9,3 + 12+ 62+93~ 12+ 2,7 = (93-12-12: 27)+
+(27:62+62-93)=-12-(93+2,)+62-(2,7+93)=-12-12+
+62-12=12-(-1,2+62)=12-5=60.

1765. a) Crpynnnpyes cnaraemsıe cneayiouunn oGpanom: y x + 97 ++ Do + 2=
= (y+ a) + (1 + y) + (ay + 2). Bumecen 24 cucobxn OGuame Mmorounent
H mpeopasyen nomyuennoe ssipaxenue. Hmeew: (y + xp) + (x + y) +
+ ap Day (xt y) + (ety) +2 + Le (x+y) yt 1)+2 (+ 1
= (yt 1) (x+y +2), Mnoronnen paaxoxen wa npomaexenne AByX mo»
rounenon (xy + LD x + y + 2)

766. 2) Nipencraenm 6x a attne Sx + x H BUNONHMM FPYRMHPORKY: 3aTeM ssne-
‘cen sa cKOGKH oôuine momen, Monyuaemr: À + Gx + 5 = + Sx txt =
= tat Gxt Spa x(a FSF 1) = (c+ I) (x + 5). Maorounen
ponnowen a nponssemenne AByx mmorounenon (x + 1) w(x + 5).

$14, Roowentowe amozourenos us
773, a) Nipeobpasyem nenyıo “acre aannoro pasencraa: == (9-0) (4 + D)=
= x (ax) (+ x), BRIneca max «yo 13 nepeoñ cKoGKK. B peaynerare
mpeo6pazosanna NERO GacTH PABCHCTBA Mi) NONYSHAH ero TIPABYIO HaCTE
H TOM CAMBIM NOKAIAMH, WTO NAHNOE PABEHCTEO AANATER TORNECTEOM PH
Dcex a,b, x.

177.3) Vapocram neeyto u npanyio vactH Aainoro pasencrea, a saTeM cpab-
AM nonyaenntie pesynsrarsi. CHa¥ama npeo6pasyem nenyio ACTE:
(1-3) (2 +7) 13 =x 3x + 7-21 ~ 13 = dr — 34, Ynpomas upanyio
sers, nonysaem: (x + 8) (r—4)-2= 2 + Br ax - 32-2 = dx 34. B
wrore nonyuaew: dx - 34 = dx — 34, Tax Kak eBas ACTO ARNTOFO papencr-
Ba, pannoro ero npanof SacTH, TO ARHHOE PABEHCTEO ABNSETCA TORMECTROM.

Honoanurenpuste ynpaxnenns x rape IV

787. a) B nannom MHOTOICHE CONEPRHTCA Be FPYNBI NOXOÓNEIX ¥TEHOB:
Mabe’, abc n abc”; 23a°be, -1Sa’be n -2a*be. Crpynnupyem 27H nonoönsıe
TEKA, 3aTeM MPHDEAEM nonoGwsve ‘nen B KANO rpyrine. Tomyaaent:
10abe* + 234°be - abe? - 1Sa°be + abe? - 2al'b0=(10abe” - abe’ + abe) +
+ (23a%be ~ 1Sa°be - = LOabe + 6a7be.

6) B nawon mHOrOuNENE conepxitca TPH rpynnt NORDÖHBIK anenoB:
36y2 u 302, 12072 u Arr, -0,Sxy" none’. Crpymmnpyem 27H nOnoÓmbIe.
‘wrens, 3aTem nphseneu noaoGrbie nei 8 KaxnoË rpynne. Nonyasem:
Aya + 1 Day's - OSxyz + Dl yr da 2 + xyz (3,60 pr + Baye) +

+ (1207-4972) + (05197 + 1292) = 0,622 - 2,872 + 0,Sxp2.

das? b+ 208 Lao
2 2

788. Ynpocrum nannoe asspameinie. Hueenc 4 de

= Pardos + 2a pat) tb + ab Tenepu a ye

POULEHHOe BLPAKENKE NOACTADAM sanaHHte SHaNeNTR a H D.

2) Toxeraenne a= 8, 6 = -0,5. Muse + + a

+8- (0,5 =-4. 66. (0,5) + 8-025 = 16+2= 18.

2

6) Mlouctapum snauenun a =-0.5. b= 4. Tlonyuaen: 4 b+ ab =

025 .4-0,5-16=-05-8=-8,5,

116 Eneas NV, Hsoeoanems

"789, a) Bunece y nepooro H BTOPOrO CnaraembIx sa cKOBKH BH MHOKH-
Teno 2. Mueem: 26 + 6x + 3 = 2 (x + 3x) +3,
Tipe moGux uemex mauenmax x snavende unorounena 2 (x? + 3x) annser-
CA HeTHRIM sHCROM, Uncno 3 HeHeTHO. CnenoBaTeRbHO, PH CROKEHKH NO-
nysiaen MeveTHI0€ MENO (T, K. NETHOE H HeHETHOE AHCHO B CYMME AAIOT He-
‘eTHoe ucno). 3namenne morowena 25" + 6x + 3 NeTHEIM orazateca HE
MonkeT TIPA MOGLIX EMBA x.

792. a) COCTABHM CYMMY 3TUX ABYX MEOTOADENOB, 33TEM PACKPOEM CKOGKH H
npHsezem nonoönsIe anenst. Monyuaem: (2x — 4x? + Tx + 1) + (02
He 5)= 20 4 Tet la A 0) + (+2) +
+ (Ix + 3x) + (1-5) = — 227 + 1014. B urore MHOCO4ACH 3AMACAN 8
cTanasprnom anne.

793, a) Cocrasum paamocr6 nayx RANK MITOTOUACHOS, JaTeM packpoeM cko6-
KM NpuBedeM noxoónme unenss. Tlonysaem: (6a° + 24° - Ba —9) — (Ba? —
<a ~ bat 1)= 6a’ +20 8a-9— 8a +a" + 6a-1=-24 + 3? -2a— 10.
Baunull Mnorounes Jansıcan D cranaapriom Bue,

6) Cocrabsim pasnocTo AByX RARMSIX MHOTOMNe;OB, JaTEM PACKPOEM CKOOKH
H npasenen nonobmae newer, Mucem: (-3x +0 - 20) (40 - 27 4x)=

Br + = Det del + 2e (0) + (De + 2) + (Be + dx) =

Bx 404 x= 30 +x,

8) Cocranım pastiocri ABYX JANMEX MHOrOHReHOR, 1aTeM pacepoen cxo6-
m x npuseaem nonoGawe ness. Monysaem: (da — 3b + 2c) - (6a + 4b ~
=2e-2)= 4a- 36 + 20 + 6a 4h + 2c + 2 = (4a + 6a) + (-30 4B) + (20 +
+2c)+2= Wa - 7b + 4e+2.

Y) CocraBim pasHOCTb AByX RAMIBIX MIOFOUNENOS, JATEM packpoeM CKOG-
ku npusenem nonoGubte ¥en. HMeen: (a? + 8? - 2ab + 1)- (2 + B+
+26+ 1) =a +0 2ab + 1-20 6 -26-1=(0 - 20) +(0* - 87) -
-2ab-2b+(1-1)=-0"+0-2ab-2b+0=-«"-2ab-2b.

794. a) Packpoem cxo6ki, MPOMABACM rpynmiposKy NOAOÉURX aneHoB u MPa
resem nonoGnsie newbs. Mueem: (-2x? + x + 1) {x x + 7)— (4x? + 2x +
+8)= 2e tat le 74 BO A te
2x) (1-7-8) = Tx? 14. Muorounen nacer crahgapria hun.

800. 5) 3anuc» aob npencrasnaer «Moro, conepxaulee a corex, O RECATKOS u &
‘enum; a coven nator 1004 eaunuu. Bmecre c eaMHHtaMH AaHHOe NEO
conepanr: 100a + b eautmu, 1. e. 206 = 100a + à

802.2) Jantes 25 npercrasnser wMemo, conepmauiee 4 MECATKOD H b EMMA,
a necxrkos nor 10a ennmuu. BYecTe c expiomam nannos wueno conep-

Fononwumensnwe ynpaxnenua x anace IV 117
1004 + b. Auanormno: ba = 106+ a.

Connu sa nexonmsıx amena: ab + ba = (10a + 6)+ (106 +a) = 100+
+b+10b+a=1ta+113=11 (a +5), Muorounen 11 (a + 5) nenwres na
(a+), a2.

6) Ananormuno a) nonyuaent: ab

ur: (100 + b) exvnau, r. e. al

Oa + b, ba = 10b + a. Tlonyuaem to-

rie, 970 pasnocre uncen x pantia: ab + ba = (104 + b) - (10 + a)

0a + b- 105- a = 9a - 9h = 9 (a - b) (Gram packpurret CKOÓKH m MPH

Benet nonoGne WACHH). Boipaxenne 9 (a— 6) KpaTHO 9, 4.7.2.

803. a) Pacxpoeu crobk 8 nanHoM ypankenun. Zarem npHpenem nonoóntre
‘neues, Monyaaenr: (4 — 2x) + (Sx — 3)= (x 2)~ {x + 3) nan 4— 2x + Sx—3=
mx-2-x-3nm4-2x+5x-3-x+24+x+3= 0 pu (4 -3+2+3)+

++ 5x + x) = 0 nam 6 + 3x = 0 nm 3x = —6 HAH x =

5) B aswou ypanrenun pacxpouM CKOÓXH M apHueeM nonoGtue ane.
Hucew: 5-3y-4+ 2y= y—8—y+ 1) $—3y-442y- yt 84-150;
(3y+2y-y + y) + (5-44 8-1) =O; -y + B= 0; y= 8,
8) Packpoem B 3TOM ypashenxi CKOGKH H npHBenem NIORDÖHBIE ver.
CC] 311 A]
Tlonysaem: 7-14a+ta-Sta2a+2-1-4o um I-Ilarla-51-
yen T-lgarza-sgelar gg ge um 7-1 a+ 0-53

lapa 0 sum (-rJeede-rertale(7-s2-2.

van 22041220, onyra 24a
24 2

1) Ananornano nonyuaen: -3,6 —
3.6 -1,5x - 1 + dr + 0.8 + 04x-

+08-2)=0; 2,9x-5,8= 0; 2,9x =

Sr 1 = 4x 08-04 + 2;
05 (1,54 + 4+ 04x) + (36 1 +

58
8, ora r= 58 2,
ART 29
805.0) Flyers Gano saxymauo weno x. Ecru x eny npurtucam enpasa O, o
exORNoe wnenO yuenunwerca » 10 pas x ns nonyan uncno (Ox, Torza, no
ycxopmwo, nonyuaem ypanwene: 3x = 143 ~ 10x. Peumm oro ypapuetue,
Mee: 32+ 10x = 143; 13x = 143, ommyaa x= 11.

806. Tyete nexomroe aueno x. Een x ncay x mpunscars enpana umhpy 9, To.

nonyaures una X9 , Koropoe MONO 3AMIICATE ü BENE XD = 10e +9.

us roan V. Meozoxreras
Pisnecruo, 470 cya JABOSMOO HCXOMNOTO H MON) MERNOTO HHCEN PABHE
633. Orcioza nonyuaem ypasmenne: 2x + (10x + 9) = 633. Penn sro
ypannenne: 2x + 10x + 9 = 633 mou 12x = 624, oreyan x= 52.

808. Nycte noxonnoe ueno Gyaer xy? . Ecau undppy 7 nepecrasurs ma nepaoe

Mecro, To nonyunres neno Tap . Sante üncna XpT # Tay a RARE:

y
Gonsute nepsonasansnoro na 324. Orciona nonyaaen ypamnenne:

(700 + 10+ y)~ 324 = 100x + 10) +7; 700 + 10x + y—324= 100% + 10y+7;
700 - 324-7 = 100x + 10y- y ~ 10x; 90x + 9y = 369: 9 (10x + y) =369;
107 + y= 41. YmnonuM 06e sacra Toro ypanıtenka na sucno 10 u npu6a-
Bu ao «act no 7: 100x + 10y + 7 = 417. Torna nonysaem uexox-

100x + 10y +7, Tay =700+ 10x + y, Flo ycnoamo, Honoe ueno

woe aeno, T.€. 297 . Hrak, HexomHoe uncno paso 417.

809. a) Ina TOTO, HTOÓN npeoBpasonars a MHOOMNEH sro nponanenenne, pac-
xpoem & gano nbipancenun cxoGKs. Meer: 3a'b* (a - a1 ~ 619) =
= 3061. a - 306! - a'b? - 3a°o" «5! = 30!*6'—3a!28? - 30°",
6) Ana Toro, «roba npeoGpasonaTs AaKHOS IPONIBERENNE B MHOTONAEH,
pacxpoew e nem cxo6kw. Fonysiaen: 21%) « 3x" — Say + y"
A A
B) Axanonsaio PACKPOSM » DAHNOM BBIPADKENHN cKoßkn. Umeen:
+7) = 99 29) = 029 --02xy* - Dey? + 02 - Sy! =
027-140 +.
1) Ana Toro, 4roG npeoßpasonars xr npoxssenenne 8 MOTOWN, pac-

sort les E 3- bc) =
3 5

poem B Hem ckoôkH. Hmm: (o =,

306.47 sore - 3 10-00 0000 [3° )-

306 + 158%" 20610 + 1200",

810. a) Ana Toro, «ro6m ynpocrure 310 BEIPAXCHAE, pacKpoeM CXOËKH H MPH
genen nonoßnne «nene. Ameen: 5 (4x? — 2x + 1)—2 (10x" 6x- 1} =

207° - 10x + 5- 207° + 12x + 2 = (207° - 207) + (12x - 10x) + (5 + 2)=

042047 = 2047.
6) Ans npeoSpasouanna ZAMHOTO BLIPAMEHNN pacKpoeM 8 Hom cKOBKH H
mpsmenen nonoômme eens. Nlonysaen: 7 (2y7 — Sy—3)—4 (3795) =
=14y = 35y -21 - 12y7 + 36y +20 =(14y* ~ 124") + (35y + 36y) +
+ (20-21) =2y' +y-1.

Horonmumennsise ynpasnons x aveo I 19
8) PackpoeM B ABHHOM EPA CHI CXOOKH H npHeeneM NOROÓNBIC ENS.
Vimeem: a (36 - 1)- à {a—3)-2 (ab- a + b}=3ab-a-ab + 3b-2ab +
Bab - 2ab - ab) + (-a + 2a) + (35 -26)=0+at b=a+b,
©) Packpoes 8 aaHHoM Bkıpaxenum CKOGKH H MPHBEAEM NORO MEE WICHL
oran. (4 ÿ) + 0? -7)—4x x3) = 4-7 + A + de
= (ay + Py) + (40 4) Ty? + 12 = 04 0-7 + 121 = 7 + 12%,
a) Packpoem cxo6ku, nepentonora omtounens u MHorownents, Tipisenem
nonoGaie newer, Tonyyaem: 3 (x x + 1) —0.5x (x - 6) = IR 3x +
+32 + Ar= 2 +3, [pm Bcex x nbpaxenne HEOTPHIATENLHO, a waco 3
MONOXHTEIBRO. 3HAYHT HX CYMMA, T. €. 3HAMEHME NAHHOTO RuIpaxenns Óy-
eT TAKE nonoxurensnoh npm mMOBEX x.
pumen 3a x xw/s cKopocts xatepa 8 cromvell Boge. Torna Ckopoers karc-
pa nnseyero no Tesesmio pasta (x + 1,5) Kw, a npoTms Texennn-
{x~ 1,5) Kw/4, B nepbom caysae pacctosixe, NPOXOANMOL KATEPOM, paB-
Wo: 51 = (x + 1,5) - 4 (M), a 80 Bropom enysae (nporms Tener) OHO pas-
Wo Sa =(x— 1,5) : 2 km). lo yonoamıo, nepnoe paccromne 8 2,4 pasa

Gone sroporo. Orciona nonyaaem ypanenne: A):
A Get 1,5) 48 (x— 1,5) 4x+6=4,8x—7,2; 0,84 = 13,2. Torna naxogiM:
132

= 32 1650000).
Ga 16,5 (cm).
2) Cxavana npeoGpasyen Hexonnoe suipaxenue, B nannoM spa
Beinecem 33 CKOBKH Gundi mmonuren 12". Hueeu: 129 12'° + 12" =
SAR D+ 12" = 12" (12? -12+1=12".133=12"-7-19,
Tiocne npeoSpaosanus mo, ro 12" -7 + 19 genres na 7 una 19, 4.7.0.
e) Chiavana npeoSpasyem Hexoawoe suipaxeitie. B HCKOTHOM BHIpaMRHR
Beinecem 3a cxoGxn OSuunit muoxurens 117. Hmeew: 119 11+ 117 =
PAPA =P Le PL = 117.373.
Brawo, «ro 117 37-3 emeren na 37 u Ha 3, ver.

8) B ratio nuipaxennt 06a cnaraemsıx conepxaT OGUIME MHOMHTEND
{a+ 25). Bunecem ero 38 cxo6km, Hen: (a— 30) (a + 26) + Sa (a +25) =
= (a+ 2b) (a— 36+ Sa) = (a + 26) - (6a— 30). Hs wropoh ckoGKH momen
Bunecra muoxcrren 3. Monyuaeur (a + 25) - (6a- 36) =3 (a + 25) (2a 5),
©) Bianecen sa cxoßxn oGumnit moreno (2x — 55). Tonyaaew:

(+ By) (2x ~ 5b) ~ By (2x — Sb)= (2x - $b) (x + By — By) = x (2x — 58).

8) Bo BTOPON caaraemom BiIHECeM 39 CKOGKH SHAK «MHTYCA. Tors nep-
BOSH BTOPOE craraembte GyayT conepxars 06H miozcrTeib (a — x), Ko-

120 Fago IV_Moeounansı
TOpmH gate bomecen 3a CKOOKH. Hmeem: Ta (a x) + (68 - ax) (x- a) =
10° (a -x) - (6a? — ax) + (a ~ x) = (a — x) (Ta! — (64 - ar)

(a—x) (Tat 67 + ax) = (ax) (a + ax) = (a~-x)'a(a+ x)= ala-3)(a+x),
F) Auanoruano mpeoSpaayem Bropoe craraemoe 4 BhHECEM 3a CKOÖKH 06-
wi muoxnrens (35 - y). Monyuaem: 115° (34 — y) - (6y — 38%) (3b—y)=
= 118? (35 — y) + (6y - 307) (35 — y) = (36 - Y) (187 + by - 35) =
= (3b — y) (86° + 6y) = 2 (36 — y) (467 + 3p).

827. a) Ana nanbonee yaoGHoro HBINKHEAEHNA IMAMENNA 2aHHOTO Bupaxeinn
ero cmayana nano ynpocrurs. ButHeceM à TOM BuipaxeHH 28 CKOOxH 06-
um unoxarrem, c. eeu: Sex + c= ¢ (5x + c). Moactosum 8 nonyuen-
oe nponsenenne RAMAL SHaMEHHA x = 0.17 # = 1,15. Monysaen:
(Sx +e) = 115 (3-017 + 115) = 115-2223
6) Chasiana ynpocrin Aaınoe supaxenke. 3arew noxerasitn saaamnbie
shaveuna nepemenmasx: a = 1,47 u b= 5,78. Hmeem: da? - ab = a (da - b)=
= 147. (4: 147—5,78) = 1,47 -0,1 = 0,147.

828. a) B nannom ypasnennn Bunecem 3a cKOBKH OSuIAM muoxirens x. Hueem
X(1,2¢+ 1) = 0. HanoMstM, #To npoHsememe PABMO HyAto Tora 1 TON

Ko Torna, Koras XOTA Ges 02401 1 MOXOITEACÍ pasex HYm0. Bnaunt, x = 0
am 1,2x + L = 0. Peus nocneaee ypasmenne, nonyuaen: 1,2%
1 1075

=-l, 7.0

- Mar MONYUICAN 283 BOIMOXASIX SHAME NEpe=

Mennoiix=Oux= =,

6) Bunecem e nasmon ypastensin sa ckoßcn oBumf more x. Monya-
em: x (1,6x + 2) 0. Amanoriuno nahen: «= Oman 1,6 + x = 0, r. €. x = 1,6
8) B aaitiom ypannetnn Bbinecem 30 cKoGKH OBMIAH moxame x. Mmeem

(0,5% — 1) = 0. Tax kak npoirisenenne papno NY, Torna H TONKO TO-

TRA, korna Xora 6b OAMN HS ETO MAOXTENEÍ paBen HYAIO. NONYTAEM: x = D
1

05

nam 0,5x- 1 + 0,7. e. 0.57 =

= 2. Mor nonyannn apa peweans

auuoro ypannenma: x = 0 x = 2
1) Flepenecen xB 1eBÿ10 4BCTb HCXOANOTO YPADHEHHA, HIMEMMB ero 3HBK
Ha POTWBORONOKHIIH, sarem msineceM OGM MHOKATEN x 38 CKOÓKA.
Monyuaem: Sr x = 0; x (Sx — 1)=0. Hueem: x = Onan 5x - L = 0, 7e

1
302

a) Nepeneceus a neayio sacs ypaphenun 3x, wsmenus sax HA IPOTHBONO-
nome: 1,6x° — Ir = 0, Tenepe BBINecEN B AANMOM ypaBhenMH 3a CKOSxH

Aononwumensnese ynparemn naco IV 121

“O6 muorurens x. Mmeem: x (1.6x - 3) = 0. Monysaem: x = 0 man
5 9 Tt

LO 3-0; Nr = 3, one re = aS ale
€) Mlepenecem 8 JEBYIO sacrs ypasnenns X, amex ero AHAK HA NPOTH-
BONOROKHEIR. Janee Bsinecem 32 ckoOKH oGuni muoxorre x. Mmeem:
x = 0; x (1x) 0, oreynax=0 max 1x = 0 Tex =

829. a) Buinecen 3a cxo6kH 8 NannoM asıpaxennn OS mnoxsrens 3. Hme-
eu: (a+ 6 = (Kar 2? = 3 at 2 =9(a+2),

6) Butecem 2a ckoGku 8 ARHHOM Rupaxenun Ou Mhoxirens 4. Mme
em: (126 ~ 4) = (4(36— 1 = 4? - (3b 1) = 16 35-17.

8) Ananormsno suittecen 3a cKO6KH OSHA mnoxHrens 7. Flonysaem:
(e+ DY =a tye Poet yy = 49 ty.

1) B nanmoy wuipaxennn euneceu 32 cxo6x4 Gui muoarrens -3. Hme-
em: (-3(p-2)) =(-3) -(p-2) =-27 @- 2).

a) Barom Buipaxennn Bikecen 38 cKoGKH off mnoxareno 5. Amen:
(5(q- 6) = 5 (q~ 6) = 125 (9-6).

©) Bomecem 8 aannox empaxenn 39 cxoÓxo oBumii moMorrens 2. Tlony-
waem: (2a ~ 8) = (2(a- 4))*= 2° «(a 4)'= 16 (2-4).

830. Buinecem 5 naniom supaxenun Om MHOmNTEND a 3a CxOBKH: a’ —
=a(a- 1). Econ «mono a 6yner serian, TO ancno (a — 1) Gyaer neuer-
HEIM, 4 HROGOPOT: ecau aHcA0 a Óy aer REETHBIM, TO Genio (a— 1) Öyaer
serian. Tax Kak onu m3 muoxorreneií Beipaxenna a (a— 1) ver (1. e.
‘parent ABYM), TO BCE BEPaXEIIHE JESIHITCA na 2, 44.2.

834, a) Pacxpoeu n AANOM stipaKenHH CKOÓXU N IPHBEAEM NONOÓMAE ‘EHRs,
Tlonyuaem: (x -2) (5 + x)= Sx— 10 +2 -2e =. + 3x-10,

836, 1) Floovepeano nepemnomaem KaxabıÄ EH oaKoro MHOFOWACHA Ha Kax-
aut unen apyroro mnorounena. BaTem npunozmm nonoGmue ane. TIo-
ayuaem: (Sa? + 2a + 3) (4a? - 2a + 1) =-20a" + Ba? + 120° + 100° - 4 —
=60- Sa + 20 + 3 = -200° + (80° + 100) + (120° - 40? - Sch) +
+ (4a + 2a) +3 =-200° + 180° + 3a” — da + 3.

840. a) ILın nokasarenscrua cuavana npeoßpanyem nexonnoe anıpaxenne. Pac-
poem cxoGkH 8 namuom Beipaxenun. Hweem: (3° - 34) (3° + 37)= 35.39
ge ger el TIN

tn E 1) = 3
Hoe aueno nemurca ma 24, u.a.

6) Dna noxasarenverna cnavara npeoSpasyen ucxoanoe supamenne. Pac-

poem cKoöKn 8 Jano esipamennn. Hmcen: (2!° + 2%) - (2 23) =

122 Fnaea IV. Muozoanemos

SPORT Pa LIRE LEE a LES DE EUR RE ES
== 1)=2" 15 = 24. 15 = 2°. 60. Monyuennos
heno nenarca Ha 60.
2) Zina noxansrenseraa npeoßpanyen nexonnoe Bupaxenne. Pacxpoem
cxo6xm 3 namiom asıpaxenun. Tonysaens: (16° -8°)-(4 + 2°) = 16? 4 ~
A il UA LA LIA Dd E
RON PE TRE re
= 2°. (2-1)= 2%. 63. Tonyxennoe ameno nenuten Ha 63, 7.2.
1) Ana zoxasatenscrea cnayana NpeoÓpasyem wcxoaHoe Beipamenne. Pac-
poem ckoGku 8 nano pupas, Mncem: (125° + 25%) - (5° 1) =
257 - 5? + 25. 5? — else (SP =
IS
=
841. a) Ynpocrum JANHO: nuipaxenne. nna ITOTO packpoeM 8 Hem CKOBKH H
mpnnezem noxoónse «nens. Tlonyaaew: 126 + (x ~ Sy) (x +25)? + Sx
= 126)? + 3° Sep + 257 - 125y + Se'y -25xy* = (126)? - 1237) +0 +
+ (Sly + Sy) + (25xy? — 25xy") = y? +2. Mlonerammm 8 ynpomennos BI
paxerne sanannuie anauennaxny. Mueem: y) +2 = (2) + (-3)°
8-27=-35,
6) Packpoem E aanou Buipazeiinn exoGex u npuBeneM MOn0ÖHBie nennt.
Tlomysnes: a + — (nr — Am =) (m —n) = m + — (m? — 2m en min +
AAA + 2 + mre + mn Ima = 1 = (m mi) +
+ (<2) + Ann + min) + (me? — Ime?) = Inn — mr. Noncranım 8 yn-
poutewhoe axasehe XANOTO BSrpaxennn IICA m =-3 4 7 = 4, Tlonysa-
em: Im nm? =3-(3P-4-(3)-4=3-9-4+3-4*=108+48= 156,
842.) Jlan nokasatemuersa ny#Ho ynpocTHTS RaHHoe nuipaxenne. Packpoem
CKOÉK H MPHDCAEH 3 ITOM BLipaKeHHH no20ÖnBie ue. Mueen:
{a-3) (a? 8a + 5)- (a-8) (a? - 3a + 5)= a} -3a°- Ba + 24a + 5a-
= 15 (a ~ 8a? - 3a? + 24a + 5a-40) = @° - 30 - Ba + 24a + 5a- 15 -
24a - 5a + 40 = (a - a") + (30 - Ba? + Ba’ + 3a") +
+ (24a + 5a - 24a - Sa) + (-15+ 40) =0+ 0+ 0+ 25 =25. Baron empa-
Kenn Ne CONEPKTCA NEPEMEMNOR a. BnawHT, aaunoe ERIPBREHKE me 3a-
aucur or 3HAYERHA mepemennoh.
6) Ana aoxasaresscrea ympocTiM aaHHoe Bbipaxenne u YÓCAMNCA. HTO
‘oni ne CONEPXT nepeMentiol x. Packpoem ckoBkd 4 npHBEEM B TOM
aurpaxennn nonoönsıe venas. Tonyuaent: (x? — 3x + 2) (2x + 5)—
AB + Tx NN = De) — 6x + dx à Sa — 15x + 10 (2 + TP +
+ 17x - 8x7 - 28x 68) = 20 —6x + dx + 50 ~ 15x + 10-20 - Tx? ~ 17x+
+80 + 28x + 68 = (20 — 20) + (6x +50 = T+ Be?) + (Gx = SR TT +

St 624 = 5°: 39. 16. Manysenmos meno nemerea va 39.

_Dononuumenanuie yrpanianun y anaes IV 123
+ 285) + (10 + 68) = 0+ 0+ 0+ +78 = 78. Tlocne mpectpasonannlt BHABO,
TO IMANEHHE AANHOTO BBIPANENNA ME SABHCHT OT ANAMEMH DEPEMENBOR x.

843. a) Tlycra nepaoe Harypanbioe sexo Gyaer x. Toraa verupe cnezyloumnx.
a HMM HarypaHux suena Óy yr mere mu (x + 1), (x + 2), (c+ 3) 4
{+ 4). Cymma atu uncen pasta: x + (x +1) + {x + 2) + (+ 3) + (x + 4).
Fipeo6pasyem nonysennoe spaxente, Amen: x + x + 1 +x+2+x+3+
+1 +4=5x+ 1025 (x+ 2). Moene npeo6pasonann ano, sro cyMMa
PITA NOCREAOBRTENKAMEK WATYPANGNBIX unten KpaTHA 5.
© Myers nepsoe Heuersioe uncno Öyner Hero ana (2x + 1). Toraa TpH
cneayioumn 3a mus HeNeTHuix sen Gyayr: (2x + 3), (2x + 5) m (2x + 7).
Cox nce ora suena, nonysaem: (2x + 1)+ (2x + 3) + (2 + 5) + (2x + 7)=

Det 1420434 20434204 72 Bx + 16 = 8 (x +2). Mocne npeo6pa-
3ODAMHÍ BHAMO, TO CYMMA HETEIPEX nocTeAOBATERBHEIA HEMETHBX HACER
ACHCTEMHTEMEHO kparia 8.

844. Nlycro neppoe narypanenoe uncno Gyner x. Tora Tpis CREMVIOHX 3a
TAM KHCROM HaTypanbiturx anna GyayT muero BHA: (++ 1), (x + Du (x+
3). Hexons ws ycnonna, nonyusem ypammemne: x (x + 1)=(x+2) (x + 3)—
38. Pewnm 370 ypasnenme: x + x = x + 2x + 3x +6 - 38,07 2
~ 3x = 6 ~ 38:41 = -32, orxyaa.x = =8. Torna TpH cnenyioux 3a aue-
now 8 watypancatix unena 6yayr 9, 10 4 11.

845. a) Myers nep2oe uenoe uncno Gyaer x. Torna TpH crenyiounr uensix
ueno 6yayr (x + 1), (+2) u (x + 3). poseen nayx cpeamx sce
paso (x + 1)(x+ 2). a mpowsbenenne kpahnm ascen pasto x (x + 3). He~
XO1K H3 YCNOBHX, cocramMM pasHocte: (x + 1){x + 2) —x (x + 3). Ympocrun
O Boipamenne: x? + x + 2x +2 (+35) ex txt 2x +27 3x2,
hay, MPOHSBEREHNE ABYX CPEAIX HS HETMPEX NOCNENOBTENEHEX LE-
aux uncen Ha 2 Conte npomnueneHna KpalIHHX ancen.

6) Ayers nepnoe neuernoe sueno Gyzer (2x + 1). Torza ana crenyiouxx
3a min nevernuix amena Gyayr (2x + 3) H (2x + 3). HCXONR H3 YEROBME, 53
nnwem pasnocrs: (2x + 3) — (2x + I) (2x + 5). MpeoSpasyem 370 sbipaxe-
ue: (2x + 3) (2x +3) (2x + 1) (2x +5) = Ax + 6x + 6x +9 dx? -2r-

— 10: - 5 = (Ax? - Ar?) + (6x + 6x 2x - 102) + (9-5) = 4. Bauer, Kaaapar
<cpeañero #s Tpex MOCHEOBATENBHBIX HENCTHBIX SUCEA nECTBTEMEHO Ka
4 Gonbute nponanenenus nayx xpaienx uncen.

850. a) Ana naxoxaenna shaders TOTO BIPEXERUR ero ckaNana HYAHO YI
pocrurs. Hweem: a? + ab - 1a- 1b = a(a + b)- 7(a+ b)=(a+ b)(a~7).
B biapaxenne nonctannn sonaniote ahavenua nepemennuix aH b, Hueeu:
(a+b) (a-T)= (66 + 0,4) -(6.6-7)=7-(-04)=-28
2) Zon HAXOKIEHHA IHATERHA TOTO BUPEKEHHR CTO KYKHO YIPOCTHT»,

ne Fasa IV. Mnoeouroms

Tionyuaen: Sa” Sax = Ta + Tx = Sa(a—x)- 7 (a4) (ax) (a = 1).
Tenepu 8 vbtparkeniHe NOACTABUM PaAANHSIE SHaNEKHA NEPEMEMHE A
Hueene: (ax) (Sa~7)= (43) (54-7) =7- 13 = 91.

©) Cnayana ynpocrum Hexoauoe suipaxenne, [ony aes: xb —x0 + 3 —
~3h~x(b-c)—3 (6-0) (b-e)(x- 3). Tenepo noAcTannM 8 nonyuen-
NOE BUIPAIKENHE JADAHNALE MANERA NepeweNHb x, bu €, Hofiaen:
(6-03 =(125-8,3)-(2-3)=-1-42=-42,

a) Zina waxoxkaenna INAYEINA NAMILOFO BLIPEXCHIA ero CINE yt yn
poctars, Umeen: ay ax -2x-+2y=a (yx) + 2-3) = (px) (a+ 2). Te-
Ep» D BESPOENNS NOACTABHM 3ANNHLO ATACA MepEMeEHHEIK a, XH.
Hlony'ae: (y x) (a + 2)= (649,1) (2+2)=0-(-15,5) = 0.

€) Charana nexonuoe auipaxenme cneayer ynpocrure. Mueem: 3ax-- by -
= day + 3bx = 3x (a+b) 4y (a + b) = (a + b) (3x ~ dy). Tloneranun 8 no-
AYYeHHOe BMIpaKeHHe 3ARANHBIE IHOICHNA MepeMEHN a. D, X H y, Hall
zen: (a+ 6) (3x ~4y) = (3 ~13)- (3 (1) 4 + (2) =-10-5=-50.

351. a) Crpynnapyen neni narsworo Miorounenta cnexyiouM oßpaaom:

a ~2a' + 2a— 4 = (a - 2a) + (2a - 4). Teneps puimecen 3a cxoGKH oGuure
Muoxnrean. Mmeeur: {0 - 20°) + (2a -4)= a? (a-2) + 2(a-2)=
=(a-2) {a +2).

6) Crpynnnpyem «eus Oro morounena H ssiecem 38 cxoGxH 06e
snoxarrenn, Tonynaes: x ~ 12 + 6x7 - 21 (x? -2x)+(-12+
=x (PF =2) +6 (0-2) = (x? -2) + 6).

8) Crpynmmpyem sens: nannoro Morounena H BiiieceM 3a cKO6KH 06-
une mnoxkrenn. Hmeew: cf — 2c? + € 20 = (+) + (-2e* = 2c) =

{e+ 1)-2e (e+ I= (e+ Me -20)=(0+ Del -2)= c{e+ 1)(e -D.

1) Crpynmpyen sensi namoro Mhoroyacna H sumiecem OLIS MHIOKN-

Tenn 3a cko6k4. Monysaem: e = 35) + Ot ty) =

IDA DIA DIA + DA =).

A) Crpynnupyen: went nawnoro MHOTOMACNA N BhattECEn 38 ckOBx OÓ1IME

muoxerema. Hmcem: ab be + oe - be? = (ab + are) + eb

F (b+ c)— be(b + cb=(b +e) a? bc.

854.) Ing Toro, #705 aokasars nannoe TOMDCSTEO, RpeoBpasyeM ero nenyio
W npanyıo «act. Nevan wucrs: (x +a) (x + b)= x + ax + br + ab. 3atew
npeoBpaayem npanyıo «acre: x +(a+ 6) x + ab = x + ax + bx + ab. Bune
NO, YO nevaR N RPABAR HACTH AAHUOTO PABENCTES PAD OAHOMY H TOMY
Ke Buipakenuio. CACAOBATENBAO, OHM TORACETREHNO PABIA APYT APYTY-
avr, nannoe prsenerao ABAJETCA TOKACETDOM MPH BCEX a, BX

Tnasa Y
Dopmyast coxpamenitoro YMNOXEHHA
$12. Keanpar cymmts K8anpar pasnocra

859. a) Bocnonsayencs hopnynoii ana keaspata yum: KRAApAT CyMMBI ABYX.
‘suipamenit panch KBANpaTY NEPBOTO BHPAXEAHA NAIOC YABOCANOS NPOHS-
BexenHe HIEPBOTO H BTOPOTO BHPaXEHHA NULOS KBANDAT BTOPOFO aaipane-
mms. Moyaaent (+ PP = 22 + ay + y.
€) Bocnomayenca Qopuy210% ¡ula KBanpara PAHOCTH (KBanpar pasnocn
8yx BeIpaxcHuil pare KaaypaTy NEPBOTO BHPACHHA MHHYC YABOCHHOS
HIPONIBCALMHS NISPBOTO H BTOPOTO BEIPAXCHAÑ NANCE KBAAPAT KTOPOTO BI
pass). Viween: (+ = 81 2-9 ty? = 81 - 18y ty,

861. a) Keaapar, n306pamenmul Ha PHCYHKe, COCTOHT H3 aByx KBAIPATON,
UNOGIAAM Koropnıx paBats a” u 6%, # ABYX NPAMOYFONHHKOE, [LIOUIAH KO-
Topsıx pass a: 5. C npyroki croponts, nnowans wexonnoro keanpera
panna (a +6). x. ero cropona pasa (a + 6). Tipnpannrem ary noua
(a + BJ eyume mroutanel nayx Manuıx kaanparos (a° u ") mpamoyront=
muxos a - b. Mucem: (a + by = a? + b? + ab + ab = a? + b+ 2ab,

6) Keanpar, wso6paxennnsit Ha pHCYHKE, COCTOHT H3 BYx KBANPITOB,
‘nnoutaat Koropkix pases (a — 8) n 6°, M ABYX NPRMOyFOnsEmKOR, nous
an xoroperx pasuix b (a ~ 5). C ApyroR cropouii, nnowen’ HCXOAROFO
KBANPaTa pabhia a”, T. K. ero cropoua pasta a. TIpkpasnsem ary nnowans
@ cymme nnowianell apyx Mankıx keanpatos ((a — 5)? u b} x npamoyrons-
muxos (b (a — b)). Hee: a? = (a 5) + 6° + b(a—0) + B(a—b)=
E + ab—B + ab-b

862. a) MlpeoSpasyest nantioe nöipaxenne no hopmyae keanpara cyNMul. [lony=
aem: (2x + 3)? = (2x) +2 2x +3 + 3° = 4x" + 12 +9,
6) TIpeoSpasyem nantioe sbipaxenne, socnonssoeanunics opMyAOÏ KBan-
para pasnocra. Hmeem: (Ty - 6) = (7y}° -2-6- Ty + 6 = 49y° - 84y + 36.
8) Mlpeo6pasyem xahoc smpaxenne no popryne xeazpara cymmsl (eM.
Mo 859). meet: (10 + 84)? = 10? +2 - 10 - Bk + (86)? = 100 + 160k + 6442.
1) Tipeo6paayem namnoe bsipaxenue no gopyne KBanpara pasHocTH (CM.
Me 859). Monyuac (Sy - 4x} = (Sy)? -2 > Sy -4x + (40) = 259° - dy +16,
2) Nipeo6paayen nannoe mupaxenme no opmyne koaapora cyamu. Un-

uy 1 uy
eu: (sete) “ap +2-46-504{20) = 250° + 2ab+ 6°.
©) Tipeoöpasyem zarmoe Buipaxenne no dpophyne Koazpara pasnocra. TTo-
2 2
nysseu: (Ge) -(r) 2 qm (nf =

mn + dr,

126 ‘Fase V. Dopuyını compauiennoeo yunosenun

38) Tipeotpaaye aannoe stipaxenne no hopmyze keanpara pasnocTa.
Tionyuaen: (0,3x~0,5a)* = (0,33) + 2: 0,3x -0,5a + (0,50) =

= 0,09 - 0,3ax + 0,250".
3) TipeoGpasyew nannoe surpaenne no fopmyne xsanpata cymMul. He
em: (10e + 0,1) = (106)? +2 - 10c - 0,19 + (0,1p) = 100? + 2cy +0,01.
) Tipeoöpasyem oGe sacra aantoro pancxerea. CHaxana npeoßpasyem
nesyio sacre no hopmyne xBanpara paanoctn: (a — bY = a’ - 2ab + B.
Awanorusno npapaa acts pasta: (b - a)? = b - 2ab + a? = a’ ~ 2ab +B.
Tlpasaa u newas ¥acTu OAMNAXOBO!, CACADIATCABNO, AAHHOC PABCHETEO AB-
NAETCR TOKAECTBOM npH BEX a Mb.

8) Inn HanGones YAOÓHOTO BEIMACIENNA mpencrasim «Hcno 61 xa 60 + 1.
To popmyae ksanpara cymmsı ancen nme: (60 + 1)? = 60" + 2-1 - 60 +
+1? = 3600 + 1204 1 = 3721

872. 6) Tipeoöpasyem nannioe pupaxere no ee xpanpata cyan:

(+0) «(3 J 4263-52 (65) tt.

875.6) Packpummaen ckoGxn, nonbayach Gopuynoit keaapara cymusr. Barew
npHsonkM nono6mite «nene. Hmeem: (2a + 6b) - 24ab = 4a" + 24ab +
+366 - 24ab = 4a? + 368"

877. a) Pacxpoem cxoGxu H mpHsenex nonoGus1e arexsi. Monyaaen:

(a+ 3)(5-a)-(a- 1) Sa+ 15-0? -3a-(a’-2a+ 1)=2at IS -a?~
na? +2a~ 1-2 + 40+ 14,

€) Packpoem 5 aauxom BHPAIREHH CKOÓKH mpHBenen NOMOÖHBIE “NEAL.
Hmeen; (5 + 2y) (y — 3) (5 — 207 = Sy + 2° 15-69 (2520) + 4y)=
= Sy+ 2p — 15 6y— 25 + 20y - 4ÿ =-2y" + 19y-40.

878. a) Pacxpoem B AaHHOM BEIPAKEHHN CKOOKH N NPABEDEM NONDÖKLIE LIEHEL.
Mlonyuaem: (x — 10) = x (x + 80) = x7 - 20x + 100 — x — 80x = OF = 7) +
+ (20x - 80x) + 100 =-100x + 100.

B nonyuexnoe exipaxeane NOACTABUM sananuoe 2nauenne nepentenmoh x.
Hañem: -100x + 100 =-100 - 0.97 + 100 = -97 + 100 = 3.

6) Pacxpoem 8 AaHHOM BEPEXENHH CKOÓXIH H IPHBEJEM NOAOÖHLIE YEMA.
Miscem: (2x + 9) — x (dx + 31) = Ar? + 36x + 81 - Ar? - 3 lx =(47 4%) +
+ B6x- 31x) + 81 = $x+ 81. Jloncrasnm » nonyuennoe BEIPEKEHHE 3Ha-
seme x =-16,2, Onpenenum: Sx + 81 (16,2) + 81 =-81 +81=

1D) Packpoeu Jamon BMPAKEWIN CKODKH K NPHBEREN NOROÔREIE went.
Tlonysaea: (2x +0,5P - (2x 0,5) = 4x? + 2x + 0,25 — (4-21 0,25) =
Sr + 2x4 025 — 4 + De O25 = (ax — 4) + (2x + 2) + (025-002
Tloncrannı 3nauenne nepemennoli x. Hmeen: 4x = 4 + (-3,5)=-14,
1) Pacxpoen ckOGKH 8 3TOM BUIpAKeHHH H TIPHBEACM NOROÖHBIE LICHLL.
imeem: (0, Lx — 8)" +(0,Lx+8)'=0,01% — 1,6x + 64 + 0,01x" + 1,6x + 64 =
= (0.016 + 0,01) + (1,6: — 1,6x) + (64 + 64) = 0,022 + 128. Tlonerannm »

512: Keadpam cunas u weadpam pesmocmar 127
nonyaennoe aupaxenne 3auenHe x = 10. lloaysaem: 0,026 + 128=
02 + (10 + 121 +128 = 130.
879. a) Packpoem cxo6ki à newoli «actu ypasxenua npHBeaeM noxoÓme:
nen: Hmeem: 2° — 12x + 3627 - Br= 2; (2° =x) + (12081) = 2-36;
un E
0 =,
aaa eg
6) Packpoem cKoßkH B NeBofl YaCTH YPABHEHHA M NPHRENEM E NAHHOM
ypastiexnn nonoóne arenss. Tlonyuaem: 97 + S4x— (9x? + 6x + 1)=
= L'un 9x? + S4x — 9x? — Ge — 1= 1 nan (9x! — 9x) + (Sd ~ 6x) = (+1
nm 48x = 2 wan x ees
48 24
1) Pacxpoeu cxoGxn » enol sacra ypanucnns, 3ateM mpusenem nonoß-
Hô senor. Micem y = y (7 Oy + 25) = 2:97 y = 7 + 10y—25 = 2:

0-7) + Cyt Oy) = 25 +2; 99 = 27, omeyra y = ES =

1) Packpoem CkOGKH B neBoli YacTH YPABHENHX A npnBenem nonoómble
suena: 32y 167 + 16)? —40y +25 = 0; (167° 169) + (32) —40)) = 25;

> 23.25.

880. a) B xesolk «acrx ypasuetux packpoem ckOGKH. 3aTeM 5 3TOM ypasnenns
npnaezem nozoönse anenss. Honysaen: x — 10x + 25 = x7 = 3; (6x7)

2 22.

— 10x 3-25: -10x = -22, orkyaax

=10
6) B nannom ypankennn sosnenem 8 keampar cyMmy 2y + 1 H nphaezem

mono6nsıe nen. Tlonyazem: (2y + 1
Ay + = Se 5-1; 4y=4:p=1.

AP = 5: 4y + Ay t 1-49 = 5;

893. ») lepsoe cnaraemoe npeacraanset cobol KBanpar svicna a, TpeTbe Cha
Taewoe ksampar uncna 6, Tax Kak BTopoe cmaraeNoe PABNO yanenmony
IPOMARSAEAIO @ u 6,70 AMA TpEXSITEH MOXHO NPRCTARITE, A BH
KBAMPATA CYMMÉI uncen aH 6.

Monyuaem: a + 120+36=07+2-0-6+6 =(a+ 6).

1) Tiepnoe craraemoe (1) npencransaer coGoH keanpar eran, TpeTbe —
xnapat mepewennof z. Bropoe CIATASMOS PABHO YABOCHHOMY NpOHIBERE-
mo 1 u 2. CnegonatenbHo, nantioe BSSPAMENKC MOXO NPEACTABHTE B BM
ge xeaapara paanocru uncen Luz: 1-22 +2 = 12-129 2 =(1 2.

898. a) Bropoe cnaraenoe npencrannaer cobol yanoennoe nponssenenne b ma
HEKOMBIÍ OAHOWIEH (koropuim TpeOyerca zamenuro +): 20b = 2 > 5-10,
Cnenonatemno, rperse cnaraenos npencramnaer coGo Keanpar “mena 10,
1. e. 100. Tiponepn aro. Helierautemno: & +20b-+ 100 = (6 + 10).

6) Bropoe cnaraenoe npeacragaser cobol yanoennoe npowssenenie anc-

128 Trans Y. Copuyn corpaunmaso punomeaur
na 7 na WeKOMB onnounen: 14b = 2 - b- 7. CnenoBarenbno, NEPBOS cne-
rsemoe npencrasnaer coboñ $”. [powepum 370. Jleñcranreneno:

BP 145 + 49 = (647).

8) Bropoe caarsemoe npencrannset coGof ynaoemHoe nponserenne dx H
uckomoro onHouncna; 24xy = 2 - 4x - Jy, Crenosarenbko, Tperse crarae-
Moe npencrasaner coboñ knanpar uncna 3), +. e. 97. Tiponepum 370. Mei
eranrensno: 16 + 24xy + 9? = (dx + By),

©) Bropoe cnaraemoe npencragnser coBoli ynsoeunoe nposssenenne 7g H
weKoMoro onhosnena: 42p4 = 2. 3p + 7g. 3panurr, neproe enaraemoe npea-
crannger coGoñ keanpar nca 3p, Y. e ‘9p’. Tiposepum 310. leïcreurem-
10: 9p? - 42pq + 499° = 3p — 74).

£899, a) Tipeoöpasyem mantie sHpaxenne, BuNIECR 30 CKOOKH sax «mHhÿc».
Veen: 1 + 4a~ af = - (1 - da + da). Torza no dopuyne xeanpara pas-
HOCTH men: — (1 — de + 4 20)".

6) 3anvwem namnoc aupaxemhe B Taxom anne: 9° - 42a + 4=

ja -2- 3a : 7 + 7. Orciona no dopmyne xeanpara pastocra ween:

90° - 42a + 49=(3a—7).

8) Buinecem » aiiioM ebipaxehin 3a CKOÖKH aux «amuycn. Amen:

24ab ~ 160° - 9 = -16a" + 24ab — 95" =~ (16a? - 24ab + 96°) =
=~ ((4a) 2 : 4a - 3b +(30)). No dopuy1e xsanpara paanocrn HMeen:
= (16a" - 24ab + 98°) = — (4a - 36)"

1) 3anntueu aaHHoe ssipaxenne B CNEAYIOUIEM Bune: —44ax + 1210? +

+ 4x? = 1210 -44ax ~ 4x" = (11e) -2- La: 2x + (2x7. No popmyne
Kksanpata pasHocTH nonyuaem: (1 La) -2- 1 La: 2x + (2x) = (1 le 2x).
A) Tipeo6pasyem narnoe sbipaxeune. Buinecem B UCKOAHOM BEIPAKENAN 32.
CKOÖKH 3Hax «munyo». Mmeem: ded 250" - 0,16 = {tod + 2507 +
+0,16) = - (250 — ded + 0,160) =-((ScJ' - 2 - Se 0.4d +(0.4a)). Boc-
"NONESOBABUNCS DOpMyNOË KBAAPATA PAIMOCTH, MONTY HASH:

- (Sc) - 2: Se 0,4d+ (0,447) = - (Se - 0,40)".

e) MpeoSpasyem nannoe pripaxenne. Monyuaem: -0,497° - Lazy—y? =

= -(0,49x° + 1,4xy+ y"). Bocnonsayenca dopmynoñ keanpata cysts.
Tonyuaem: — (0,49 + 1,419 + y") =- (0,72 + 2 0.7% +=

= (0,7% + yy.

900. a) Chasana npeo6pazyem natınoe atspaxcenue no «bopuyne keanpara pas-
nocta, Monywaem: y? - 2y + 1 = (y— 1). Tenepo 8 nonyaenmoe Bupaxenne
TONCTABHM 3anaHHbIe SRAMCHIA NEPEMERHOR y. Tipn y = 101 snauenne He-
onworo Bipaxetmg puexo: (y~ 1) = (103 ~ 1) = 100° = 10 00

1+ y= LA

0,16.

901. a) Beiparenne {x + 10) npunnmacr MOROMATENBROS 3HAMEHHE ApH MOBEIX
anauewsx nepewennoii x (icno LO ronoxurensHo, # KESAPAT mepemen-
Hof x ~ BERHAMHA HeoTpHuaremsias). Jnasr, nepageucrao x + 10> 0

$12 Kesópam cyrus u caadpam pasmocmu 129
BEPMO TIPA MOÓLNX 3haTEEEX x.
6) Tipeo6pasyen Beipaxenne ( + 20x + 100) no dopmyne kBanpara cym-
mer. Hmeen: + 20x + 100= 2° + 2- 10-2 + 10° =(x + 10). Jlanmoe anı-
Paxkene NeOTPHLATENSHO pH MO Snauchnx NepeMenoH x, Shar:
27+ 20x + 100 20 pepo np moGsix snaweuHax x, a MPK x #—10 Bepno M
Wepasencreo x" + 20x + 100 > 0, Taxnm 0Ópasom, ebipaeHhe
2 + 20x + 100 > 0 npn moßaix mamemmtx x ne sept.

902. a) TipeoSpasyem zamoe ssspaxenne no opmyne weanpara paHoCTH.
Nonyuaem: x ~ 30x +225 = 27 - 2: 15-x+ 157 = (x ~ 15). Hamnor sur
paxenne HEOTPMILITEAGHO PH MOGLX 3HAUEHHAX epemennof x. Cneno-
Batensno: (x - 15) 2 0.

6) B nantiom ssipaxennn puiniecem 34 CKOÖKH sak «munyc». Ameca:
ep (29 + y Mpeoßpasyen naunae mepexcune no
‘bopmyne koanpara pasuocra. Tonyuaem: — (5 2x9 +37) = (x y}. Bite
paxemie (x —y)' scerna ncorpanarensnoc. Seas Beipaxenne — (x - y) 6yacr
OCT MpHIHMETE HETONOXTEMMDIE sHavena, Maxi —x +2xy y SO.

904. a) Tleppoe crarsemoe npencrasiser coGok xBanpat onnounena

2
Lila E ) perse enaraemoe npencrannner coSoR 3”. Bropoe

cnarmemoe npencrannter COGON ynacennoe NPONIREZERHE 7 amena 3:

“2-3: Mpeotpaayem supremo (22 +3009) mo dopuyne

2 2
Koanpara cyumst. Monysaes a] is (+) 5

4
6) Ananorwsno npeoßpasyem nannoe smparenne: 250 - 30ab + 967 =
(Sa)? - 2+ 50-36 + (36) = (Sa - 367.

5) Tlepnoe cnaraemoe — KBAIPAT nepemennoli p, a TPETLE — KRanpat «mena
2. Tora BTOpoe cnaraemoe 107xH0 SEITE paBHO HX YABOCHNOMY POH3BE-
aeumo, T. €. 2 - p+ 2 = 4p. Ho ono paeno 2p, CnEROBATENSHO, NAHHOS BBI-
Paxenite Hema NPEACTABHTS 8 Bune KBANpaTa aayanena.

1) Ananorumno a) npeoßpasyem nannoe seipaxkende: ah ye
2
(33) ae

| (eh)
3 5 35

a) Nipeo6paayem nannoe supancenne, Hmeem: 1005? + 9c? - 60bc =
= 1008? - 60bc + 90° = (105) — 2 106. 3c + Be} = (108 - 3c).

Sn

130 Fasa Y. Oopuyns coxpawennozo yunoınemun

©) Tlepaoe cnaraemoe npenctannaer coboÍ keanpat OAHOWICHA 7x:

492° = (7x), a TpeTbe cnaraeMoe — ksanpar Onhounena By: 64)" = (By).
Torna stopoe cxaraemoe nano Gere pasmo 2 - 7x - y= 112xy. Ho ono
paso 12xy. ZuanınT, naunoe BLIPAHHE NPCACTABHTO 8 BHAC KBANPaTa
Abyanena NEBOIMOXHO,

2k) Fipenerannn 37 suipaxcenne 8 Takom mine: Bly’ 162 - 72y2=81y-
= Tayz- 162°. Tlepen TpeTomM CAACUEMBIA crow sax (MHHYON. BHauHT,
RANDE BBIPAMEHE HETBOR MENCTABHTS B BE KBANPATA ABYYAEHA.

3) Amanita a) mpeofpasyeu memos reparer Henn

La ana (La) 220 Le
Ten br 5) 2-—a-2b+{26} =| 2b

905. a) Tlepnoe craraemoe (2°) npeactasnset coboi KBSAPAT suipaxeuita Pa
TPerue cnaraenoe - kuenpar uupamenma dy. €. x= (7), 16y" = (Ay)?
Bropoe craraemoe paso YABOCHHOMY MPOKZBERERNIO BPEXEHNE x” m

eV = 2-27 ‚Ay. Tonysaent: Y Bry? + 169° =o 26 44
(2? 4y?)}, re, nnanpar paznoctn snpamenun dy,

$13. Paznocre keanparon, Cymma pasnocre kyOor

912. a) Tax vax NpOMSEEAHAE PAIMOCTH ABYX BMPAXEHAR H HX CYMNB paBHO
PAMOTE KBAAPaTOS ITAX enipanceatni, mony aeM: (X= y) (x+y) =p?
3) Towenseu MecTamn craraemste 8 nepstax cKo6Kax: (7 + 3y) (3y=7)=
=(3y +7) Gy— 7). Yuenoxun cyumy 3y +7 na pasnocts 3y- 7. Hueem:
Gy + 7) By~ 7) = 9? - 49 (cm. 912. a)).

915. 1) Ananornuno 912 a) nonyuaem: (10p* — 0.39") - (10p? + 0,397) =

10p*Y - (0,39? = 100p* - 0,099*.

916, 6) Tax xak NpoNIDEACHHE CYMMLI H PAROCTH ABYX MHorosnenon papHo
PASMHOCTA HX KeanpaTOB, TO HCKOMELÍ OAHOwACH (TOT, KoTopuif TpeÖyercn
BIIACATO BMECTO *) 8 «Banpare nomken Ósrre paren 16° Monyuaew:

(4yY = 16y”. Bnaanr, nckomsık onsossen dy.

918. a) Max TOTO, roue BGIMONNNT BBIUNCACINS, CHaYANA npeoßpasyem an
oe Bsipamene. [ips YMHOXEHHH paaHOCTH ABYX YHCEN Ha HX CYMMY TO
IYUAEM pasHocts kBanparos 9rux uncen: (100 — 1): (100 + 1) = 100°- 1? =
= 10 000 — 1 = 9 999.

919, a) Aux Toro, ro npousmecra BrSWACIA, MPCOSpaayem xamnoe npO-
wapeacune. Tipeacrasine aucao 52 e Bae (50 + 2), a uncno 48 8 une
(50 - 2). Mpa yunoxenun nonysaenr 52 - 48 = (50 +2) -(S0-2)=

= 2500 ~ 4 = 2496.

8) Mepen Tem, xak MPOIBECTH BHMMCHEHIR, MPEOÓPASYEM HCXODOE NPO-

nasezerme. TIpencrasnm no 6,01 kax (6 + 0.01), a ameno 5,99 = D

(60,01). Hix npouasenenne panto: (6 + 0.01) - (6 - 0,01) = 6° —

= 36 - 0,0001 = 35,9999,

613. Pasrocme xsadpamos. Cua u pmocme xydos BL

922. r) Zammurem zannoe aıpaxenne w raxom Brune: (~7ab— 0,2) (0,2 - Tab) =
= (Tab —0,2) (Tab + 0,2). Npowssezenne cysowet m PASHOCTH m8yx MHO-
ToureHos pasvo paswocTu HX xaanparos, Monyuaem:

(Tab - 0,2) (-Tab + 0,2) = (-Taby — 0,22 = 49a*b* - 0,04,

923. a) TlepesmonuM cHasana nepasie ane cxo6xu: (0,5x—7) (7 + 0,5) =
=(0,5x — 7) (0,5x + 7) = (0,5%) — 7 = 0,257? - 49. Nlonyaenmsih muoro-
unen ymmoracn Ha (4x): (0,25x° — 49) (Ax) = 0,25% - (Ar) — 49 (Ar) =
= + 196%,

927. 6) Cuavana nepentioxcios wnoroanents (2a + 6) u (2a — b), Baten nony-
Verb MRoroWReN yMHOXHN Ha (4a? + 6). Floayuaew
(2a + b) (da? + 6”) (2a- b)= (2a + 5) Qa- dyad +8

= [Ray (4a? + b*) = (da? ~ 8) (dar + 5°). Tax xax npowapenenne
PASHOCTH ABYX BSIPEENVÍ H HX CYMMSI PANO PAIHOCTH KBARPATON ITHX
sispamennii, umeem: (da? — 6°) (da + 6°) = (Aa)? (9) = 160° - bf

929. 6) Tlepemnonn wiorownents (3 - m) à (3 + m), samen yranoaaam m ua (4)
{nounenxo nepemHorkits ontoruien mm ka Kaka ren MOTOR (m — 4) 1
GIAN NONYAEHANAS npoirsbeaeni). FloToM cnOMHM 314 mpoibenenm.
se Um = 4) + (3 ~ m) (3+ m)= (m - Am) +0 - m) = me dm + 9m =
= (m m) — 4m +9 = 0 — 4m + 9 = —Am + 9.

931. r) Buinecem y zannsnx ABYX cnaraemuix 2a cKoGKH OH MHOMNHTER
(2x — Ty), Hmeem: (2x - Ty) (2x + Ty) + (2x ~ Ty) (19 -2x) =
= (2 Ty) [(2x + Ty) + (Iy- 20)] = (2x Ty) -(2x + Ty + Ty 2x) =
= (@x-79)- 149. Tlounenno nepemnoxna onnounen 14y wa kaos unen
Mnorounena (2x — 7y), nonyuaem: (2x = 7y) - 14y= 2x: 14y 7) - 14y=
= 281) 98).

932. a) Pacxpoeu 5 xaNHOM ypanıiennn cxoBKH à MPHBEAEM ORDÖRBIE ane.
Flonyuaem: 8m (1 + 2m) - (4m + 3) (dm — 3) =2m; Sm + 16m? — [Cm —
=F] = 2m; 8m+ 16m? - (16m? - 9) = 2nr, 8m + 16m? — 16m? + 9 = 2m;

Bm +9=2m Bm - 2m ES
6) Pacxpoem cxo6xn 8 nenofi # npasoli uacrax sToro ypannenus. Zaren npH-

‘Beaten nogoGnise «nen. Hueeu: x — 3x - (1 ~ 12x) = 11 ~(5 ~ 6x) (ét + 5);
A 3x4 366 = IE (S— 6x) (5 + 6x); x — 3x à 36° = 1115 (ÉD

= -9: 6m = -9, orkyna M =

6

=11- 05-366) x = 3x4 166 = 11-25 +367, x Int
14

=7.

+ 36x” - 36x" =11-25;-2x=-14, otxyaa x=

933. 2) Packpoen ckoßkn » nezol sacra gatmoro ypasnenia (5 nepsow cnyuse
310 MPOWBEREHNE CYMMBI M PAIHOCTA AByX BRIPAXEAN, BO BTOPOM CAYUAS
310 NPOMBEREHNE onHoNnetta H MNOTOANEHA). 3aTeM nphBenem NOOBHEIE
«nener. Tlonysaem: (6x — 1) - (6x + 1) - 4x (9x + 2)= -1; (6x)? — 1] -
368° ~ 8x = —1; 361-361 - 81 =—1; (361 — 360) - Be = 1 +1;

132 ‘Fnaea V. Gopuynès coxpausemoeo yumsenun

—8x = 0, orxyma HAXOAHM x = 0.
6) Packpoeu ckOBKH 8 nesolí M mpasolí vactax anor YPABHEHHR (8 Ne-
Boll "ACTH YMHOXHM a Ha KAKA “UH MHOTOYICHA (8 — Ja) 4 BLITTEM
Nonyseunsie PAIE RH, 8 MPADOÑ VACTH YMHOKMM CyMMY ABYX HHO
rowtenos Ha nx pasnocrs). Himeem: (8 - a) a = 40 + (6 3a) (6 + 3a);
Ba—9d =-40 + 6~ Ga)’; 8a - Va =-40 + 36-94”. TIpumenen 8 aannon ypan-

esa nonoSusie «nera. Flonyuaen: Sa =-40 + 36;

939.6) Tax xaK pasriocT6 KBANPATOB aByx seipaxeunit pABIIA nporcsne zero
PASHOCTH 3THx BBIPAKENHÜ H Hx cymmta, nonyuaem: 2 = (0-2) (0 +2).
Aanautil muorounen (c* — 2") pasnomen ha npowsbenenue ABYX MHOroHNe-
won (c—2) # (c+ 2).

A
a) Tipenerannm apoGs 2 an E o dopmyne panocru xsanparos

2 Gy -

16 4

5 ennenporrnenevun anyx noronenon.

940. r) Tipeactanim weno 64 kak 8°, a 25x” kax (SxŸ. Pastiocrs Knanparon
Hoya superen pana poto noc am Rp 10%
oymmsı. Tlonyaaen: 64 — 2527 (8 ~ 5x) (8 + 5x). Rara mno-

rounen 64 — 251" pasnoxen ma npomsenenne aByx muorowuenos (8 — 5x)
mars)

m) Tipeneranum 1604 war Pd nau (Aca, a 9a? war Pa? un (3a)°. Fo
‘opmyne pastors KBanpaToD ABYX Bbipaennh nonyvaen (cm. 940 r):
166 - 9a" = (ded)? - Ba)? = (ded - 3a) (ded + 3a).
943. 8) Tlepea astuucnennem 3nasenna TOR apoOu ee nano ÿnpocrirs. Hncnn-
TEM 3HAMENOTE XANNON APOÓH npencTasnaioT COSO pastocTu xnanpa-
08 «cen. TIo dopmyne paswocTH KEANPATOD CN PA3NOKHM HHCTHTEM H
27? _ (83-27X53+27
Fons RN 51)

3 3
2-7 [+0] Muoroanen npenerannen

ween:

Tip som Mer coKpaTicr apoGs.

944. r) Tlepea sbisucneneM sHa4enHR JANHOTO BHIPAXEMIA ETO BAJO yTIpO-
ce. PasnoxuM JAKBOS BEPwDxRCANE no dopmyne pasnocTn Keaaparos
{pasocts knanparon nays BuipwKenii paBna MPONSBCACHALO CYMMbL STHX
spaxenuh u ux pamocrh): 0,283? ~ 0,217° = (0,783 ~ 0,217) (0,783 +
+0,217) = 0,566 : 1 = 0,566.

513. Possocmssandpamos. Gras upasvocme 0e 13

952. a) Tipencrannm meno 36 «ak 6”. Tax kak abipaxenne (2 — 5) npeneTaB-
aer coßoii xeanpar spaces (26 - 5), To no dopuyne paamocru Kean
paros uMcem: (25-57 ~ 36 = (2b - 5) -6°=(25-5-6)(25-5+6)
= Q@b- 11) (26+ 1). Dannoe suipaxenne pasnoweno na npowssencnHe
asyx mioronenos (26 11) u (2b + 1).

955. Ynpocrim HCXOANOS suipaxenie. PAINOCTE KBANPATOD n8yx BBIPAMEHIH
PABHA npowsbegennio CYMMES THX BRIPIDKEHKÍ Ma HX paanocrs. Monywa-
em: (n+ Mom = (n + 7 — n) (1 + 7 + m). Npipomim » cxobkax noaoönsie
nenas. VimeeM: (1 +7—m) (n +7 +n) = 7 (2n +7). ance Buipawenne
pH 2OSOM Harypanstom N AENHTCA Ha 7, 4.7.

956. Nycre mensurax Cropona mpauoyromnxe Óyner pasna x cm. Toraa ero
Gonsuas cropowa Gyaer passa (r+ 5) cm. Flosroxy eropona mentnero
KBARPaTa pants x CM, a ero nuiouians. cM’, Cropona Gonsutero KBanpara
panna (x +5) cm. 3uauirr, ero nnomans pana (x + 5)” cx, Hssectmo, sro
maouame OJIOTO kanpara na 95 cn Gombue nnowaaM apyroro. Orciona
monyaaeu ypaanenne: (x + 5)° 95 = a. Pewnm 970 ypantienne. Hmeew:

w+ 10x + 25-95 =.

2 2 + 10x = 95 25; 10x = 70, orxyaa x= 2 =

7 (cm). Torza BTOpan cropona npamoyronsinka pana x+5=7+5=

12 (cm). Teneps nahen nepumerp 2Toro npaMoyronsitnxs, OK pasen:
p=2x+2(x+5)=2x+2x+ 10= dx + 10 = 4 : 7 + 10= 38 (om).

958. a) Bocnonesyenca hopNynoR keanpara pasHOCTH Abyx Btpaxenu, Hueco:
025 - 0,689 + 0.36 = (0,52) -2-0,5x-0.6y + (0.6 =(05x— 06.
6) B nannom asipaxena BsIMecen sa ckOGKH tax «men. 3areM pas
OHM Bbipaxkene no opmyste KBanpara paanoctn. Monyunem: & +
+ 0,6a - 0,09 = - (@° 0,6a + 0,09) = {a ~2- 0,3. + 0,3*)=-(a-0,3).
5) Bocnontayenca popmyaol ksanpara cymmsz. Monysaem:

2 2 a
rara 2 Zara] (40242
CERTES totali] NES |
r) Chanana 8 naınoM BLIPAKeN vi BRIMECEM 12 CKOÖKH anax cu yc». Batem
npeobpasyent ero no dopuyne cyums. Fonyanem: -16m? — ran 91 =
— (16mm? + 24mn + On) = - ((4m)? + 2 -4m » In + (3n)] = — (Am + In],
960. Fycre x 4. — spema 10 ornpabnenna nocana. Ecnu Typher Öyaer wari x
AKCNEARONOPOXAOÍ CTAHUHH CO CKOPOCTLIO 4 KM/S, TO OH NOTPATHT Ha CBOÏ
nyn (x + 0,5) 4. u mpoltzer 3a 370 upema paccroanne 4 {x + 0,5) km. Bont
Ke TypHCT 6yAET HATH CO CKOPOCTHO $ KM/4, TO BpEM, KOTOPOE OH NOTPR-
‘THT Ha nopory Öyner paano (x 0,1) 4. 3a 370 ppema OH npofiner paccron-
ue 4 (x + 0,5) x. Tax ka, no yCNOBH!O, paCCTOMHE 10 CTAHL OHO m
To me, cocranım ypaunenne: À (x + 0,5) = 5 (x — 0,1). Pew nonysennoe
ypannenme, Monysaem: 4x + 2 = $x — 0,5; $x — dx = 2-+ 0,$; x = 2.5 (u).
Noactasım nonysennoe sHayenne nepemensol xB grpamenne 4 (x + 0,5)

134 Fees V. Gopuyns coupeursmmas0 yunoanun

"alien paccroxune, KoTopoe nommen Guia npokn Typner. Hacen;

4 (e405) =4- (2,5 +0,5)= 4-3 = 12 (em),
962, a} Tipuuenan Gopuyny pasnocra xySor, monyasent €” — d =

(ed) (e? + cd + A) (pasoere xySon neyx empueru passa npowaDe-

AMO PAJHOCTA STK BLipaxeHHi M HENONHOTO KBAAPATA Ux CYMMB).
T) Uucao 125 mpencrasnaet co6oli ky6 sucna 5: 125 =$”, Mo dopmyne aus
eymnsı kyGon mucen umeen: 125 +a) = 5 + ai = (5+ a) (25-50 + a)
(cymma xyGos ¡IByX BupaxeNH} papa MPONIBEZEHIO CYMME ITHX Bbipa-
>xennit H HENOINOTO KBANPATA HX pasHocTH),

3
964.0) pose 4 npeacrasnser code E) ETS

Cyuma xy608 anyx Buipaxennit pasta MPOHIBENENNIO CYMMSI STHX BEIpa-
Kenne H HCNONNOTO KBampara HX PASHOCTA. TaxuM O6paioM, nozyaacı

1 ' À ab

O] +0 | (2. (3) pet (E. a ab ig

3 2 2 2 2 2 4 2
970, a) Cuanana npeoGpasyen autos nupancenue, Pasnonsin no dopnyae

cys xy6on (cm. 964 e)): 38° + 37° = (38 +37) - (38? 37 : 38 + 37) =
15 - (38° - 37 - 38 + 37%), Dro uncno nenurca na 75 6e3 ocraria.

$14. Mlpeobpasoname uexeix nmpamennä

976. e) Packpoem CKOÓKH B ZARNOM BeIparKetH (OHO ABARETEA LEME, T. KB HEM
Me NenombsyeTca aeneHHe Ha BEIPARENIE € MepeMenHoR). 3areM NpMBEAEM
monoGxise unen. Flonywaen: (4x — $9) Gy + x) + (2x y) (x — 2) =
= (Ax: dy Sy By t dx ox Spx) + (De nm pr Dy Det yy) =
123 = 157 + 4x — Say) + (20 = y= day #292) © 1209 = 154 +48 —
= Sige +23? — yx — hey + 2g? = (CIS +292) + (A + 207) + (2a Sy
xp a) = “1397 + 64 Dey.
977. a) Packpoe E naHHoW BEIPSKEHIH CKOÓXI! K NPHBEREM nOAOÖHLIE UNE.
Nonysaem: 3 (4-4) x + 2) + (Gx—1) (5 — x) = 3 dx + 2x — 8) +
+ (5x 5-37 + x 3 Ge 2x8) + 16x -5- Bx = 30 -6x- 24+
+ 16x = 5-30 = Gx? = 3x") + (6x + 16x) + (-24- 5) = 10x - 29.
6) Packpoem » 270m BEIPAXENI CKOÓK M NPHBEACM MORDÖHLTE eH.
Ween: (b ~ 5) (7 — 5D) — 2 (b + 2) (6— 6) = (7b - 35 - 50* + 256) —
=2 (6 + 2b ~ Gb — 12) = 7b - 35 ~ Sb? + 25b—2 (8° — 4b — 12) =
16-35 - 50? + 25625 + Bb+ 24= (587 - 2) + (76 +25b+8b) +
+ (235 + 24) = 75° + 406-11.
3) PackpoeM E aHHioM BLIPAMEHAN CKOÖKH u npusenem HOOK «Ex.
Tlonyaem: (c ~ 7) (4 + 2c) ~ 6¢ (1 - 30) - (9c- 2) (3 — €) = (de ~ 28 + 26° —
= 146) - 6c + 18e — (27e - 6 - 9c? + 2c) = 4c — 28 + 2c" ~ 14e 6c +
FIRE — 270+ 6+ 967 2e = (2 + 180° +90) + (4c 140 60—210-2c)+

$14. Npsobpesceaie uonesx spare 135
+ (28 F 6)= 290" — 450-22.
1) Packpoem 8 3TOM BMPAKEHHN CKOÖKH N NPHBEREM NOAOÖHBIE MICHEL.
Viueen: 5 (a +3) (5 - a)- (a-8) (1-a)- 2a (30-6)=5(Sa+ 15- a
-30)- (a-8- +80) -60° + 120=5(2a+ 15-a)-a+8+a-8a-
- 60° + 120= 10a + 75 507 — a+ 8 + a? -Ba- 6a + 12a= (Sa? + —
- 6a") +(10a—a- 8a 12a) + (75 + 8) = -100° + 13a + 83.
a) Packpoem 8 nation BBPAKEHYH CKOÖKH H MpiReneN NONOÖHKE "EHEN
Tonysaew: 4 (2a + 1)(5a-3)- 3 (a + 2) (a + 3)= 4 (100 + 5a—6a—3)—
-3 (a? + 2a + 3a + 6)= 400 + 20a - 24a - 12 - 3a? - 6a-9a- 18 =
= (40° - 3a?) + (Aa - 15a) + (-12 - 18) = 370° - 190- 30.
€) Packpoem 8 na RBIPAIKEHMN CKOÖKH H npupenem NOADÖHBIE Te.
teen: -2 (6 — 3m) (m + 1) +5 (m- 4) (m- 5) = —2 (6m — m? +6- 3m) +
+ 5 (m? — 4m ~ Sm + 20) = -2 (3m = 3m + 6) + 5 (m? — 9m + 20) = -6m +
Sm? ~ 12 + Sm? - 45m + 100 = (6m? + Sa?) + (6m - 45m) + (-12 + 100)=
= Um? Sim + 88,

980. a). PACKpOCM B JARHOM BEipaKeHHH CKOÖKH H MPHECIEM IOAOÖHBIE EME.
Hime: a (1 — 20) (a? — 2) (2- a) +47 (3a- 1)=
=a(t -4a+ 40) - (20-40 + 2a) + 120° —4a = a - 4a" + da —
— 2a? +44 a ~2a+ 12040 = 12a" + (dd +0 ~ 4a) + (Ad —
= 2a!) + (a—2a) + 4= 12a" + a — 6e — a +4.
©) Pacxpoeu CKOÖKH 8 AAHHOM upaxenai N npHsenem NOAOÖNGIE MICHEL.
Tlonyuaem: (7 — 3x) — x ($ x) (x + 5) - 5x ( or
RR) - 100 + 25x = at Gx + Ox" — 25x + 0’ 101 + 25x =
= (P= 10) + (Or? +0) + 92 + (25x + 252) =D SP +

981. r) Jannoe eupaxeue ARTSETCA LleMbIM, T. X. B HEN HE HCTOMAYETCR 26-
TERHE HA Bupaxenne c nepemennol, [Ipeoßpasyem ero. Tlepaoe cnaraeuoe
npencraBHM B aisle XBAAPATA H1OPBOFO BEIPEXEHHX, MOS YABOCHHOS PO»
MIBEACHHE MIEPBOFO H BTOPOTO BHPEKEHHÄ, FLAIOC KRANPAT BTOPOTO BLIpa~
enns. Bropoe cnaraemoe IIPERCTADNM E BAIE PAIHOCTA KBAAPATOD 6) H
$x. B rpersem cnaraemou nepemnoxHM nowieHHo epemeHhyi0 x ¢ 12y 4
(6%), a zarem cnoxun nonyuenaste anpaxeunn. Hmeen: (x + 69) — (6y +
+ 5x) (Gy 5x) + x (12y —6x) = (7 + 1209 + 367%) - (36 25%) + 1209 —
= 6x) = + 125 + 369 — 36y + 25: + 1219 - 6x7 = Oo? — Ex + 251) +
+(36y = 369%) + (I2yy + 12:9) = 20 +0 + 261) = 208" + ary.

984. 6) B nepaow cnaraemom mupaxenne (1 — a”) npencraeum kax (1 — a) (1 +a).
‘Tenep MOXHO BbLIECTH BO BCEM BLIPEMEHAH 34 CKOGKH OS UD MOMO
(1 + a). 3arem packpoem ckoßkn u nponenem monoGnte tenet. Hmeem:
(1a}(1—@) + (1 +a) aa 1)= (1 -a) (lay ta) +
++) +e) -2a(1 +2) (a= 1)=(1 - 0) (14a) + (1 +a) (1 +=
=2a (1 +a) (a= 1)= (1 + a)-[(1—a) + (1 +27) -20@— N=
= (1 4a)-[(1—20+ 2) + (1+) + (2a? + 2a)] =(1 +a) (1-20 e+
+ 1 +a? — 2a + 2a) = {1 + a} - fa? + a? - 20) + (-2a+ 2a) + (1+ =
=(1+0)(0+0+2)=2(1+a).

136 Fasea V. Bopseyns compausannoz0 yamoenun

990. 3) Beinecem 8 RaNHOM BBIpaAeHM 3a CKOOKH DB Mnomirrem Aa. B
cxoGkax oGpasosanacs pasuocre XBAMpaTOs A8yx BBIpaRenu (Sc # 1), KO-
‘Topan pabita NPOHSBEREHMIO Hx CYMMBI H pasnocru. TTonysaeM: 1000c* -
-4a= 4a (250 - 5) = 4a - [(Sc} - 12}= da © (Sc - 1) (Se + 1). Jannoe wor
paxeinte pasnoxeHo Ra npowsBeaetHe OHOWTENa da 4 ABYX MHOTOANENOB.
(Se- DH (Se+ 1).

) p'npencragnm Kak (pY, a 16 xax 4°. Nonyuaem pashoctb xuanpaton
Buipaxenni p° u 4°, Koropas pasıta MPOMIBEACIMIO HX CYMME M PAIHOCTH.
He: p ~ 16 = 27 — 42 = (p — 4) pf + 4) = (p— 2) (p + 2) 9 + 4).
Muorounen paanoxen na npomssenenne tpex mmorounenos (p — 2), (p + 2)
n@ +0.

998. r) Buthecew 3a cxoGka DGA Mroxareno 9a. B cxoGkax noxysaem BBIpa-
KENNE, npeactantaouiee coGoi cyMny KyGon. Cymma xyGom anyx #eypae-
ui panna npowsserenito CYMMB THX BbIpaxeHfl N HenonHoro KeadpaTa
mx pasnoctu. Mueew: Sax’ + Say’ = 9a (0 + y) =9 (x + ph — +).
Muorownen pasnoxen Ha nponsseaenue onkouneta 9a H AByX KHOrOANE-
Hos (x+y) uP —ay +7).

1002.6). Crpynnmpyem 8 aantton Buipaxxenin wropoe, TPETEE x HETREPTOS
‘CHATAEMBIC, BLINCCEM 3HAK «MHHyC» 32 ckoßkn. Bripaxenne 0° + 2ab + 5?
npeacranum 8 sie (a + 5) (dopmyna xoampara cymmu). Monysnem paz-
Hoc» Keanparos asipaxennii p x (a + b), KOTOPAR pasa npomaueneno
CYMMLE H pashocTi stux auipamennt: p° = a? = 2ab~ B= p+ (a? —
= 2ab~ 6°) =p" -(d + 2ab + By = p*—(a + bY = [p-(a+ dN] - [p+ (a+
+ B= (p—a~ 6) (p + a+ b). Muorounen pasnoacina wa 12 MOTO,

1004.) Crpynmpyen pa nocnemnirx Seta AABNOFO DESPADKEAVAN aroma
buipaxeune a” — à no dopmy.ne paanocrn ksanparos: a” - b*=(a~b){a+ b).
‚Hanee sumecen a - b 3a cxodkn. Vinee: a-b+ a 8 =a—b + (PB) =
= a-b+(a~b) (a+6)= (9-6) [I + (a+ B]=(a-0)(1 + a+ b). Muo-
FOuReN IPCACTABACH B BUNG NIPONSBEREHNA AEYX MHOTOWNCHOS.

1009, TIycre mepsoe neueruoe ueno Öyner (2x + 1) (dopuyna nesemsoro unc-
ma), TOTRA BTOPOS HeYeTHOE WNCAO. cnenyroutee 3a pans uncnom, By-
ser nmere sun (2x + 3), PasHocTe xeanparor ancen (2x + 1) m (2x + 3)
pasna: (2r + 3% (2x + IP =((2x + 3) = (Zr + 1)] - [2x +3)+ Qe + =
Qe + 3-2 1) e434 2x4 Nya 2 (dr) = 2-4 (eH 1)=8 (EHD,
ro noipaxenne nennen wa 8, 4.7.2,

1016.6) NipeoGpasyem natos ssipaxenne. Crpynmpyem mepasie TpH cnarae-
wa (€ ded w 4). Hx eyamıy Moto npencranırs a ie kaanpara EVA
uncen cu 2d: c + ded + 4d + 4 = (2 + ded + dd") + 4=(c+ 2d) + 4. ocne
npeobpasosarus BAND, sto 3mauenne Buipakenna (c + 24) + 4 scerna
MACHO MOJOWHTEREROS, T. K. Beseiuna (c+ 2d)? HEOTpnUATEABNA H NACHO
A nonomirensno.

$14 Npeopesosanse one anpanerun 137

1019. fipeoßpasyem xannoe ssipaxeHne, Packpoem cKOORH # MPHBCHEM B TOM
suipaxcentuit nonobnbie wrens, Hmeen: (# + 8) - (n— 4)—(n + 3) (n—2)+
+27 (+ 8n-An- 32)— (of + 3m — 2n — 6) + 27 = n° + 8n — An 32—
=P = An + 2n + 6 4 275 (= n°) + (Bn — An 3n + In) + (-32 + 64 27)=
=0+3n+ L = 37 + 1. Ma 2rof 28NUCH BHANO, MTO sHatexme XAMHOFO BBt>
PaXEHUR MpH nenenHH Ha 3 RAT 8 KACTHOM ANCKO # H B OCTATKE |, T. €
Re aennren Ha 3

Aononunrensnsse ynpaxnenna K raane V

1032.2) lipencranum (a + 5)" 8 sue (a + b) (a + b). Umeem: ((a + BP =

((a+ bXa+ 6) = (a + Y (a + 6)”. anee pasnomnm naHRoe BuPEXe-
he, ucnomays hopmyay KBLIPATA CYMMEI (KBAAPaT CYMME ABYX BEIpA-
KCHHÍÍ paper KBAPATY SIEPBOTO BLIPAXCHIA, MIOS YABOEHHOE NPOKIBE-
ACME NEPHOTO M BTOPOTO BBIPAXEMHÍ, IUNOS KBANPUT BTOPOTO nuipance-
nus). 3aTem packpoem ckoBKH 4 MpHBETEM toAOGHBLe wem. Tlonyaaem:
(a+ by (a+ bY = (a + 2ab +B) (a? + 2ab +B) =a + 206 des
+ 20h + AB + 2ab? + ab? + Lab” + bt a + B+ (ab + 20) + (ais +
ado + ab") + ab? + 2ab) = al + 6° + Aa’ + bab? + ab.

1035.) B JRHOM BSIPIXKEHHH NEPBOS craraemoe NpEACTABAACT COÉOR KBAMPAT
uncaa a”: a*=(a*Y, Tperwe cnaraemoe - keanpar uucna 4: 16 = 47, a gro
poe craraemoe npeacrasraer coboñ yteoeHHoe npomssenenme MepBOro H
sroporo wnenos: Ba? = 2 - 4 - a”. Cnenoparenbno, ZAHMENÍ MHOTOSTeR
MORTO MpeACTABNTS B BUE KBANPATA pazmocrA Bupanenma (a? — 4),
Hueen: af — 80° + 16 = (a? - 2.4. +4? =(0 A).

8) Bsinecen 8 ZaHHOM BEIpaXxenHH 3a CKOGKH 3HaK «ommaycn, Tonyuaem:
lr-.7- 25 = (-10x+ x" + 25), B cxo6rax oGpasonatoce nupaxenne,
KOTOPOE MOXHO NPENCTABHTS B BANE KBANPETA PAIHOCTH MBYX BEAN
(sueo 25 npencraenaer coboli ksanpar uncna 5, a 10x — yABoennoe npo-
apenesthe nepuoro u aroporo «neos: 10x = 2+ 5 - x, Mee:

-@ - 10x + 25) =-(x- SP.

1043.6) B naHkoM npuepe COXEPXHTCA NPOMBEXENHE PASHOCTH H CYMMEL
ABYX BLIPSKEHHÜ (370 BeMMUHEEI (m + 2) M 3), KOTOpoe PABHO pasnocıu
KBANPaTOS THX BBIPDKEHHÄ.

(n+ n—3) (m+n+3)= [(m +1) — 3] - [On tn) +3] = (mn 4 ny —

(m+ n¥ 9 = m + 2m + 9.

1044.1) Zina peuenha aarworo ypannenna mpeo6pasyeM ero neByto K mpanyro
acta. B neBOÏ 4ACTH CONPXHTCA PASHOCTE KBANPATOD ABYX BHIPAKEHH:
(Sx— 1) (1 - 3x). Pasmocth Kaanparoa aByx 9THX BENHUNN paria npows-
BeneHHIO Hx CYMMI H PASHOCTA. B NPABO HACTH HCXOAMOTO YPABHCHHA
pacxpoem ckoGkn, Mlonyuaew: [15x- 1) + (1 -32)] - ((S:- 1) (1 - 30] =
> 16x" - 48x. Pacpoent ck06kn m npusenew nonobme nena. Hmeew:
(Sx — #1 3x) (Sx = 1 = 1+ 3x) = 167 - 48x; 2x (8x - 2) = 16x? 48;

238 Trees Y. Oopuyne compaupanoze yunananun
2x 8x = 2+ 2x = Gar — 48x; 160 - 4x = 160° — Rx; 161” - 167 - Art
+48: = 0; 44r= 0. Orciona naxogun x = 0.

1048, m) TIpeoGpasyew aro purpanxenxe. Hncno 49 mpencranager cobol keanpa?
snena 7: 49 = 7°, a uncno 9 - 970 3°. Hmecue 49 (y — 4) ~ 9 (y+ 2)°=
=P ya) 3? (+ 2 = [7 4-98 ~ LB (9 +2)P. Pasnocro keanparos
n8yx Bhipaxeimıli pasa NPOKSBENEHHIO CyMMbI STHX BENHAHH M HX PAS
nocrn. Tonyagem: {7 (y-4)F ~3 + 2F=[7- 4)-BO+2)-

- (7-4) + [B+ 2)] = (Ty - 28 ~ 3y 6) (Ty - 28 + 3y + 6) =

= (4y — 34) (10y — 22), Besmecem o6uine MHOXHTENH 3a CKOOKH (H3 KAKAOË
#3 JAHNLIX CKOGOK semecem ou mii mnowrens 2). B peayımTare nonyua-
em: (49-34) (10y- 22) =2(2y- 17) -2(5y-11)=4 (2y - 17)(5y- 11).

1049.5) NpeoGpasyen aannoe mipsxenne. Tak kak Paanocr Kaayparon BUIpa-
EHHÏ paBHA TPOHIBCACHHIO CYMMBI ITHX BEIPAKEHHÄI HA HX PAIHOCTÉ,
MOXeM 3ANKCATE HCXONNOE smparenne B BAe: (37 + 1) —(3n- 1) =
= [G+ 1)-Gn- D]: [Gn + 1)+ Gn~ D]. Packpoen cxoËx # npmue-
xem nonoGumie une. Tloryaac: [Gn + 1)- n= 1)}-[Gn + 1) +
+ Gn~1)] = Gat 1-34 1)- Gat 1 + 3n~1)=2- 62 12m, Mocne
npeobparonoHnl AMANO, STO AaHHOE supaxeune Nennen na 12 np no.
OM HaTypanbHoM 7.

1055.2) Paxnoxum nannoe BUpIKEHHE HA MHOXHTENH, HCNOMLYA POPMYNY
CYMMBI KyGoB: CYMMA KyÓ0B AByX Bbipaxkennil pasa nporsseaeHHio
CAMES ITHX BEIPaKHHH H HEMONHOTO KBANPATA HX paaHocTH. Men:
(e+ IP +2 = [ter 14 27 + P= (e+ 1) -x + 0), Pacnpoen nor
1 npupeaem noaoSupte unener. Monyuaem: [x + 1) + x]: [Gr LP
= (04 ext x)= (4 Lan) [rer DQ tate]

(+ lt a(t det eat (2 OF H+ D)

1059. Tpeo6pasyen nanıyıo dynkunio: pacxpoem cKoOKK 1 mpusene moroß-
nue arent. Monyuac y = (2x: 3- 5 :3 + 2x : 8-5 -Bx)- (1-2-4 +
+ 16x"); y= (6x - 15 + 16° - 40x) — (1 ~ Bx + 16x"); y = Gr — 15 + Lx? —
= 40x = À + Bx — 162; y=(160 - 162) + (6x — 40x + Bx) + 15- 1)
y=0-26x- 16: y =-26x— 16. Flocne npeoSpasozanntl enano, 470 u
nano dynxunH nepemennan x meer nepayıo creneit (x » x'). Caeno-
BATENBRO, AQHNAR DyHkUUA anngerca AMHEANOR.

Miponepam, npuaexnr ni rpadnxy rofl bynkunn Touxa À (-L: 10).
Benwsina (-1)— xoopaknara To4KH À no ocn x, a 10 — Koopaunara ro
TOUKH no och y. Toncraeus à byHKUMIO y = -26x — 16 zamusre anayenna
nepemenHeix x 4 y, umeem: 10 = -26 - (-1)- 16; 10= 26 - 16; 10 = 10.
Pareucrso séinonaerca, crenogarensno, Towra A (-1; 10) nphkaneæur
rpabuxy BARHOA hy.

AHANOMIRNO, NORCTABAREM 8 oTy QYKKUMIO AANEHA KOOpAMNAT TOA
B (0; 16). Mmeen: 16 =-26 - 0— 16, 16 = —16. Pasencrao ne etinontaetca.
Brauwr, rouxa B (0: 16) ne npxnanexarr rpadnay hyneumn y = -26x - 16.

Aoncnvnumenasse yapamuenum x 21800 Y 139
1070.8) Cnavana Aannoe BuIpaxenne NyxHo ynpoctuTs. Mpotasenenne nep-
BX A) x CKOBOK npentasuM 8 ame cyan KyGos cen. Packpoem
rope cxoß&n # npecnem nozoßunıe unen. Hncen: (y+ 5) (Sy +
+25) -y +3) =O? + 9) - y (y +3). Packpoen B AARON paar
CKOÖKH H npusenem nonoónere sen. Hem: (y + 5) - y y + 3)= 3 +
+ 125 -y'~3y =-3y + 125. B nonyuennos suipaxenne MOACTABJAEM 3Ha-
oune y =-2, nonyaaem: ~3y + 125=-3-(-2) + 125=3-2+125=131,
1088. a) lpeoGpasyem namuei muoroasea. Tp EPBRIK cnaraemerx MONO
npencranune u BUE KRanpara pusKOCTA x Hy: x — Zap + y (1 y), Ta-
sn 0Gpasom, weet: 7 23y + y + al = (x) +a Mioßoe weno à
eanpate sceraa nphniacr NCOTPMLATERIMAS MAMMA, . €. (xp) u
a eorphusrensms. CaenopaTensito, MPN CAOMKENAN Mt NONYAEM MEOT-
Piuaremnoe «meno.
€) Mpeo6pasyem nanıoe Buıpaxenne. Tpencrasmm uucro 10 kak 9 + 1.
‚Dance npeoGpasyem LaMHOE BBIPAEHHE CACAYIOUTHM oÓpazom: x? + y? +
+2x+6y+10= + + 2x + 6 +9 + (x7 + 2x + 1) + G7 + Gy +9)=
= (+1) + (y +3). JhoGoe erpaxerue 8 Keanpare Berga APHHHMBET
KeoTpullatenbubie suavenua, 7. e. (x + 1) u (y +3) acera Heorpuua-
‘Tembuol, SMAWAT, CYMMA ITHX BENHAHA ~ HeOTPHUATEMHOE CNO.

Tnasa VI
Cucrembi nanelinbix ypanuennit
815. Jhaneïiubie pastienits © ABYMA nepemeHHDIMM H Mx CHETEMbL

1092.) Hanon, sro AHHeRIHLIM YPABFIEHMEM € JSYMA mepemertisins MAS
saeTes ypannenne anna ar + by = €, TRE x Hy — nepemennste, a, 6 H € =
Nexoropsie suena, B ypannermin 3x - y= 17 nca a = 3, b=-1, = 17.
Creaosaremuo, aanttoe ypanıenne #Meer BHA ax + by = c. HAT, OHO
ADnaeTca DUB.

6) Runners ypasteneu € eyes IepgMeHHEIMN Nassrnaerest ypantie-
ne puna ar + by = c, FRE x 4 y> nepenenante, 2, b H ¢ ~ KaKie-ni60 ac
‚na. Jantoe ypasKeHne He ABNACTCA IANEHHBIM, T. K. CONEPKHT NEPEMEH-
Hy 1017 (7. €. nepemewy10 B KBanpaTE).

1096. Hanommus, «ro » CKOÓKAX IHAYEHHE NEPEMENTON x cTOWT Ha NEPBOW
Mecre, a 2MAMERIE nepemenwoli y— Ha BTOPOM. IIponepan, KaKHe #3 aH-
HAK nap MHGEN ABARIOTCK pelenHaMsH ypaBrteunn 3x + y = 10, noncrasms
BKAKIOM cryHae SAANIBIE sHaNeNTIR NEPEMENNELX x MY.

1) Mloncrasin napy uncen (3; 1) n aannoe ypannenne: 3 + 3+1=10;

0 = 10, 7. e. pasertcrao seitoniaerca, CrezosaTensio, AAHHaR napa due
cen ABIACTCA PEUIENHEA ypeBHeHns.
2) Mapa ancen (0; 10): 3 -0 + 10 = 10; 10= 10, e. pasencrso sepno.
asis, anena (0: 10) - pemenua sToro ypanmenna.
3) Tlonerapa napy yncen (2; 4) m noxonnoe ypasnenne. Hmeem: 3-2 +
+4= 10; 10 = 10. Pagencrao msmmonreren. CnenoB3Tensno, napa sncen
(2; 4)- Tome pewenna ITOTO ypanenna.
4) Auanorsano MOXCTEBAREM 8 aantioe ypapteme napy wicea (3; 2,5):
3-3+2,5= 10; 11,5 = 10. Buzo, ro panenerno He Bumonnaeron. Bera
ter, napa “cen (3; 2,5) He ABINETCA peuleHHeM RANHOFO ypannenna.

1101.2) Bocromayemes caolicreamu ypasnenni, Ina Hasana nepenecem cna-
raemoe 6x Ñ npanyıo ACTA HAHHOTO YPABHENHR, H3MEINB ero 3HAK, MMe
em: -y= 12 — 6x. Jarem pasnennm ode nacr roro ypaBnenux Ha (~1).
Tlonysaem sapicumocte TEpeMEHNOH y OT nepemennot x: y= 6x — 12.

6) Bocromayenca cuolicruamn ypamenu. B nankan ypasnenmn nepe-
Hecem caaraeMoe Ty B MPABYIO HACT pannes, uaMenmn ero ak, Ja
nee pasnenum 06e sacra oToro ypabnenna ua sueo 10. Monywaem:
1000-1 Inn Ty, x= em Oy,

515. Namens paaveriun € dayne nepewans un uma 1a
1102.) Tiepenecem nepemennyto x 6 mpanyio Nacrs HANNOTO ypamenkx, Homes
MB ee anak, Hen: y= 27 - x. Tloaeraasm, HanpHMep, snauenus x =0,
x= 1 ux= 10. Mlpnx=0 nonyuaem y=27-0=27,npax= 1:
9227 ~1=26; npu x = 10 umeen y = 27 10 17. Taxun oópazom, no-
yum pM pewewaa roro ypannenke: (0; 27), (1: 26) 11 (10: 17)
6) Buipasum mepemennyio y Hepes x, Hem: -y = 4,5 ~ 2x; y= 2x - 4,5.
Tloacranum 8 nonyxestioe ypanenne Tp sHavenna x: x = 5, x = Oi
x= 3. Hneeuc np x=5y=2-5-4.5= 5.5; npu x = 0 nalnen
y=2-0-45=-4.5mpux=-3y=2-(-3)-4,5=-105, Buauwr, peuie-
Wa ZaHHOrO ypastenna Gynyr sBngraca napıı uncen: (5; 5.5),
(0,-4.3), (-3; -10,5).
8) Bupasi 8 XBKHON ypapteniin nepeMennyio y sepes x, Tlonyyaen:
2y= 12-34; y= = 6 ~ 1 5x. Tloncrannm 8 370 ypaBnenne anasenun x = 0
mx=-10.TIpnx=0y=6-1,5-0=6;mpux=2y=6-1,5-2
-3=3,mpMx==10y =6—1,5-(-10)=6+15=21. Takis oOpason, peune-
HUM AABOCO ypanmenua BOTES naps uoen: (0; 6), (2; 3), (104 21).
7) Bispasim nepemennyto y sepes x. [lonyuaew: Sy = 2x + 1, orkyna

2x41
y. Moncranu 8 nannoe ypannenne TH anemia nepemennol

XW HAÑACM coorsercreyionne MM sHaseHHs NepenteHHoll y. Tips x = 0
a eg eye LS,
5 5 5 sos

1104.a) Bocnomssosasumes CRORCTSANIH ypasHennit, suipasHm #3 3TOTO ypab-
HEHNA Tepemennyto Y sepes MEPEMEHRYIO x. [nx ITOTO Mepeuecem ca
Taenoe 3x 8 npasylo WaCTS YPABNeRKE, VIMEND ero ak. aTeM pasme-
Am o6e macTa ypannenHa ma (-1). Mloayuaem: -y = 10 — 3x: y = 3x - 10.
‘Mur nomyunne SEBHCHMOCTE nepeMentioll y OT nepemennok x. Tlomayact
nonysenno dopuynof, Moxıto naliru Geckoneuho Moro peueuH nan-
Horo ypannenna. Halinem rpx pemenus. Bossmen 7pH NpoHBOmBsIHLIK.
ANCIANA EH BEINNCAHN COOTBETCTAYTOLME MM JACA y. [ycTs = I,
22 = ~2, 35 = 3, Torna nepemenias y mpnnunaer snavenHr: yı = 3x: — 10;
M3 =~ 10; y= HT po = Bey — 10; yo = 3 > (2) — 10; yo = 16;
9 = 30 - 10; y =3 +3 — 10; yy ==1. T. e, pernemtann Aannoro ypasite-

hn nanaıorca cremponre napsı suce: (1:=7), (2 -16) # (3; =D).
1112.6) B aaumon ypasmenun Konhdnuneimu PI nepemennsix OTMAAAIA OT
nyna. Bar, ero rpabkoM aanneren npawas. TIpmman onpcaenneren
ABYMA Toukawn, Burpasim 8 AHNOM ypasıtenmn NEPEMENEYIO y Mepes ne-

142 fnaea VI Cucmouss runsedonsx ypaenenu

3x1 5x

2=3-15x y=

pemenmyto x. Mee: 1,5x + 2y = + B nony-

ennyio ZARMCHMOCTE Y OT X MOACTABHM ABA MPOHSBONENBIX SHEMEMAN x:
xi =0,x3 = 6, Tax stiavenian NEPEMENROÍ x COOTBETLTAYIOT sHaseHHa

nepemennoh y: y, =

3-155,
1.
nnockocm toux À (0; 1,5) « B (6; -3) x nposenen: vepes nux npanyıo.
Dra mpamas — rpaßınk ya 1,5x + 2y=3.

y

+ Ormerum na xoopamnarnoh

8) B aanvom ypasnenum rondeurs np nepemensex orar or
nyns, Cregopatemtuo, ero rpapHxom ABNSETCA npamar. IIpaman onpene-
ATA ABYMA roman. “BUIPAIHM m AANVOM ÿPABHENI NepeMeRKYIO y

sepes x: = x. orga y= À. B nonysennyto aaenemocrs nonera-

6
BAM ABA MPONSBONBIBIX INAYCIMA x # Halle COOTBETETBYIONHE MM 3na-
sea y. Tipn x = 0 y = 0, apm x = 6 y = 1. Ormeri na Koopannarnoh
naocxocra Town A (0: 0) u B (6; 1) m mponenem Hepes nux npamÿio.

5) B aanwow ypasuewun xoopouuventid pu nepeMenuisix OTAMAAI OT
una. SHAH, ero rpagunxom senaevea npauas. Buspasios y uepes x. Me.
eu: Syst lp au 22441). Mpex=0y=

; npax=-3 pe 4.

Asanoruuno 1112 8) erponm rpacpitx aauHoro ypaBmemna.

515; anoto peavonus & deyun nepememnsnn y Ox cucmeties 143

a) Hantoe ypabnenue Mono samcars n aune 1.2x + 0» y=-4,8, Penie-
HAM HAUHOTO YPABHEHHE cry aT NAPbI MUCCA, B KOTOpHX x = 4, 8 y —

npowwonsuoe «ueno (1.25 = 48 x = ZEE ; y = 4) Samir, pagano
x

anHOTO YPABHEHHR HANAETCA NPAMAX. MPOKORKNAA Hepes TORKY (~4; 0) 1
Mapannensnas och y.

©) Hannoe ypannenne monıro sanıcans a anne 0 - x + 1,5) = 6. Ero pente-
6
— 4a
pa
x = nponuonoioe RENO, naar, rpaÿikon Aatnoro Ypanıenna ABNAET-
ca mpanas, npoxoaauiaa vepes Touxy (0; 4) m napannenunan och y.
y

HAM CAYAAT ape YICEN, 5 KOTOPUX y = 4 (1,59 = 6; y

4
3
2
1

ores HE:

144 Fraca Vi Cucrmests mana ypaenenu
T118.2) JOMHOxHM 06e WacTA JANNOTO ypasnenka ta HanMenbines ObuIEe
xpaTwoe anamenateneñ apo6el, . e. wa eno 24, Tlonysaen:

=. as 20-42 240:(16-09-3-
s 12 E 12

~ (18 ~x) - 2= 0; 48 —3x— 36 + 2x = 0; (-3x + 2x) + (48 - 36) = 0;
+ 120, ormyna.x= 12.

6) Bomnoxum 066 acts namioro ypanhenua Ha Hanmemunee oues
kparnos anamenareneñ apo6ch (Ha wncno 8). Hmcen:

(

—(2x+ 1)+8=0;4x- 60-211 +8 = 0; (4x 2x) +(-60- 1 + 8) = 0;

2x+1

-8+8=0:(1-15):4=

2x-53=0;2x=53, orwyaax= ES 26,5.

1119.2) Chaxana ynpocrum nauoe suipaxetine, Packpoem cKoGXH H mpnoenem
moz0Önsıe unensi. Hmeew: a (a- 4)— (a+ 4)" = a? da (af + Ba + 16)=
a - dq~ a -8a-16=-12a- 16. loncrassn 8 namyyennoe Suipanenne ana-

senmea=—1-1 nome aaa

2-2} 16-15-16
4

©) Ynpoctum namtoe Burpaxenie. pacxpoeu 3 tem CKOSKK x MPHBEREM
noaoôtie wen. Mmcem: (20 - 5) ~ 4 (a - 1) (3 + a)= 4a" - 200 + 25 —
=4(3a-3+ a - a)= 44° - 20a + 25 - 4 (20-3 + a") = 40? - 200 + 25 -
8a + 12+ 40 = - 28a + 37. Tenepb 8 970 Buipakeue NOACTABAN 3i13-

Senne a= 4 „Monysaen: - 28a +37=

EM 104 42,

3 3 "7

1120.) Hanon, ro Peuchnent CHCTOMB YPABHEHA € By MA TepeMeRHE
MN HASLIBAETOR Mapa SIISMEHN NEPEMEMHEIX, OOpAMIBOUIAR Kanne YPEP-
Heine cHeTeMBI R Bepnoe panenerno. Tonçranmm 1 Kaknoe HS ypasnennh

341=4 > [4=

203-122 É =2°

cHerembt napy seen x = 3, y= 1. Monyuaem: { Bropoe

PABCHCTEO He sbinomxeTos. CACHOBATEABAO, naNHaN hapa Yucen Ne ABAA-
erca peweimem CHETEMAA.
6) Ahanoriauo 1120 a) NORCTABMN B Kaxaoe YPARHHME CHCTEME satan

515. Aunoünse pasnenun ¢ deyne ropero u ux cuemenes 145

ar

MOnnmIOTeR. CnenoperenbHo, napa SHcen x
as anno} cucremu y aan.

Hase suavemen xy. een;

1124.a) 3anuweu cuctemy 3 Taxon Bune:

paga ya: y = x = 1 4 Jo = E ax erponme pad or

sano 8 1112).

Koopanuarui sioGolt TOSKH npaMOÏ yı AANMOTA peueHHEM YPARNEHHR
x y = 1, a KoopannaTsı moGoÏ TOSXH MPAMON y: xBNMOTCA pemeHnen
ypastenus x + 3y = 9. Koopannaret Tons nepeceseHna NpAMUX Yaoanc-
‘TROpAIOT KK MepBOMy YPABHEMHIO, TAK H BTOPOMY, T. €. ABAAIOTER peuie-
nem cuctembl. Tpabme nepecexaiorca a roue À (3; 2). Inaur, narınan
CHCTEMA ypasneunl uMeer EAMACTOERHOS pemenme: x = 3, y = 2, 7. e. na
pa ances (32).

2y=4-x a
sy=10+2é] 10,20 zu Tonnen POSO made
y yet
5 5
ipyrocimá yı = 2 - y= 2 + (Ka crpoure rpadusck, moxasano » 1112).

Ananoruuno 1124 a) koopannarsı rom À (0; 2) asnmotes pemennen
aaunoï cereus: YpaBıtennH. Shaw, AAHEBR CHCTEMa ypasneni mucer
enmaorsentoe pewenne: x= 0, y = 2, 1. e. mapa uncen (0; 2).

146 Lone Vi. Cuemense nuaintax ypaeneru)

8) Januwem m cnenyioiem BAS AQNNYIO CHCTEMY ypaBHeHu:
penx 2
1 3x+14 + Mocnponm rpabuin yaxtunii y =x M
3x+14 | y=

3x+14
127 GT Minen xoopnimatas tom wx nepecevenns, Toxuoh ne-

pecevenia nanırux rpapikon snnserca TowKa À (-2; 2).

1126.2) Bummer, xaxopo ssansnoe pacnonoxkenne rpaguxos ypanxenit
AaHnOË CHCTEMBL. JÍNA Toro BEIPAIHM H3 KEXIOTO VPABHENHA y HEPES x,

Ypasvenwenny =3+ Len

- sanatores munefinbie dynkunn. Vrnonsre rodea npr:

MX, ABTMIOLDANCA rpadianen rx yc, pas mea ( ı CE 3 De

NT, 3TH NPAMBIE MePeCEKAKOTER, H CHCTEMA HMEET EMHHCTEMHOE PÉLLEHNE.
1) Butte, KakORO BSANMHOE pacnonoxenne rpaguros YpaBMeHHË 2aH-
‘Holi ccremis. JLAA ITOFO BSIPASMM M3 DIEPBOTO YPABMERHA nepeMeHEYIO y

$15. Aumeünwo paananun c Jeyam epa u ux cure 147

2y=3-x [y=15-0,5x
sepes mepemenyıo x. Monyunex pars
man y= 1,5 - 0,5x wy = 0.5x sannıoren auueñncie dyrkum. Yraosere
KoDppHUNEHTEI MIPAMEIX, ARISIOUNLCA MpadHKANH ITAX PY HUM, onn-
BAXOBEI (OHH pass —0,5), a TOUKH mepeceuenna € OCHO Y PASABA,
Cnenosarenbo, pame, aBnatoumeca rpaquxam ants GyaKunlh,
apannensius. Hair, 97a ChCTEMa Ypaniennil pemennil He HMeeT.
2) BEACH, KAKOBO BIAHMHOS pACNOTOXEHHE TPAQHKOS YpaBHEHHi Nan-
Holt cuoremss. Las TOTO BEIPASM HS KAMOTO YPABNEMHR EPEMENNYIO y

Ypaane-

-3y=2x-11,

sre ae [EN

nanaior, Dro ogHaNaer, 4To mo6as napa smcen (x; y), 8 KOTOpOi x — npo-
vanomnoe sueno, a y = tx anaseren pemennew encreum. Creve
Ma uMeeT GeckonesHo MHOFO pemenuil.

$16. Pemenne enerem auneiinsix ypasuenn

1138, a) Koopannarst 10G0H town mpamoi, senstomelica rpabnKom ypanne-
mam Sx — 4y= 16, sanmorex peuiennem ypasnenun Sx—4y= 16, Anano-
emo KOopannareı moGoñ Touch RpaMoÏ, smtmo1elica rPAAKOM ypaB-
nennn.x — 2y= 6 ~pewenue ypaenenux x 2y = 6. Koopanwast roukH
nepeceueHMa NIPXMBX HOHES YAOBNETBOPATD KaK MEPBOMY, TAK H BTO-
POMY ypabteMIO, T. €. AEATTLCR PELUEIDICK CHOTEMBI 3THX YPABHEME.

(Sx-4y=16

[x-2y=6

obom nogeranoëkx. Bsipasim wa Broporo ypaawenhs x Mepes x= 2y = 6;

2y + 6, Dance MoncTaBHM 8 fieppoe ypaBtieHue Buecto NepeMeHHOH x

Beipamenne x= 2y + 6. Uneem: 5 (2y + 6) - dy = 16. Peumm monyuermoe

ypasnenne € mepemennoh y. Monyxaen: 5 - 2y+ 5-6 —4y= 16; 10y + 30

Tloayyaew cucremy: { . Peux sty chevemy ypastternit cn0-

148 fresa VI. Cuomeuse nuneintx ypaanenud)

Tloncrasna 8 ypanıtenne

1

Hueew:

Hirt 4 Mapa uncen

A

1
KoopaHne ros nepccexenn rpauxos ypabucntn (4. 3

1141.2) Peusm aty cucreny ypabnemnh cnocoGom noacratiosKy. Casara
YnpocruM Kaxnoe Hs ypanıtenuh nano cucrembx ypabmenub, packpi
(Sy +8x—24y =7x-12
ckoGkH N nphsena NORDÖHBE ane: ie ar poly 46
-19y+8=7x-12 [8r-7x=19y-12 fx=19y=12
12x- 27y=11y+46'12x=38y+46 "|12x=38y+46
Tloncrasum snasenne nepemennoï x (x = 19y - 12) vo eropoe ypabnenne.
Himeem: 12 (19) — 12)= 38y + 46. Pewum nonyaennoe ypasneme c nepe-
Mento y. Mucem: 228y — 144 = 38y + 46; 228) - 38y = 144 + 46;
190y = 190, orkyaa y = L. Tloacrasum 8 ypasnettne x= 19y~ 12 nonyueu-
Hoe man savenne y = |. Halinen: x= 19 » 1 - 12 = 7. Crenosatensno,
PewiettHeM aro cneremu ypaBuenitl annsercn napa uncen (7; 1).

1142.9) PeumM aannyto cucrewy enocoGon noncranonkı. Ciaana mpeo6pa-
YM xaxuoe 13 ypaBHeNHit Aanıiof cHcTeMbs. HOMHOAHM Kano ypan-
NenHe Ha HCHO, PABNOS HAHMEHBINEMY OÓIIEMY KPATHOMy amamenareneñ

Peukm 31 CHCTENY ypasnennil. Chavana BHIPAWM H3 BTOPoro ypaBHe-
Ha Nepeweniiyto y Hepes nepewennyio.x H nonyama: y =8 — 2x. Jlanee
TOXCTABANEM 2 nepsce ypapnenue aMeCTO MepeNeHHOA y BPAMEHHE

(8 — 2x). Hmeem: 2x — 3 (-8 - 2x) =-24, Peumm nonysennoe ypanıenne
€ nepemenmoh x: 2x — 3 (-8 — 2x) = 24; 2x + 24 + 6x =—24; Rx + 24 = 24:
8e 48; x = -6. Noncrapum B ypaBeme y =-8 — 2x nonyuennoe anaue-

$16, Pewonue cucmen nune ns yosorenuit 149
nie x =-6. Tlonyuaeu snavenne nepemennoi y = -8 — 2 - (6) = 4. Pewe-
Hem AANKOH CHCTEMA YpaBHEHKH sanmoTes napa uncen (6; 4).

1147.) Peux narmyto cncremy ypasmenuh cnocoGom cnomenna, B ypanne-
AUX TON CHCTOMEA KOM HUE TSI MPA Y XBAMIOTEA IIPOTIMONOJOXABI>
MH HORAS, COB NOANENKO JEBBIE H npaBbre TACTA ypanırenul, no-
ayu ypammenne c onnol nepewenoli: (2x + 119)+(10:— 11y)=15+9;
2x+11y+ Le 1y=15+9; 12x = 24, orkyna axon x = 2, Toners
‘HB » nepace YPASIEtIMO CHCTEMEN BMECTO x "MeO 2, walinen sMSNERNE y
2-2+11y=15,4+11y=15; 11y=11,y=1. Mapa “cen (2; 1) - peute-
ne nano cucremes.

1149.2) Peurm cacrewy cnocoGom cnoxenna. Flowrenmoe cnomenne ypanne-
ii aaHOÏ choeur we MPHBERET K HCKMOCAMIO QAHOÏ N Nepemen-
1x, TostoMy YMHOXMN sce “neha! roporo ypaanemmn Ha uncno (-2), a
nepsoe ocranın Gea namenennlt. Toraa xooppuueHTH pH nepemennol
78 tlomysemmtix ypasnemmax Gyayr MPOTHBONOMOPKNBINM "MENA:
[ie 3y=10

= 40+ 14y-=-10" TeTspe NOWEANOS COMER vpn mama x
ypasnenmo c oAHOR HenaBectHOR: (40s + 3y) + (40x + 14y) = 10- 10;
40x + 3y-40x + 14y=0; 17y = 0, orxyna y = 0. Tlonerasuu 80 propos

ypamnenne suanenne y=0 y nalinem, ey panen x: 20x- 7 - 0 = 5; 20 = 5;
a) .

1151,6) Peut xamyro cucreny ypamnennh cnocoGox cnomenna. Tonfiepem
MHOKITEAH K YPABHEHNAM CHOTEMBI TAK, TODA! NOCTE YMHOMENHA HO

nu KOH MINENTET TIPA nepeMeHHOË u cTanH IPOTIBOTIONOAREME HAE
au, Y MPOKNB nepsoe YPaBHEHKE cucrene 18 0.4, a propos Ha (-0,5),

0,24 -0,24v=0
0.2u-0,85v=-5,45
roh cucremis: (0,24 - 0,240) + (0.21 — 0,859) = -5,4$; 0,20 - 0,24y -
45
—1,09
ne Y =$ m nepaoe YpABHEHHE CHCTEMEI H HANZIEM COOTBETCTEYIOMEE EMY

Inanırr, pewenteM AANNOË CIICTEML ABIRETOR Napa AGEN (

nonyanıı: - Tenept nounenno croxuM ypankennn

= 0.2u- 0,85 = 5,45; 1,09

AS; v

. Foncragu snaue-

150 nase Vi. Cuomausı uned ypaananı

ancien 05u-06-5= ,0,50-3=0:05u= Bun sue 6 um,

peuennem Jano c#CTEMI YPABHERHÄ RANzETCH napa ancen u 6, y = 5.

1154, Jas Toro, vroßsı nanncars ypanneine npanoÏ, vam mano maitru kb.
Moncrannm 8 ypavtienwe y = kx + b amecto x u y KOOPIDIATA TOGKH A H
oopannaruı roukh B. Nlonysaen cucreny ypasnewak, wa Koropoñ Mono.

32 k-CI)+b [3=-k+b
ee

altra kn b:

O A Pen ns sroporo ypanne-

=-1- 2%. Jlanee noncrammm nepeoe Ypaonenme BMeCTO
k + (1 = 2k);

vos b aepes k:
nepemennoh b supaxemse (-1 ~ 24), nonysaen:

3=

2k 3=-3k- 1;4=-36: À + Teneps noncra-

3
ve à nepsoe ypannenne sauce nepemennol k H nahen, YeMy paBHO

5. Monyuaem: = {4} b=3=

» ypannenne npamoh:

ISx-3y=33' |y=5x-11°

ia feat =37 den,
E

[6m-5n=01.{-4) [- 24m + 20n _fa=i0,
Sm—4n=2| -5 "|25m—-20n=10'|Sn=60' |n=12 *
eee els alee fy
axa y = U 3y=0 *llar=3y *
7 10 © 30 Ox -3y: NOx -3y: y

5 Fa z 3 “f el Hu
O2u+0= 39.10 L+=39 | lu +20=78"[y=39-20

$18. Pewenue cucmous neon ypeswonud 1st

j 2x=10+

A fe 0 ps
-20"
E)

1 (4x-3y=0 fl3r=39 [x=3
[pre y=13Í9r+3y=30]3y=4x "]y=4*

1168. Tlpumem 38 x arr. KONHUCTBO JIETKOBHIX ABTOMOÓMNEÍ, a 3 y MIT. — KORH-
MeCTBO rpysoBux aBToMoÖnneH. Tora KONHYECTHO JIErKOBEIX H PPY9OBLX
aeromoômref cocramnxer (x + y) ur. lo yenomo ono coctasnaer 22 urr.,
nosromy: x + y = 22. MABECTHO, «To NETKOBLIX MBIUKH Gexno Ha 8 mereitic,
en Fpyaonsıx, anasıır: y —x = 8, YroGu OTBETHTE Ha BONPOC TALK, Na-
20 HTA Taxe Haye x iy. KOTOPLIE YAORAETBOPAIOT OABOBPeMeKHO
epBomy u BTOpOMy YPamtenmam, T. 2. peltsTo CHCTEMY STHX ABYK YPAB-

est Br me . Pear cucremy crocoBom cromenna. Hueeu:
pre
(+ y)+ =x) 222+ Gxt p+y-x = 30:22 30 pe 15 (ur).

Tlepemsenuyto x HaXONMTS He MEET cubicna, T. x. B 3ARAWC CMPALIMBACTCA
O konnvecrse rpysonsix arromobnneñ.

173. lycre cxopocre ABTOMAUIHNE Gyner x KM/4, CKOPOCTE DEIA y KM/H,
Tio ycnosino cxopocTs noezna na 5 ka Gonbue CKOPOCTH ASTOMALIHNE.
Orciona nonysaem nepsoe ypamenne: y — x = 5. Ja 4 vaca ext Ha abro-
MaLinHe, CKOPOCTS KOTOPOH pasta. KM/4, TypHCTIA MpoexamH (dx) KM, a
sa 7 sacos esa Ha noesne co CKOPOCTEI y KM/H TYPHCTEI NpoEXATH
(29) xm. 3nas, «ro 06mn nyrs cocranın 640 KM, COCTaBHM BTOPOE YpAB-

yes

(4y+7y=640 *

Buipaamım #3 nepsoro ypamnernia y Nepes.x H nOXyuR: y = x + 5. Tonera-

firm mo TOROS YPABHEHHE EMECTO y suipexkenwe (x + 5) 4 Malinem ma many-

Henne: 4x + Ty = 640, Tlonyugen cncremy ypapnenuit: {

152 Fans Vi. Cueros runeönssx yoasnend

HEMRONO ypanıenna nepenenyto x: dx +7 (x + 5) = 640; de + Tx +35 = 640,
11x = 640-35: 11x = 605; x = 5S. 3hawnr, ckopocTs agro amet pasta
55 «ws, Toraa exopocre noesga pana y = x + 5; y= 55 + 5 = 60 (xm/a).
1174. Tlpumem onto wiicno 3a x, a BTOpoe 3a y. Ecru ncno x yeenuanre 8 3
pasa, TO NONYUMTCA YHCNO 3x. ECIM 4NCAO Y YBEMMUHTS B 4 pasa, TO Nony-
ares co 4). TIo yenositio, cynnea uncen 3x y 4y pasma 47. Orciona
nonyaaen ypastenuc: 3x + 4y = 47, Halínen sropoe ypasicenie: wanect-
No, 470 YABOCHNDe aropoe uncno (2y) wa 1 Gone wena x: 2y—x= L.
a [es 4y=47
Mut nonyann cucremy ypannermii: = Ha sroporo ypanne-
2y-x=1
ma Depas x «eps y: 2y = Myr = 1 -2y.x = 2y 1. Moneranun 8
nepsoe ypannenite mano cIIETEMBI AMEcTO x Beipamenine (2y- 1) 1 no-
ayan: 3 (2y - 1) + dy = 47; 69-3 + 4y= 47; 10y = 50; y =5. Tlepnoe
ueno 5. Halinem apyroe ameno (x): x = 2y-1=2-5-1=9.
1179. Tlycr» coGcreennaa ckopocTe Tennoxona pasta x km/4, a CKOPOCTE Tese-
una y kw/a. Torna nyTb, NPOREHNLIH TENNOXONOM RO TEYERIMIO, pABEH
3 (x + y) KM, a nyrb, npofinentmf HM pora Teuerux, panes 4 (x - y) KM.
Iwan, 4TO oÓuIee paccroanne paBHo 380 KM, COCTABHM ypannenne:
3 (x + y) + 4 (x y) = 380. C apyrofi croponki, a | 4ac no Tesennio Ten-
0x0 npoñlaer pacerosmne, paëmoe | (x + y), Ha (x+y) xo, a a 0,5 m
'parme Texemna - paccrognne 0,5 {x - y) km. B 3rom cnyuae ofinee pac-
cTomane, npofigenHoe Tentoxon0M, pamno 85 KM. Orcio2a nonysaem BTO-
poe ypannenne: (x + y) + 0,5 (x - y) = 85. Hrax, monyuaem cucreuy ypan-
(eke ~y)=380
est
(A
Peux RAMIYIO CUCTEMY ypanıeimmf cnocoGom noaeramonsı. Ciasana u
3TUX YPABHEHARK pacKpoeM CKOÖKH H npnaezem NOROÖHLIE craraembie.
3x+3y +4x-4y =380 [7x- y =380
[x+ y+0,5x-0,5y=85' [1,5x+0,5=85
3070 YPARHCHHA nepemennyto x Hepes y: Tx = 380 + y: y = 7x - 380. Tlon-
cran Bo BTOpOe ypanucue amecro y supaxeune 7x - 380 u nonyanm
ypannenne e onnoll nemmeecroi: 1,5x + D.5 (7x - 380) = 85; 1,51 + 3,50
175, orkyaa x = 55 (xm/a). Toraa ckopocTe Tesennn pan-
na: y= 7x — 380 = 7. 55 - 380 = 5 (xm/a).

Baupasın ua nep-

nom: |

1184. Tlyers ncxoanoe neyanawnoe aneno Óyaer 3 . Cymna ero undp pasna
10, nonyuaex nepaoe ypagtenue: x + y= 10. Nepecrasus appui sTaro
"CIA, nonyanı «Men YX , HE y= UNICO AECATKOB, Ax — SHCHO IMM,

locas storo weno expe yrenmasasor ua eamuy (x + 1). Torna
«exo moxkHo sanmcare 10y + (x + 1), ro wueno Bande Combine exo

$15 Parera cuemes maint yoann 153
To ancna 10x + y. Vineem wropoe ypannenne: 2 (10x + y) = 109 +(x* D.
x+y=10
200x + y)=10y+(2+1)"
Ynpoctuw stopoe ypankenne (packpoem CKoOkn 4 npnsenen onoGae
remo; 212780 far y=10 2+7=10

"doors 2y=10y+ x41 [20x+ 2y—10y—x=1"[19x-8y

Bupasun y H3 nepsoro ypasnenma: y = 10 - x. Floncrapn Bo propos
Ypabnenwe secro y suipaxenue 10—x. Tlonysacm nuneñtios ypabnenue
€ 0anoR nepemennod: 19x ~ 8 (10—x)= 1; 19x- 80+8X= 1;27x=81;
+= 3. Haine y, moacrasns x = 3 a nepsoe ypapuente: y= 10-3, orkyaa
y= 7. Swann, aneno xy - 370 ueno 37.

1188. Tlpunen 38 x re ILIOUAb, KoTOpaK Gbina 3ANATA TOM OSHMAIMH KYASTIpa-
MH, 8:38 ÿ Fa — ROMANE, KOTOPAR ÓSINA SAHTA NO IPOBENMH KYNTYPAMH.
Tlo yenoBmto, nox OaHNBIMH KynsTypamu Gino zarro na 480 ra Bankure.
Caenonarensno, nonyasem ypasenne: x — y = 480, 80% naowaa o9H-
Mux moro 3anucars kak 0,8x, Inauur, noe Toro, Kak 80% osuurx y6-
pas, ocranocs (x ~ 0,8x), T. e. 0,2x (ra) osnmsix. 25% aponsıx sanumen
ax 0,25y. Cnenogareneno, nocne c6opa APOBLX KysTyp ocTanoch
(y ~ 0,25y), T. e. 0,75y (ra) aposbix. Masecruo, ato MLIOMANE non O3HMBE-
MH oxasanacs ma 300 ra Melbule, HeM non ApOBLIMA kyabrypama, [Tony-
diem OTCIONA BTOpoe ypasneme: 0,75y - 0,2x = 300.

Tlonysus cneremy ypantiennf: {

y= 480
Hueeu cacremy ypaeniennii: ar . Bupasnu x #3 nepsoro
ypasnenun n noncranu xo sropoe: x = y+ 480. Monyuaem:

0.1$y--02 (+ 480) = 300; 0,75y 0 2y - 96 = 300; 0,55) = 396; »= 720 (ra).
Tloneraana smavenne nepementioh y 8 neppoe ypaBrcnne, HakoAHM
X= y+480; x = 720 + 480 = 1200 (ra)

Aononunrensusse ynpaxnenan x rane VI

196.2) Chauana #3 AaNIoro Ypannenna sbipasnm nepemennyio y: y= 11 — x.
Tloncrasum nepsoe watypanstioe «ncno (1) smecro x # Halínem, veny a
wom enysae pasen y: y = LI - 1 = 10, Mepeas napa uncen: (1; 10). Hañ-
nem cneayiowyto napy uncen. TIoncranim BMECTO x BTOpOE naTypansnoe
wueno (2). Toraa y pasen: y = 11 - 2 = 9. Crenorarensho. propan napa
since (2; 9). Ananornuno, mph x= 3 y > 11 - 3 = 8. Tperoa mapa uncen:
(3; 8). pu x= 5 y =1l — 5 = 6. Torna serseptas napa HaTypanbHENX 4H-
cen: (5; 6). Jlanee ananorumo noncrasnrem cneayioulne HITYPANERELE x,
HAXOXMM COOTBCTETEYIOLIME HM 3HANENHA Y 0 TEX MOP, NOKA Y He CTAHET

158

nasa Vi. Cuemess nunoinecx ypaenenu

pasen 1. flonysaem eue cenyionne napbı warypanbinix aucen: (6; 5),
(4), (8:3), (95 2), 105 D).

18
6) Berpast cHasana #3 ¡AHMOTO ypasnenux NEPEMENAYIO Y: y == . Tak

Kak x NY — MaTypanbHbie UHCNA, TO MNICAO 18 AOMRHO HEMNTECA Ha X Hae
eno, DTO IMANNT, WTO NHCHO X AOMAHO ABASTICA HATYPANEHEIM ZEMITE-
‚nem unena 18. Mlepesicanss ero mentrrenn: 18, 1. 2, 3, 6, 9. Tloacrannax
OTH 3HaNEHHA MIOONEPEAMO B HEXOAROS YpABHEHHe, HAXOAHM 3HANENHA
nepemenno y.

ERSTEN Ze

napa aucen (18; 1);

mare ty. 18—napa uncen (1; 18);

8

nphx= 2p= 0x 9 — napa ancen (2: 9);

pm =3 y == 6 ape acen (350%

pu = 6 2-2 3 napa ncen (6: 3:

48 =2~ napa uncen (9:2).

=9
mpax ;

1399. 3amtusem nexomoe aBysHasHoe MATO Kak Xy (AAHHAR SAMHCS osHaNaeT,

110 310 HCHO COMEPKHT X AECATKOB 4 Y ExMHHu, T. e. 39 = 101 + y). Tor-
aa nonoe sncno nmeet sun: Lay. Uncno Ixpl moxno sancare:
Lo] = 1000 + 100x + 10y + 1; Ixpl = 1001 + 100x + 10y. TIpeoßpasyem m
BiipasuM uno Lap] uepes wueno xy: Hxpl = 1001 + 100x + 10y=

= 1001 + 10 {10x + y) = 1001 + 10. 3naa, wro nomysentioe sero 8 21 pas

Gonsute nexonnoro, cocrasi ypantenne: 21 xy = 1005 + 10 ay . Peumm

10 xy = 1001;

‘70 ypapnenne # nañeu HexoaHoe aucno 3p): 21 ay
=_ 1001
LL

119 = 1001; 1. T. e. HexomHoe “meno — 4HcnO 91.

1205. fina aoxasatentcrea BEIPASAM H3 HANHOTO YPABEHHN NEPEMEHNYIO x:

32p+5, _12y,5

= y +5;
” 6 66

=2y +2. Ma nonysemmore co-

Aononamanems ynpammemu x ante VI 155
‘OTHOUIEHHE BMANO, STO ECATA mepemeustan y ÓY ET NPNEMMATE HEROIC
AcHIIC 3IANCHHA, TO caaraemoe 2y ÉyaeT Tanke uen AUCIOM, Torga
CMA MAN MPRÓASM X 1IEROMY YHCAY APOÓS , TO NOYANM HELENE HENO,
naar, IU moGUX uerBIx y semua x Bcerna Öyaer neuerof

1207. Crravana empasam a uepes x u y. Tloaysunt
224 ance n
y

once ypemuenne noneranin sanguine

Sun y (roopamars ov). Heu:
544 0

3442223. nonyuennoe snauenne a
9 E

LD ARS NEUE Tente Mn em
ero rpabux: In y = 4; y = 3x — 4, Crpount
rpadux no asym Touxam: np x = 0
y=3-0-4=-4 (rowna A); ceux = 4,

To y=3-4-4= 8 (rouxa 8).

1209. a) B ypaeuenuu (x — 2) (y — 3) = 0 npomssenenne aeyx MioxKHTeRe! pas-
no Hymo, [ostomy WAN Nepas MHOKHTeN paBeH HÿMO HIM STOPoÑ,
te. - 2 = 0 (rorma.x = 2) unn y = 3 = 0 (roraa y = 3). Nosromy rpaci-
KOM ypasienus Öyayr ne npambie: x = 2 u y = 3. Nepuas npamaa npoxo-
‘aur Mepes Touxy (2; 0) napannemia och y; BTOPaR — npoxomur Hepes
‘rouxy (0; 3) u napañnenbta och x.

1213. Joxaxem ananımucckum cnocoGom. Jia 3TOro M3 Kammoro M3 3TAX
YypasHenuit nupaanm y wepes x m nonyuum: y = 5 — 35 y = 2x — 16;

Box

coormomenne: ax = y 4x;

. Mo Yenommo, 3tH MpaMBIe nox mepecexarsca 8 onnof

2

TOUKE, T. €. JONKHM HMETS OAMHAKOBSLE Koopännarsı. [IphpasaeM Koop-
AunaTuı y nepoux 2syx npamuix: 5 — x = 2x ~ 16. Hs nonyveinmoro ypas-
nenn halten: x; x — 2e = 16 — $; -3x=-21;x=7, To ects ase nepame
pame nepecekaiores » TOKe c KOOpAMHaTOH x = 7. Haligem koopanna-
Ty y Touch mepecesemux. Moncrasnw nonyseHHoe sHaveHMe x 3 Nepaoe
ypasnenme: y = 5 — x = $ - 7 =-2, Taxum o6pasom, npamuie y= 5 — x 4
y = 2x — 16 nepecexarorca » rouxe (7; -2). Tlokawem, STO # mpawan

NPoxonur uepes Ty ae Touxy. Mloncrasnacm Ko0pamnares TOM

ET à à,
re

2 = -2. Tak xax pasciictao BEpnOS, TO ce TPH JAHIIME Mpambie NpOXO-

Ku nepeceucima 8 ypaguexHe 2ToH mpamoñ, Tlonyuaen:

156 Fraga Vi. Cueros numsünen yposwenud
ony m Ty xe TOWKY (7; —2), 7. €. mepecexaloten B neh.

1215, Ecan TosKa nepecewentis mpaMuix NPHHAIYIERAT OCH X, TO KOOpAKHATa y”
roh Toke pasna 0. Cneaopatensno, nannsie ypannenma br + 3y~ 10H
x 2y= 4 sunonsmorea np y = 0,7. ¢. br +3-0= 10nx-2:0
bx = 10 x= 4, Tax xaK no YCIOBHIO ITH MpAMBe NepeceKaOTeS, NP

pasuneu wx xoopamare x, Ms nepsoro ypanırenun: À. Tlonynes:

10
4

10

Am ome b= 25.

1217. Mocrpons rpapukn xaxxnoro m3 ypasnennil nanvio# cuctenbi: y + 3x = 0,
X-y=4,x+y=-2, Burpesum #3 KAIOTO YPABHEHHE y aepes x: y= ~3x,
y =x-4, y =>x 2. Boe yparesn mueror ait ax + bx = c. 3ua4Ht, rpae
‘axamn smanmores NPAMME. TDAQHKH MPIABIX CTPOHM NO BY M TOM.
(B Kakuoe us ypanhemıf NOACTABAAEM TPOMIBONIAOS IRAUENHE x M na-
XOHHM COOTBETCTBYIOLLEE EMY 3HANENHE y),
Hs rpaqinia BHARO, #70 BCE TPH MPAMBIE nepeceksiorcr B TOHKE A,
Hmeioutel koopatmares (1; -3). CneaosaTenbHo, peurenhen nano cnc-
“emu ypannenuik amnxerca napa wucen (1; =3).

v

1224. 2) Chauana ynpocrum kaxnoe Ha ypaanennfi namnoli cnctemn. Packpoem
cxoGxa u npnnenen nozoßnsıe sens Tlomyaes:

Honormurmensinse yopannanun nase VI 152
4(2x-y+3)-A-2y+3)=48 — [8x-4y+12-3x+6x-9=48 |
30x—4y+3)+ 4(4x-2y—9)= 48" |9x-12y+9+16x-8y-36=48
Sx+2y=45 [Sr+2y=45

5x-4y=15*

25x-20p =75
PeumM nannyto CHCTEMY ypasttetil cnocoSom CROACIA, MPEABAPITOAHO
5x+2y=45

-Moc-
-Sx+4y=-I5

AOmnOxxR sTopoe ypapnenue na (-1). Monysacnt: {

Ne CNOXHNA YpanticauÄ muce ypaBHenne c oqmoW nepemenno:
Ex + 29) + (Sx +49) =45 - 15; 5x + 2y- Se + dy = 30: 6y= 30, orayaa
taxonu y= 5, Teneps noncraanteu nonyyenwoe aHavenne y 8 neppoe
Ypasııenne m HaxozmM: x: Sx + 2 - 5 = 45; 5x + 10=45; 5x = 35; x = 7.
Cnenosarensuo, peuieunem TOR cuctembt ARNIETCA napa uucen (7; 5).

1226.8) Ynpocrum zamıyıo cucreny ypasnenuli. Cuasana paanoxutn nese
vac oon menteur oon paswocta ksazparos, [lo-
(x-1)-(x+2)}[(x-1)+(x+2))=9y
ayuno ae (y+ allfy-—3}+ (v2 2jase Paare crc mou
senen 8 KaKIOM YPABNSHHN NONOÓNELE amet:
&-1-2-2]x-1+2+2)=9y f-3(2x +1
e: RU iA
Pasnenam 066 4acTw nepnoro ypasienua Ha 3, a sroporo na 5. Hmeem:
PRET
E 2y+l=x

. Ma Broporo parents suipasn x= 2) +1. Moneta

B nepnoe ypanııcnne nmecto x nuipaxerme (-2y + 1) u peumm nonysennoe
ypasnienne € omHoll nepemennol: -2 (-2p + 1) | = 39 4y=2=1=3p;
Ay -3=3y, y-3=0; y= 3, Tonerapum anauerne y = 3 80 BTopoe ypan-
ene n valine x: -2+3 + 1 = x. Orciona x= -5. Max, pewscnncn aa.
HON cuctemss ypastieunit sensetes napa uncen (=S; 3).

1228.6) Peu y cucremy ypasvennil anamıımıyecxum cnocoßon. B Kaxaom ypaz-

OKM CHCTEMSS BBIPAAHM y Nepea x. Meco:

anna cuctema Öyner HMers peurcnite (OJO), cond DTM TPH npAMME Ne
pecexyTes 8 oanol Touke, Npnpasusent KOOPAMIATE Y DEPESIX ADYX pA

158

fosa Vi. Cucmouss nunodua yooonenti,

2x. Haligem orciona:x; 1 11x =3 (320)

Teneps HaRnem xoopannary Y TOWKA nepeceuenna y = 3 2x =

- 3-1 8) E „Onpenennn, mpofiner an rperea mpamas ve-

831
pape (5 mm mme mes
af 2
ypasseme rperseti mpmuott: 3! o A pay Shwe,
5 2 s 2 s

Tax Kak PABCHCTBO He BLIMONHAETCH, TO TPETEA NPAMAS HE MPOXOJBTT Hepes
TOUKY nepeceuenna nepabix abyx. Nostomy ccreMa pewenni He HNeeT.

Oraapaenue

TJIABA 1. BbIPAXKEHHA, TOKAECTBA, YPABHEHMA
$ 1. Bupaxenns,
§ 2. Ipeoßpasonanne space
§ 3. Ypapnenns c oaHoi nepemenko
Aononsnrensheie ynpaxeHuA K rape
TIIABA IL DVHKUMH
$4. Oyukunn 4 ux rpaburkn
$ 5. Munetinas dynnurt
‚Hononantenensie ynpamnenns x rape I
PABA Il. CTENEHb C HATYPAJIBHBIM MOKA3ATEJIEM
$ 6. Crenens u ee cpoticrna. A
$7. Onnoune…
$ 8. AGCOMOTHAR u OTHOCHTENLNAA MOFPELINOCTE
Aononunrensnsie ynpaxnenua x raze IL...
FJIABA IV. MHOFOUYJIEHbL
$9. Cymwa u pastiocte Muorownenos.
$10. Iiponsseenne onnounena 4 mHOTONTEH
$11. Tpowszenenne muorowenos
Aononxutenbusic ynpaxnenna x rape IV.
FJIABA V. DOPMYJIb] COKPALLEHHOTO YMHOKEHHA
$12. Keaupar cymmu u xeaapar paaHocra.
$13. Pasnocre keanpatos. Cymma x pasnocrs Ky6on
$14. Npeo6pasoaanne uensix sirpaxennit
ononuntensinie yapaxnenua x raasc V.
TJIABA VI. CACTEMBI JIMHEHHBIX YPABHEHUA

$15. Jluuefnbe pasuenna O ABYMA nepemeumemu 4 ux cHC-
rer

$16. Peeune cucrem nuKeñHeix ypaBRenuñ
Rononunrensnsie ynpaxnenna « raane VI .
Tags