алгебра 8 класс макарычев

rosgdz 111 views 136 slides Oct 28, 2016
Slide 1
Slide 1 of 136
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136

About This Presentation

информатика 1 класс горячев


Slide Content

TJIABA I. PAUMOHAJIbHbIE
APOBH

$ 1. PaunonanbHbie 1Apo6n H MX
CBOCTBA
1. Pannonasbhble BHIPAXEHUR

1.) Llena sensiorca supaxenun: Ja%, (x — y)? -4zy,
a?—2ab

12
Apo6nuumn apanıoren pupamennn: 23, 8, (c+3)’+

$ a) Tip a =-2, ¿2%

2: a) Mpa s = 250, 0, =
2,5 4. 6) ) Tp 's = 310,
W024

2 = 40; t= >t = à
01 = 75; 07 = 80; t= te

a 2; 6) 2.

10.] PaunonansHoe sbipaxeHHe HMeeT CMBICII, ECM 3Ha-
MeHaTemb He pasen Hymo. a) Tp x # 2;

6) meer cmuica npn A1060M anauennn nepemenHoñ b,
tak Kak 9 +7 >0;

3) Mpa y£Ouy#3;

r) Ippo 40na 1,

11.) a) x — moxer MPHHHMATE ¿NOÓLIE sHayeHHs;
601405;

B) 2 — Moxer MPHHHMATD IOÓNIE sHaueHHs;
Ng#-1nz#0,

A) 2 — MomeT NPHHHMATE JIOÓBIE sHaYeHHA;
e)c#-8ux¥0.

12 a) y — moxer MPHHHMATE IOÓLE snauennn;

0 y

r) Y — MOXET MPHHHMATb MIOÔHE SHAYEHKA;

Dy FC uyF#-6;
e)yA0ny = A
18] a) y = 313; Oônacre onpenenennn ynunn: + 4

= 2. 6) y = ¡erp Oónacro onpenenennn ynxunu:
zH#Onz£-le)y=r+ O6aactb onpenenennn
dynunn: = es -
14.
6)
8)
1)
GE,

En
Ex

= -1,5;
re z(2-1)=0,2=0 um 2=1;

Ebo 2(2+3)=0;72=0 umm 2=-3.

16.] a) Mpx a >0n b> 0; § > 0;

6) Mppa>Oub<0; $ <0;

8) Mpa a<0nb>0; ? <0;

r) Mpna<0mb<0;¿>0.

17.) a) Mpa 11060m sHavenHn x: x? > 0; 22+1>1;
snaunt ¿E > 0;

6) Tipu mobom snayenun y: 9? > 0; 4744 > 4; akg > 0:
snauut GE <0;

8) Mpa non ae a: (a—1) > 0; a?+10>0;
sHa4uHT or > >

r) Tipn de snauennn b: (b-3)? > 0; +1 > 0;
-# -1<0; anaunr GE < 0.

18.] a) Ovesmano, uro a? +5 > 5. Mpuuem a? +5 =5
npx a = 0; Hanombuiee anauenne zul; np4 a = 0.

6) Ouesxano «ro (a — 3)? +1 > 1. Tlpuuem (a — 3)? +
+1= 1 npx a = 3

Hanóonsuee snauenne ¿JH pu a = 3.
19.) a) 6? +7 > 7. Mpwuem 0? +7 = 7 npn b = 0;
Hanmenbuee snauenne SH mpn b=
6) (0-2)? + 16 > 16. Tlpuuem (9—2)? +16 = 16 mpu
b=2
Hanmensuee snauenne LAS pb = 2,

= Mi
(20. gains MakcHMaJbHoe 3HayeHHe

20) er
npn (22 + y)? 4

Orser: 3. Paso 2.

BL] a) (2a + 3) (2a — 3) = 4a? —

6) (y — 5b) (y + 5b) = y? — 25b;

8) (0,80 + Y (y — 0,82) = y? — 0,642;
r) (+05), =D +b+0,25;

a) (a 20)? = a? ~ daz + 42;

e) (ab — 1)? = ab? — 2ab +1.

6

22, a) 12-25 = (c-5)(2+5); 6) 16-0 = (4—c)(4+c)
8) a? —6a+9 = (0-3), 1) 2? + 8x + 16 = (1244)
a) a —8 = (a—2)(a?+2a+4); e) '4+27 = (0+3)(0*—
— 3b +9).

2. Ocnopnoe cBoÄcrBo xpoÓn. .
Coxpamenne apo6eñ

23] a) O6uuit mnoxurens 2; Æ = 3; 6) OGuuñ mno-
xuTens 5; JE 35; 8) O6umA mnoxurens 6a; Sah
r) OGumñ mHoxurens 7b; 2 = 2; 1) O6umi muo-

ae
xurens zy; Tat = 2; e) O6uuñ mnoxnrens Bay;
EE

Bac
56m2n5 _ 8m.
2) mnt = 5

27] a) ihm = Gon = be = 1:
6) Ss = Ss = Be = 3.

28. Sen 6) Seto = à;
Feen

ab Tarola ab

6) SE = (EA _ 2 + ab +B;

=

8) (a+b)? _ (a+b)? = @t +2.
oe Co eee
ER _ (a-b)(a? tabs abt!
D Ex = RICO] CO
32] 2) Eat = E = Ge, Tip a = -2, b=

Pa
=

8)

y
98) PAR = HED = ds

sep = wit
1)

#5 = AN = PA
à ea © Ge 6e) BH) = 39 — y;

Er

6)

Zab-a — a(2b=1 gs
o

A
NA © 5
4 etai) ist
Tra
2etba-2y by Mary) taa) _ (Hat) _ 246,
Das en en” +
42048)

TOKAECTBEHHO PABHEL APOÓH 5;
6) =, = npornsononoau apo6n §.

o6pamaetca B o. aa. rpadukom yaKunn

Per 4.
40) a) SE = 5

>

(2-1 >

1) $23 = Ben Eden) o »
HE zen le Tip a = -
10. ETC

a

6) a er = 9(c+ 3d);
Er ce
0 a = ei

a4 _ (a~2)(at2) _ (4-0?)
ee 7 W Te DS =
Bratt = a SO
a) E ECM

eae = TSH) = 13: 3Hauenne npo6n

a ang
O nea gu _ ange

© ET = o = rra = 4. Inauenne

APoÓH He 3aBHCHT OT n.

10

15°. . zan
AT] ds = bans Jai ots © DR a = gaat
A8] a) 2a + b = 24 6) 2a + b = ei,
8) 2a+b= see;
r) 2a + b= Meet) —

[51] a) 5be— 5c |
8) 8ab + 12be = Ab(2a + 3c);

0] LUS ae ons
+4);

a) al —9 = (a —3)(a+3); e) a? + 107 + 25 = (+5)
x) y Na 3) a? + 64 = (a + 4)(a? —
— 4a +16); DB —1= (D +042).

52] a) &-(-7) < §-01< 3:6;

6) 08-04) > 0,8 + (-04) > 0,8: (-0,4) > 08:
:(-0,4).

$ 2. Cymma u pasHocTb apo6eh

3. Cnomenue u parunTanne apoGeñ
© ONMHAKOBKIMM 3HAMEHATENSMH

(54.] a) 3 —
6) St _ 0m — atb(a-2) _ arb-ar2b

6 6 a
5) His us

N 16 1 Toy +

r) SES + ER _ sos 25 1026 _ 06:90 En EL
BE] a) 22220 Lys À demente Y _ 2,

.] a) Ey la = Sun:
6) Ga az arica _ 8 le

Am Beda da _ 1

ab _ 8faps20-26 849 2120-06 _

r) a a= da E 7

3b=1 — Sa-1—3b+1 _
TA — (abat) —

= À;
-3 U _ 2-31 _ 248
Zoe + rn o = een

2) dah e de
DE ee
Ge ety Er (ety)? ~ (ety)

ay
(a+b)? _ (a-b)? _ a? 42ab+b2—-a+2ab—b? _ dab —
58.) a) = _ ab

ab ab ab J
©) ga + Le ms
e =2,

ar
a a
59] a) EE 4 2, = datt

+6; Tip a = 10,25; a + 6 = 16,25.
12

= (2-6)(a+6) _
= el = a+

a=6

3-10 _ B-1-8b+10
ze

8-1
6) 9 ~ eo

=&=6.
a?-12b-Jabtda — ala-3b)+4(a-3) _
a(a—3b) Er ala-3b)
ee = 268, Timm a = 08, 8 = = 4.

b= 21775 — anuinne name.

7 -?,
a. _ hd (aa? _

tn = en w= E =a-

o] SNS = Sit yr = Ent = CU =
2-3.

we
Papo + pag =

Jp + 32. — lp y —3p — 109-3p _ TP;
82.1 a) rat op wat pa ia er o

en
e454 —(7243)
Det +

siete = 22 — 2, ye sapucut or 2;

Soil y ZT _ Seti y (GH) bil _
Bu + 20-52 = 52-20 + Gem EE)

Be = sa

Se45-72-3 _
a

= 4. ne sasneur or 2.

PA tga
sa) 9 Gor oo © ES a ay
SAG? E ,
a+: Mor _ 22425, -102 _ 2?-102425 _ (z-5)* _
9 te = EN eae Auer = ES —

13

_ 82-2) 2282-2) Brie
mn - 77-16 6 =

en 5 3 5 a

6) Gu-20b Dab 02 _ Bidab y Yabo? — Diab daba? _

y ath =
(+a)

(8)? (a8) (a-8)

wem _ = an 4 6 fo 5n+3+ 8. Mp n=1; 2;
Apobb npunnmder nodonreaunue Zuauennn.
Demi _ nie MU qm À Tip
£1; #11 apo6s npunnmaer uenbie anauennn.

76. a) 3(52 — 4) - 82 = 42 +0 1521282 = 4 +9:
Tx — 4x = 12 +9; 3:

6) 197 —8 (x — 3)
La +37 = 66 — 24; 1x
a) 0,2(0,72 — 5) + 0,02
+0,02 = 1,42 — 2,24; 1,26:
1) 2,7 (0,17 + 3,2)+0,6 (1,3 — 2)
+ 0,78 — 0,67 = 16,0:
—20.

2] a) 824 — 162% = 8x%(x — 2y); 6) 152y* + 10y? =
= 5y*(3ry* + 2);

8) 8a? — 50y? = 2 (da? — 25y?) = 2(2a — 5y)(2a + 5y);
r) 186? — 98a? = 2(96* — 49a?) = 2(3b — Ta)(3b + 7a);
a) x — 125 = (x —5)(x* +52 + 25); e) y +8 = (y+
+ 2)(y? — 2y + 4);

16,02; 0,272 +8,64+
0,332 = 6,6;

14

x) ab+8a+9b+72 = a(b + 8)+9 (b +8) = (a+9)(b+8);
3) 6m — 12 —2n + mn = 6 (m— 2) + n(m—2) = (6+
+n)(m—2).

72.) a) 25: 2a + 25 #0; 2a 4 —25; a 4 —12,5;

6) zn; 9+ y? #0; y? A -9.y — mo60e uncno;

8) rom: Se 0241240240004 12

Data @+1#0na-440,a¢-1na Ad,
4. Cnomenne 4 pEruntanHe apoGell c pasasmn

Pataca

my = In

3z- 3 _ 3(3z+5) 523) _ 15 — =
0) BS + — SO ge — ga — lg -
=
9) 342 — 3655 — 642) _ LES) _ SbotGe—dbet Sb _ Setsb,
1) Ela be en yen _ nb au 8

IE 1 oy

Ee

a. = atbte,
PE a | a
cj >

= 260 2h a;
ete) Yolen) _ Wena
We =

Bor tetas ©

(cb)
‘abe

®
BH] a) er ad

e
Kor) + Be =
(+1) _ (2-2)(248) _ Pte (P4se-22-6) _

DE =

ze) ze) FE
ets 6.

mn
an" mm) im)
Br, — nnn)

5 oe

= miel 2 nies,
ae

Gat1)_ al =
Bat) — Gear) =

4, = 202) a(a+2) @?-2a-a?-2a _
22 = GHD GHe-D — aa =
1) _ pi
Beier) — Wenn
4
aa = pei
y 10y _. 92-10),
+] a) ein, m en en, Can ~ Beh En © E

> aa

= EN a _
= u) + en a =

» pi8e-2 (si)

a) Ba” ia = nen - wae =
HN = N

te o + en
— Sax Say 2er Bars
= Chen = Gem wis

8) ME DRE + ReaD = eh
= mea

5 LI SH166-e) bans) _
Tem wem © Temes — MD =
3:16(8-a) 612-0) 200439 230

er 1603-0) * T2(a-3)-16(8-a) — 1240-3) — 18(a-3)"

Bus Ora byt) ONE
RATE NE FE; u) tH)
= En = shi =F He sapncur ot y:

dur YH _ IT
9 E = Ka =

= hay 7 aspas Ec
E se ae = ee mes =
He sasucut of y.
4
88] a) +
ei ae
ERA = +
Bay Ay aay Baby ty?
et IN
= 4
N
89.) a) aia + en = ay + may = a =
18

E apa
[90.] a) 1—
6) Ese —

se
one ge ©

a) mon = ares a
ath = EEE = Ba
ei _
(a? +1 & 1
Ho fe ) _

A — bey = ara — HS
= +3 a5) _

+
2+3a—a7+5a _ __ Bu.
= BHO) = Pela ica GINO) TE

ER gen
32-2 Gry t92—4y-6 mo 2 Br 242 (872)
A E ih 2
7 eH Sl ie ore) ve ro

(92. es + 3 =
= A: = on)? = bee;
no, Boers = bre! ,
6) 4 - 43 $ Pa _
ar DF ” ala) — ala)

nr hy ly

reer ao _
53] a) e+ aan es + un = Yan =

= 2? _
res in ve

Re wm - en =
= Ptgob=a =
= eee RE 50) 5 = era 2
D = — = aera + Ro =
= en (x— 4a) = so.
Su o) Ree) Hera
m — Taye Ce + aos =
a-1

Santos

Sete = FT, © aor):

Ba) a 5 - ah de) THe =
Lot) _ a2+2044048-, em

a ala — =D

19

6 eh - 20 4-2 _ (x4 1) (4-2)

is, i (ae ÿ ES a (2442)
= = a! O arte 4 _ _ 32 pa
y Ha TS Ga) ~
=F =
(a+ (a-b)? _ (a+b)? | (ao? _ atby a-b _
nt Fi rro en
1) 224 _ Pda _ (A) _ (242? _ 242 _ 242 _
52-10 52+10 5(@-2) 5242) 5 | See
z+) _ 242 _ tl z+2 = (+) ?-2(242) _
65] D Se Fc qu BED = “zee =
= ROGUE cn pa x = -15
a
an) is
242 ie _ 242 iz — (242)(2-3)—2(142) _
9 Bares = FON ENED IS,
TAE ee” Les = q
Mpa z= — 7 + ES
6.) à) 2 arias ‘A(y~2)—3(y42)412 _
ty Gr)
= 4-8 FE ae Y
AA 7 mE

de (a+6)-3(a-6)-a?
55, at a RS LES
= Site-tetise _ Sets) _ 5.
= ee = watts = are) TNA
po sty 2 lala) _ 227-24
E en E ES F
7 UN | e -b)(b- P-P +a?
Lab = _ (armo) _ Peg? _
Bab = O a ~ Hat —

en 2a-b _ _2atb _
de — te = ae

— Barb)?-160°-(2a-b)? _

CARRE)

240 10a} 2

‘ab 16 :
a" ~ De > BE = aque Mar) = Daas!
6) 1 de (a+3)?-2(a-3)(a+3)+{ 2
ey à #5 a = (2-37 (043)
+18 2024 ;
= ie = an

(0-3) (a+3) (a-3)"(a+3)""

20

22 hy = Preta peras _

a Y AREA
2278048 _ E .
2-8 PS Det) Ph

= etext 1
wetter = a
at4d,
Mau

“den =

atb-a e
9 % == + da + Pe me E (ra) A Dar) =

u FES — when
aa.

das £=. as + as = ath

a+3+ 345 = ee _ et A

alo-3

win t+ Sp =0+34+ Se.

td = Res = rt =
gras a ate — E Lg _ 1,
100] a) Ste — Sete y 9

ane CRE
EY
207439760 Qt fda = 16422982 _ 21-10

Parras ger =10 1000-80 _ 210 D
af =
a)
ee =: +4>0. Tax Kak
>20
e Dee) _
9 PUS CS Le LE)
A ==
= EA — _ 92 41) < 0. Tax war
y>0

21

101} 1. x +5+ 2% ns E — seo, 2.2+12+
+B, = ern, e eafetide-coras — te _

2-5
pee 3-04 a = ae DIE 25 Len _
= tes A Es ye seo. 4

sá de =? sin 2 AE nepuo.
- zin
102] 245 — pr cia Ta =

wen
ee” nr) Er. FT i a -
GER + ee + + are > = EM = +

mt 2h26 > Ghee) © GG
103.) Ckopocts Katepa no reuenHio pekH U +5 KM/4,

npotue Teuennn pek v— 5 km/s. Bpema, sa Koropoe

karep npohner nyTb $ no Teuenno pexH: t = „tz. Bpema,
3a KoTOpoe Karep npoligeT nyTb S MpoTHB TeveHHA peKH:

= Oomee spema t = ty + te = +

a) pu s = 50; v = 25; t = 2, + 2
4+ f= HS aly = 4 à 10 um;

104.) Typnere an no wocce ty = 5 u, a no npocenownoh
nopore tz = 225 4. Sua, Typuer SATpaTHaw Bpewe

22

107.] Nlycts us BTOPOM ami Bann x 7, Torma M3 nepnoh
3x 7. 3naunr, 2(90 — 32) = 75 — 2; 180 — 6x = 75 — 2;
52 = 105; x = 21; 32 = 63.

Orser: #3 nepsoli amu Bann 63 T cHnoca.

$ 3. llponssexenme u yactHoe 1po6eñ

5. Ymnomenne apo6eh. Bospenenne 2po6n
B crenenb

23

6) (ae
is
ne

)

att?

24

117.

DCE
118.
= (a

119.

121]

us Li 4y +4) == ee
Dr - (a? — 962) = oor

a) y = = gt;

6) GS) = Sem:

» CE = as

a) = ES:

I 2S ae

MEE — (HE),

+3

= 36 _ (y-5)? (y-6)(y+6) — os 6)
dr Fe = He

25

Smn=m , 16m? mn. An-nllimin) 2
124) a) “men : n= Amin =
= mlim <A); pu m = hs n= 3; m(im—n) =
30+3)=1
(242? 2246 _ (242? ei) 24)
= Me o
pu 2 os E e LS = 1 11. Mpn
rH PA
= nn :
2a-6 _ (a-bjlatd) , 2a-9) _ 2a-b).
125.] a) 2235 ° rara — ala-3) mone = gare)?
ltd. 2610743? _ Mars) . (2-8)
©) BA Ba aer
126] a) Mom. gm — mie-ylers) , some) _ 1-1).
|) ones mpima — Ama) me) 2 à
artay ay a(ety) en) a
97 Boer CCS Tew!
Sat. Wert) E) _
») Fay =y SREP =
E lied ds
21. lat _ (lat) att e
Da eset = aran Qi) = en
CAPES TE 6)? (6214) — (2-5)(2~4)
Ja) rn iO Se Me = 6 à

B)

6) 2. Area _ alza). (ar? _ (tata).

ag a = Aa) QT
P=25 yes _ (y-5)y+3) S(y46) _ (ys),
re ro — i Auto)"

Woy
bis = (420-244), aba _
D) ni a = DOS) Bee

128.

Tlyero 2

ab

292,
(EY = a torna

129.

a2—dactSbe | 043 atc She
Sages + HO + Ae = a + AE +

+&

at2e _ and be ee atte —
ayaa o +

a? —dactBbe—(a436)(a~c)+(a++2c)(a~b)
oi tact ie tale — (a=e)

aR-Aac+ 3be-0?+ac- a -abt2c-2be _

(ab)

act+äbe-dab _ ala-c)-Abla-c) _ (a-4b)(a-c) _ a-4b
Haba) aa) (@-ba-d — ab

130.

Tlepsuie 30 km Typuer exan tı = Y y, a octanbHBe

17 Ki

M to = i u. Saunt, Benochnenner Bpemenn t =

26

131.

6) b-7z =a

4. a) Npuo= 15; ¢= 2+ th =

=
60 70T

a) 3x+b=a; 3r=a-b;x
—b; Tx =2b
E=b-l;z

mé, 5m . Lind ms. 12m — Smt
156] 2) jt ee, oe ey = Ses

Br Az’. tz Be" se YN usd
= Y
137.

a) (2 +3y) : (1? - 9?) = = Goa Een =

6) (a? — 6ab + 96?) : (a? 0) = CE
(a-36)? a=%

= es = SR:

8) (2? — 4947): (49? + Lary + 2°) = ete =
a

+) — ach.
Cy+2) my

1) (m - 4n)? : (32n? — 2m?) = (mn, =
(4n—m)?

— nm) —
138.) a) 12

ER

) tgs :
8) Ter à

y) Haz: fas :
man * 3mm m{m=2)
a) Esla: (7a — 216) = Le.
e) (2? = ay?) : Eu =

Late).

à en 5 do»
x) (20 — 8)? : 42508 = (20 a = SER:

m3n)?
3) (10m — 15n) : MEME = 5 (2m — In) Mi =

3 +
(Sp-N@p+1) , 3-2) _ _ pt)
wor) sete) 1 2
a 2.
= Fey ses Mon

pa x = —
28

0 Ge 9) net

ar
pu a = 26; b= -12; Zu) = Ele, = 0,42.
stig Me fea = Meo:
fai) a) 3: = ete D. Hoan) = em!
al. Le
©) EE : Gir Nue Lee = Aare) = ro
HE] a) eue eH) _
2 ar TT (a—z)(a? +ar+z"
= EL:
PEE pt) 3)
D ag": ea = Ge rs en Pa
143.) a) +}
+=
5 1
144) a) 3045 - 5 - FH = ees + ee -

_ ss MRS: 1004154820
we TA

= IAS = 23

6 0 4 ST
‘act 2be~Gab—3a? Y Tab — ae—Ja? TOS
2 bo =
E TR, TEE Ge Bear + arabe)
2be~Gab= ab! Ze
Ce

= zer es 6429163 =

(25-3)(26+3)

+

tl

o = de
145,] Tlycts cKopocts reuennn pexn v. Moropnan nonka
3a 45 mun = 0,75 4 gpwranch MPOTHB Teueuna pexH,
mpomaa nyre s = (10-2) 0,75. A sa 3 u noaRy
OTHECAO reueHHeM pekH Ha TOT Xe nyTb 5 = 30. Shaunr,
0,75 (10 — v) = 30; 7,5 — 0,750 = 30; 3,750 = 7,5; ©
=2 kw/a.

Orser: 2 km/4.

146.) a) y = $s 2cy = ab; y = À:

6) y=2%; ab = 2oy; a = 2,

147, Tipn k > 0 rpapux gynkunn y = kz pacnonomen
8 1 4 3 Koopannatnoh nuockoctH, a mph k <0 Bo 2 4 4.

29

7. Tpeo6pasosanHe paunoHanbHbIX BbipakenHit

1 ott E

av

A. E
Y 100+
= a SL;
im
-0) +23 = ( fesaaset x
ee ee

a+),
=(@=2) ‘ar

a) (Quel _ mat) , dm — meli, 50m) _
2m-1 ~ 2m+1) * 10m-5 (2m-1)(2m+1) 4m

— Omti=2m4l)@m#i#2ml) , 6 24m 10.

~ (2m+1) Am ~ Am(2m+1) ~ Zm+l’

243 , (243 4 2-3) _ 243 , (r+3)(2+3)+(e-3)(2-3) _

05% (+) cae) —
— P40LHOtE2- 0240 248 _ ME) _
we) = NE” Er

2-9 Ga+l , Sa-1) _ (a~3)(a+3)
5D (at +83) = GE
x Gari)a+9)+(60=1)(0-9) _ Gel+I8a+ta+3460*-18a-0+3 =
(a-3)(a+3) > 20d 1

246 Aa) LG
= gts = Bert) — 6;
30

6) (Set + Ss): Es = A
ge Fr ay ay by?
0 249)
TE Let Ns

eH

162. a) os. ala en

ie — as ~
A a
E ay = os

at BR Ge aan
DES zer it eed +

Ge aati) “aes
zz y 22 = (lara) —
= Bates A =
— tae Lita dada _ 62-1,

= (041) (Sethe

1 — Aat2-a+2) „
(0-21a+2)

= Maar =
1) (W-4) (5-5) +5=

A AS A + 5 = 3y 6 2y— 4+
+5=y-5.

ci ar

31

D @-1)(h- +1) =
= (2-1) (a + HH,
r) (m+1- ha): (m- mt

m-1

Li (pla + aia) = ge:
. au. atea —
(tm + ep) = athe RS =

= chose = 2x(z + y);

Dl)

2-2y 1, 22 |. (er? _

9 (= Fay RAR" ya) ) a
2 (a2?) (ru? _
Fan CG ma) aye RS
A EE aa 420
FGF — a) ) a x

6 i EC)
+ ED) 2
x Gay = = 22%

We Dye
156. Es
E a - 32-1) K-) _
a) a en ie ay ~ & ez
= 3 __ 33 3-32+3 =32-2) _ 3.
SHED We ee ee) Le

6) en: A — 2) A
Tr 160 +16 * \2a-4 202-8 ad+2a) — ara? >

Ri Rn +4 Pee: ey ae = de
E ta - aon) = ay:

'2(a42)~a9—da~4(a-2)) _ _a-2_ . 99420?
= 7 2af

2a(a—2)(a+2) TA

— 0-2. 2a(a-2)(a+?) ala-2P _ _e

= ar)? * MaT-dard) — Hardla-2? Mar)
32

157) (0,5(a — 1)? — 18) E +5

‘(a-1)? (a- = (a-1)?-

= (92 — 0) (a) = p=
(a+5P+(a-7)* _ (a-1-6)(a-146) | nn a
IO 2 (a-7)(a8)

— (a-7)(a45) | (a+8)?+(a-7)? _ (at 8)?+(a-7)?

2 a-7\ars) 7
aider ie Qui gets = al 20437 =
= (a? 2a +1) +36= (ay +36, Tak Kak
(a —1)? > 0 ro munuManbHoe shauenne Bripaxenna 36,
np a= 1.

158.|
De BCE D = RPC = am

#20. 0.50? + 162 > 162: HanGonsuiee anauehne À npn
b=
159, PE re 2
= Bet - Bein - mu 2 = 1;

6) sett: ab = (aa? _
E ato) — Ha-bjlarb)
_ — Boat tab _ Lab
ICON
= u
5 ds = 5
(122
160.) a) al A es
200,67 - E Bs sy) Ay Bente)
Sad:
ma = E = Re) 904 0)

50(4,5a+42)
(0,9a—0,82). EICH: Bere, Bz) ~ Wa—B8z)(4; Sat) —
[161] a) (Be + =

— Alta Dade
Wa
»

re. SHAUHT,

Day Pi Bent
o ~ (oi at) = x
A E EE) E ee. EE =

EY)

ay y yz a x
Ton (44-8) ($444) = "get —
= Be ai ae" 3 à pp Tan ax n
HatypanbHoe TO u 3-FT HaTypanbkoe.

163.) a) (n+ 1 =n? +24 4 = meme,

6) (g — 2)? = (LL) = apa.

8) (2 +1)? + (2-1) =(

+: en 2 = er,
2 Aya y? 2

og es (a) = (Ge) - GF

ge emi ES à

1-4

Ja Et

= acbte, _e — arbiie,
6 ae aber

Ta
= 2% , a®—abtab _ ab? , ab-—ab _ o%
Saure} a ab a

SAP. Merizb — (0202) y

168.) a) eri 43-5%0
=
254330264 1; 30 47; x 42). Bupamenne meer

Omen npn = 2; 1.2 Ori +80:

cf -8 wn 2452, Ay A -2% 2+ 16 2-1;
224 17,14 85, one niet CMBCA pH
zs#-8u2#-85.

170, um TapMoHHyeckoe wes a) = 2:

rr,
Hyer paceromne or A no B — 2, Asrotye
npoexan nyr» or A no B sa ty = à ¥, a or B no À sa
ty = &. Cpenan ckopoctb aBro6yca pasa v =

= ql > 2s; A = 22180 = 72 4/9,
Orger: 72 xm/a.

Ha”

a 35

172.] Tyctb ckopocts HITOTOBACHMA neranm Mactepa x,

mena y, 8 oukon saxase a aeraaeh. Torta, à = 4:
= Gir = $: y= $; Macrep n yuenun pwecte punoamr
pa sanasa sa pews qty = 2a : Ale = 2412 = 2
= 4,84,

Orser: 4,8 4.
173.) Tlycts nannna qucTaHuHH 2 KM, Torna meppsih
Pas WKOABHHK mpomen AHCTAHUHIO 3a $, Bropoíi pa

TperH pas E. ang cao OCT ABKHMKA =
1] % CI

+8

= 3: E20 _ 210 — 540 = 1910 guy.
Orser: 1038 km/4.
174.) ; Touka nepeceuenna c ocho Xy

(4;0). Touka nepeceuenma c ocbro

Yr ; (0-2). 6) y = Ode + 2; Towa
mepeceuennn e oceio Xy = 0; Ota = 2; z = 5; (50).
Touka nepeceuenna c ocbio Yz 2; (0:2).

175.) a) y = 3c +k ypasnenme npaMoñ napannenbHoh
npamoh y = 3x, mpanan mpoxonmr uepes rouxy (0;4).
3hayur, 4 = k; Ypapnenne uckomoh npamoh y = 32 + 4.
Oy= Am ypabuenne npAMOË napasınenibHoh npamoñ
y = —}2—8, MPAMAA npoxogut Yepes HAHANO KOOPAHHAT.
Buauut k= 0;

Yparnenue HCKOMOÏ npaMmoh y =

36

[177] Tiyers ona eropona npamoyronsmka z, Torna
vorn 2 +20. Uapectuo, «To 2 (2x + 3 (x + 20)) = 240;
2x + 3x + 60 = 120; 5x = 60; a æ + 20 = 32.
Orser: 12 cm u 32 cm.
178.] Tlyer» noesna Berperarca uepes £ y noce ornpaB-
Jenna cxoporo noesna. 3Hauur, 110€ + 90 (t — 1) = 710;
110t + 90t — 90 = 710; 200 = 800; t= 4 4.

Orser: uepes 4 uaca.

2 | -4 | -2 [-08] 2 [ 5 [16 [20
y | -2 | -4]-82 | 4 | 16 | 05 | 04

75 | 120 | 300 | 1000
16 04 | 0,12

181.
182.

npu z = 0,1; y = 100; mpn x = 0,02; y = 500;
; 200) 29, = —200 rouka À npunannexur.
B (-0,1; 100) 2; = —100 # 100. rouxa B ne npnnan-
sexu. C (400; 0,025)

37

wur. D (500; 0,02) 2% = 0,02 # ~0,02. rouxa D ne
TpHHanaexHt.

183] y = Ë. y = 12;
Hcxoman pynkuna y
184) a) lpn 2 = 2; y = 4 npu =
=1; y = —8; np x = —4; y= —2; pa 2 =

; y = 3,2, apa
mp 2 = 2,5;

a) Mp 2 = 4; y = -2; mp z
x= 1,5; y =-5,8 apa a = li y
y=32

6) pn y=8;7=-—1 npn y= -2, 2 =4.

186.

PE

opmyaa

=];

o6parnası nponop-
k=l;

uHoHanbHocTs. O6nactb onpenenennn a > 0

2.) Y

189.] 20ab = 120; ab

otha
" oe
= SSÈ
esha
i pee |
Si
Es
xa
SE
=:
ate
=
$
5
4
$

39

BG) = k=
NPONOPLHOHAASHOCTH y =
8) C (-25;-0,2), -0,2 = +; = 25-02 =
OGpaTHOÏ NPOROPLHOHANHOCTH y = ®.

191.] a) Flpn ckopocth 80 km/u norpeöyerca 1 yac, npH
cxopoctH 25 xm/4 norpeöyeren 3,9 uaca, PH cKopoctH
40 km/u notpeóyerca 2,5 vaca.

6) Uro6s no6parca 3a 1 uac Heo6xonHMO ABHTATECA
co ckopocteio 80 KM/4, uToGb no6pateca 3a À uaca
HeOGXORHMO HBHTATbCA CO cKopocTbIo 24 km/u, uroGbt
AOGpatbca 3a 8 YacoB HeOÓXOJHMO ABHTATECA CO CKOPO-
crsio 17 km/u, 47064! no6parsca 3a 16 uacoB HeoÓxonumo
ABHTATECA CO CKOPOCTHIO 4 KM/4.

8) 15= $ 8 = 135 km.

192.) a) k > 0; 6) k<0.

= 1,2; Dopmyna o6parhoë

; Dopmyza

E
ta
à Eu Bu 2. He sannent or zn y.
re = boo ei
16) Dern — 25 + 2 Sa —

= Siar

ED > 5c +31 = ar + 2a + br —
Sa = ar + bx a+b=5

- 5b > >

31 = 2a — 5b 2a = 5b+ 31

en

10 — 2b= 5b + 31

9. Mpencranaenne apo6u B Bae cymMEI apobeñ
a a = a2-2)+42-1) _
Da sites Ate = RE =
- HE gue we pen
APCE D, Sto ypannenne ÓyneT Toxnecrnom,
ecan & +0 = 6 n —2a — b = 0. Peu cucremy ypane-
a=-6

Cneno-

TE] nl E TN
een are)
= set alor) +029)
= (re) nc red) *
2a +2b=10
4b—2a = —1
52-1 |
a = +
io] 8 = e + +, 4h _
# = FT i
— ame) _ dere A249” (af Hat)
= Teller) = quel. git = if +
a+b=4 2a=7 =35
> > a
a-b=3 b=4-a b=05
ses _ 35 408
17 2-1 + yl is
e ?—ta44)-3 _ (amara .
200) ga = I = EDS 0 2
uro6m SÍSHl mpunnMano yee SHAMEHMA MPA LEMMX

a HEOÖXOAHMO, YTO6H Apo» À; mpmmumana ente
anauenna. DTO YCAOBHE BHNOAHATCR TOMO PH a =
—1; 1; 3; 5. Mexombie snauenna papi —2; 2; —2; 2
COOTBETCTBEHHO.

41

(BOK) a) Maso _ mat — mm 34 La; room
E np ene ananenmn nph wenbix m
MEOÓXOAMMO, 4T06H APOÓb ls NPHHHMAJIA Lnbe 3Ha-
JeHHn, DTO yCAOBHE BEIMOAHAETCA ToAbKO MPa m = 2; 4.
Hckowbe 3nauennn pass —2; 2 coorserctaenn

6) = =a ments = (n= mer _ =m-244

+= m-6+ „15; uroëu pan NPHHHMANO LEE
3HaNeHHA NPA LIENBIX M HEOÖXOAHMO, UTOGH APOGE x

aa
nPHHHMATA LEE sHa¥eHHA. DTO ycnoBHE BUOAHAETER
TonbKo mpm m = —2; 0; 1; 3; 4; 6. Mexomie snauennn

pasta —9; —8; —9; 1; 0; 1 coorsercrsenno.

202. a) Seat zy y(1-2) -Sry=
Les pese

y= 2 npu o = À y = & npn 2 = 4

y=6.
6) y—z+y=& y(2+1) =8+2 y = SH;
y=1+ 5

Tipu 2 =

7[u
2 [1
2[7

204.) Sete — Bist — 5 4 al. Tax Kak a? > 0
na dro snaveHne "npo6n HE ABAACTCA LLE/bIM UHCAOM.
205.) 1 +} = 4; a+b = ab; Ta+7b= ab;

ab Ta Ban BH, 4, a=7+ 3%
0 6 8 14 56
| 4 | 49 7 1
6 o | -2 | 5 | m 8

209.

9 De
211.) a)

y=
By=

214.

= 9,04

Bi2.] a) ES

713] a) DE — Meta _
9) ar

10; £ = 5; $= 0,2
62 +9 =0,04-6-0,2+9=
-1,2=7,84.

HonoJHHTenbHble ynpaxkHeHHa

K rage I
SR sign _ Hm
208.) a) A = Men =
za u amasar 37 (37+3) zu =
6) + aerea E 2%.

Ayers nepBuh noes, exan E MacoB 10 BCTpeÚH

co BTopbim, Torta BTopoe exan t— 3. 3mauur, GOL +
+o(t

—3) = 600; v(t—3) = 600 — 604; y = Ws;
180 = 45 100/6. Tipn

y Le) 328; x — mo6oe uncno;
6) aim UT #0: v#-35;
8) ie Ta £0; a (27) 402400247,
r) HE. y — mo60e uncno;

a) ges lr 34004 +3;

33 lyl +240; y — mo6oe uncno.
9) 3855 9) et aa
2-240; 242;
3545 £0; TÉ—
EE on 6 40; 2-340; 243.
Ms = 11a;

sr
= Ybooet 100" 10108 9
= ee = AU 100,

(Sa (3a-3e)? a
a) Seer = fo ST = GE <5

Gm

6) LE = (aa = = Got? _ (ar,

a) Ga) Fat

43

A)(4y?+2y+1) PR.

AA QUE *
sala-0.%) as
TOGO — 340.55" à
tad (2-2) (2-2 2.
A mg = thy = Hh

or = Mg E
(8242) un

r) | Seat +3ry+y?) = Ea,

216. a) alt ari = pi

Po et) ath,
© aan = E = Sa

TS zy-ze—zytye
Ze er D

Sen ver ya a
weten) ~ G mah ym

alb+1?- Karl)? dia) -b(a?+20+1) _
D erg abra-ab-b

— BL eibta-b _ -abfa-b)+(a-b) _

= WOW) — y +85

pO__ 2 La ‘ep A
D ate + pea = o = oo

sé =22 2y= = Pri
2: ir a = aye =
_ (PA) 26 _ teta _

A la]

Un ge Gta) (gto
BEE) E + ake E = acpi
=y-b;
(atz)? _ 2at2r _ (atz)*-2(atz) _ etes _
6) Sh — = ln ats;
8) Se + ey ey - ED (ety) _
A Ou — ler =
= Baler e 4 4
E A
2-530 5430-2 530-2

— (e In À =b-30.

222.] Mlycro npasmapnas apo6s 5 Hecokparama. JIpo6b,
xonoamaromas ed xo enunnue 1-2 . Tipennonoxum,
«to ona coxparuma, Torza b— a = nk; a= b— nk =
= nl — nk = n(l—k). Ho torna q = HB = AA
coKpaTHMa, npoTHBopeune shaumr 1 — E He COKPaTHMA.
225] a) E = 1+. Mpmn=1; 2; 3; 4 anauenna
BHpakeHHs ABARIOTOR HATYPAMBHEMH;

6) 2 = 5-2. Mpn n = 3; 4; 6; 12 anauenna
BHPAMEHHA ABARIOTCA HATyPaAbHBIM

2) nt = 8 —1. Mpa n= 1; 2; 3 anauennn supaxenua
ABASIOTCA HATYPAABHBIMN.

= 5; a) St ae =i+l=

a) at y+ Sek = Meta) y toy tte — ety,
mn _ n(m- in — main? loma _
© m+n— Lim = ea Lema — matetsiomn =
8) a — tacite — alatb+ _ ebbactbe _
NIN os atbre
a+b+c - e
naa ee le a)
= Pra =
~ a+b a+b *
28] a) menti 4 ma-ı 2 (mnt1)m-n) + (mm-Nimtn) _

min + men =, Gara, + min
pere as Pe

a

a om’ ne
sa seins) fee
0) SEE - SER 3
mn

A o E
hy = Bi 05) _
228. E AA PS HT RT at = 9-05)

a 3 AAA

m Fe

Fa yt
7 06-08 — Lu SG 5 7 GROS —
= rai GS = por” win
=
FROH - waa = M al ~ ML Sa-08) —
6a-2(1,50-+0, Gana

7 5000 © Tram DH ¿pos =

a
= as © TR OO = TOR =
LES

6)

230. DE + Ce +e ea) a
lie aS D (=<) 0: )
voie 18 ar 15- 3-Ay+18 _ 2y+30,
3 ASS a
EST] a) 5254+ ps ~ = = gee = Bes

46

5(2a+3)
ad LS

en

3
im mtl 4 mot 22m+1)(2m+1
dal > nde

y mme) — 2im-8m? —8m—24 12m? 12m.
E - mn) Br dl PO fam+1)
Am 4m +1
rhin O Dm a del mi)

— ee) +
ony Sat ag ‘oe zy Se ve — even)
&
(= N (2+) = com Aro m i
ES he (a-1)(1-24)
3-1 u eh et (a—1)(a* atl) —

— ob Sat2—at dat inte — Ge
= ms io

tena arbjfaeıy)-(a-b)be-ay) _
282] he, her, ET IN
Pz: Perth ypary +z

by =
We en CU (ty)

aun

238 a) 2h + te + RQ =, =
a a, a ca

‘ahe{a-8)(a=c) (0) race Iren er

Plc-a)-H(c-a)racle—a) _ B-bleta)tac
Te) a

Tabela-b)(b-0) — -abela-i
2

G If =

A
TE)

(2—y)(2-z)(y—2)
— Pay-artyr _ ele) _
= Feed = “Gates =F

47

234] a) Hadat6 — et y 6.

2%. Aisaserch uensim mpi
10; 11; 18; —24; 32.
++;
— Hab) +(3a~-2)
I+D

6) (-5)(2+2)

a(=+2)-Mz-5) _ z(a-0)+(2a+50)

MA) NA)
a- 2a — 2b = 10
2a + 5b = 31 2a + 5b = 31
7) = 2 b=3 ou

> =

2 as-tetob _ alatz)+blatz)
235. a) ya) get. ee = a Baz)
x Manz)+H(o-z) _ (atb}latz) „ (att)(a-2) D,
mean ers) = eee oe) {+
we ze-dralz-i
DEZE or ne) e
ze-b)-a(e-h) Eee) _ (=
BEE ee. a © ea
2 :(L-1P mend 2 2
A 240. am; (m a a pot
= mn 2
= inn” ror ACROSS a=

— (mon), = _1. He sasucur OT aHaye-
(m—n)

Par. ete tea fe) = de x

x Mlztanktar — 216-2) late) = 29, Ouepunto, “TO
pm si060m enoM @' p06

ABAACTCA YETHBIM YHCJIOM.

TE

TR
= nitro
Orpinerentoe me npa 11060 = >2.

(243.] a) abt a (et = ab+ À

SEE — ap ah a =
q spa za a tab hate

ab a-5

49

O (HR — ay ty?) - 85 + oy = eta y

ze)

ae er Ft
de _— + -zy;
y Ei] ET]

1 2 1 da? +4ab+0?
») (ar + + ars?) ia
E (Qa+)*+200+1)(20-0)+(20-0)* . Qatb)? _ (2a+b+20~b)? _
~ m (2a-6)?(20+5) 160 1a?
jé 16a? PERS Base
— Ta(2a-07 ~ (240)

) N a os 2 pon” „BER

Da! Gar + ear + ea) © Go?

. (6-2)? +(c+2)?-+2(c-2)(c+2) _ _de?_ (c+2)/(c- =

CA) TT" (e242)

_ 42 (+2)? _ (042)?

O — (27 a

2) (24 2 y) = Grimey

24] ) (2 = +»). (+ 2 -y) - ELE
Cut _ Py, PA _ =

x SS Sy = ey (e+ 9)

Ia Pm 1420? , 1-a-ı

SF Wm
ES
a 6 E (LED),

MUR EB

(a3 + 6%) (a3 — 69)? = aña? + 205)? — b3(203 + 69).
a3 (a? + 268) — 63(2a3 +)" =

= a? (a® + 60%? + Gab + 86°) —

50

— W (Ba° + 6803 + 60396 + 59) = al? + 60909 + 60805 +
+ 8a°b° — 80°! — Gab — 6a%b? — bi = al? — 20% +
+ 20309 — BM,
(a3 +B) (a? — By? =

= (a? +?) (a? = 3a6b% + 34305 — 05) = al? + a? —
30907 — 30900 + 30009 + 30%? — a3 — b!? = al? —

= 20°b? + 2038? — UE, Guau,
oP + B+ (MED) = = ee
247 it PR = = DA) + OM =
= ae + QU, = Sie _ azar) _
= Ser?) = 6. He SABHCHT OT anauennn nepemeHHisx.

PUR su-ss-ue
: SEE EE x

D ge = 1: (142s 8H) = 1: (145) =1:

=1: (1-5) =1:

2-240 242
520.) Sa, en
mi 32 #0 240
32-440 1A+2
BHpaxeHHE HMeer CMBICA npH 2 #0; +2.

6) Fi:
51

æ

#0 740

1-140 = 241 Jannoe suparenne Hme-

1-75 #0 240
er embica npn x £0; 1.

251.

Abro!
a or

=2:

zy=

NE

Myers m onion sakase 2 cangerok, ckopoen

paoru nepsoñ basamos E, sropoh 5 HX yaennu
- nas, A sand, ena OYAyT 3aKomuen

pes gr =

Settee = 372 — 210 —
== =94 4

À Orser: 94 4.
Tyers paccronnne ot À no C papnaerca 2 KM,

Toraa paccroamme ot C no B raxxe PaBHaeTca 2 KM.

mobnas mpoexan nyt» or A no C 3a epena gy
C no B 3a spem 5. 3xaunr, cpennaa ckopocrs

aSTOMOÓNAR Ha BceM nyTH cnenonannn paBHA Rx =

La — 2240 — 684
453 = 220 — 681 xu/a.

162.

Jy=4t;ay=1. a A (40; 0,025); xy = 40 - 0,025 =
- Tipnuanaexur;

0,03125;32); zy = 1. Ipnnannexur;
y = 0,1. He npnnannexur;
{0125 ); zy = 0,1. He npunannexur.
A(10;2,4).k = cy = 24. a) B(1;24);
À ‚pnnannenur;
120); zy = 24. Tipnnannexur;
12); ay = -24. He npunannexur;
(10; -2,4); zy = 24. Tipnnannemur;

52

a) K (5;-1,2); cy = —6; He npunannexur;

€) M(-2,5;-0,6); zy = 1,5; He npnnannexur.

53

18164

a)

e

=

<=

=

54

TJIABA II. KBANPATHbIE KOPHH

$ 4. JeñcrsnrenbHsie unca1a

10. PaumonabHble uncaa

263.] a) Harypansume 10; 15;

6) Lease -100; —2; 0; 10; 15;

8) Paunonammbie —100; —14,5; —2; —3; 0; 10; 15; 204.
(264.] a) —4EN ne sepno; —4 € Z Bepno; —4€ Q Bepno;
6) 5,6 € N sepno; 5,6 € Z me mepno; 5,6 € Q epno;

2.
0,(3); 6) E = 0,8(3); 8) + = 0,(142857);
-2,(2); a) - -0 BH e) 10,28 =
= 10 28(0): x) -17 = 7 (0); 3) & = 0,1875(0);
# -13 = -1,075(0); x) 24 2 (63)
268.] a) 0,013 < 0,1004; 0 - —24 < 0,003;
8) 324 > 3,42; r) ¿ = 0,375;
a) -14 = -1,175; -1,174 > —
e) 1 = 0.(90); 33 = 0,91 (6); 7 2,
%) —2,005 > 2,04; 3) -13 = -1,75;
4375; 0,437 < 04375,
—0,125; —0,125 > 0,13.
E Ur
S<b

ME

270] a) 10 < 10,01 < 10,05 < 10,1; 6) -0,001 <
< —0,0005 < —0,0001 < 0;
5 „1001 < —1000,5 < 100,1 < —1000:

aig ña 1,33; 1,34; 1; 35;
6) 5,01; 5,02; 5,03; 5,04; 505;

30.

70;
2—Jab—2ab _
(a—ba+b) =

aH’ DEM © GH

273. 2 (2k)? = 4k? — uernoe uncao;

6) (2x +1)? = 47249741 = 2(22+x)+1 — He uernoe
ncno.

[274] a) Npa x = 10, |x| =
mpa x = 0, |x| = 0; npa x
r=-9, |2|
6) Tipn [x
|x| = 0; =0
275.) a) TIpn a >
2) Tip b < 0; |2|
11. Hppaunonansabte “mesa

276.] a) ¿ = 0,1(6); 6) m = 3,1415926
(277,] a) na; 6) ner; 8) na; r) ner.
278.) Paunonanbnue 1; O; 0,2
ppaunonammue 0818118111.
2 (279.] a) 7,16€ N ne nepno; 7,16 € zZ He BepHo; 7,16 € Q
Bepno; 7,16 € R sepno;

6) 409 EN sepno; 409 € Z nepno; 409 € Q sepno; 409 € R
Bepno;

8) TEN ue Bepno; m € Z He Bepxo; mE Q He BepHo;
MER nepno.

pu 2=08, [e] = 0,3;
-2,7, [2] = 2,7; npu

= £3,2; npu

2 (3); 4,2(51); 217.

57

6) 0,123-+- > 0,114...;
ui D 1444... >

= -0,2(27) > -0,228;
3,1415926-=- > 3,1415; e) 3, (14) < x.
a) 9,835--- < 9,847...; 6) -1,(27) < -1,272;

8) 0,06 (3) > 0,0624;

r) 24 = 2, (142857) > 2,142;

1) 1,(875) > 1} =

e) -3, (16) <

283.] a) 7,45 = 1,15 6,

6) 3% — (-53

284.) a) CM 4,514 — 1,304 = 3,21; MD = 1,304 —

=11,
70675

3,2408...; 3,21 < 3,2408... rouxa

— (2,4815...

454 — 4,586 = 6,868;

> 6,868 rouxa D Game.

+) 2,63... 3,(3); 4,62.
16... 1, (37); 1,371
1; 2; 6) —

= 7,0675...; DM =

289.] a) a = 59,7; b= 43,1; a—b = 16,6;

6) a = 59,68; b = 43,12; a— b= 16,56.

290] x = 3,14.2nr = 2 : 3,14 - 4,5 = 28,26 cm.

(291.] x =3,14.1r? = 3,14 + 100 = 314 m2.

292.) a+b = 1,323223222--- + 2,313113111... =

= 3636336333. (rpynm undp, cocroaume na onnoh,

AByx,

TPeX 4 T. JL, PA3LENAMTCA LECTEPKAMH) — Hppa-

UHOHANBHOE HHCIO.

58

293.) a+b = =P paunonanbHoe uncno.

32? . z 12-32 sl. =
294 a) (1-2) 5 (si +1) = EE Eh =
1-42?

b

= rar ab
2) = hay *

8. npu 4 |
= 10-8] = 2. npn

59

$ 5. Apucmernuecknit KBAIPATHBIA
KopeHb

12. Knanpatunie kopun. Apapmeruuecuuñ
KBanpaTHMË KopeHb

298.) a) 5 > 0; 5? =25 => V25 =
6) 0,3 > 0; 0,3? = 0,09 > /0,09 = 0,3;

8) -7<0 => -7 He ABAACTCA apncmeTHueckHM KBAN-
parmblm kopuem #3 49;

1) 0,6 > 0; 0,67 = 0,36; 0,36 4 3,6 = 0,6 ne annnercn
apubMeTHueckHM ksanparhslm Kopkem 43 3,6.

299.] a) 11 > 0; 112 = 121 > a =11;

6) 13 > 0; 13? = 169 > VI69 =

8) 1,2 > 0: 1,2
r) 0,7 > 0: 0.7
300] a) VSI = 9; 6) V36 = 6; 8) v1600 = 4
r) V10000 = 100; a) 0,04 = 0,2; e) Y0,81 = 0,9;

1 = 1,83; Vie es
8) Tlpn x = 0; 0;
+0,1 = 0,11; Bos 088 2+ Vz = 0,36+0,6 =

Ve
a 100 + 10 = 110; nu = æ = 3600;
x + yz = 3600 + 60 = 3660.

60

303] a) Tlpn x = y =0,36/7 + yy = $+0,6 =
= 0,6 + 0,6 = 1,2;
6) Tin a = 2, Vi=%a = vi-4
22,54 — 2a = VA + 45 = 49
502] a) VO + 03 = 0,3 +0,5
6) 0,04 — VO = 0,2 — 0,1 = 0,1
8) 3V9 — 16 = 3-3- 16 = 9-16 = -7;
1) 74/0736 + 5,4 = -7-0,6 + 5,4 = 5,4 — 4,2 = 1,2;
1) 0,1/400+0,2//1600 = 0,1-20+0,2-40 = 2+8
e) 340,36 + 2/900 = } "0843 +30 =0,24+6=
[305.] a) 0,636 =0,6 -
6) —2,5V25 =-2,5-
8) 0,49 + y0,16 =
oan VOM = 0,8 — 0,2 = 0,6;
—/0,0036 + /0,0025 06 + 0,05 = —0,01;
à JA your ,1 — 0,01 = 0,09;
x) LY0SI -1=}-09-1=03-1=
3) 4- 10/001 = 4-10-01 =4-1=3.
306.] a) 225 = 15; V169 = 13; V324 = 18; V361 =
=19;
6) VIA = 1,2; VE = 1,8; VER = 1,6: VEB = 1,5;

= 0; mph a =

8) v576 Vi764 = 42; V3721 = 61; V7396 = 86;
ove 17; 113,69 = 3,7; 56,25 3 VTT =

307.] a) n = 10; 7; 2; dae 4; 21; 16; 9.
(508 a) A (VISA), B (VI): VISA > 3,9; VI6 =
=4; VI6 NB EN Touka A Gauxe;
6) A(y2), : Ph = VE =

TE = ql = E a. > /1É. 3naunr rouxa 3

61

308.) a) V100 =
6) V=100 ne umeer cmbica, Tak Kak non KOpHeM
oTpHuarenbHoe 4HCA1O;
8) —V100 = -10; r) y/(-10)? = V100 = 10;
a ve: >23): (-4) = VB -4=5:2=10;

V- 3-4 ne nueer cmbicna, Tak Kak non Kopuem
restos uncno.
310.) V0 = 0; VI = 1; V5 = 3; V100 = 10; VOR =
= 0,6
311.) a) yz
3) 2/7

4, a = 16, 6) yz = 05; 2 = 0,25;

B12.] a) /z = 0,1; na, max O56;

6) Vz = -10; ner, tax Kak —10 < 0;

8) yz +1 Va = —1; Her, tax kax —1 < 0;
1) VE-3=0; V7 = 3 na, tax ak 3 > 0.
mn ;

—2. x He HMeeT CMBICIA.
[314.] a) V3 + 5x = 7; 3+ 5x = 49; 57 = 46; x = 9,2;
6) VIO — 14 = 11; 102 — 14 = 121; 102 = 135; 2 =

I=0je-}=
m2 +39 = 2; n°? +39 = 2%;
(e=n) (2 +n) = 3-13.

62

fe ens
gr Hr

a-n=1 z= 20 z-n=-l
>

>
z+n=39 n=19 |r+n=-3
2=-2
He MOIXONHT, TAK KAK nN HOMKHO ÓNTO
n=-19
HatypambHoe uHCno.
z-n=3 1=8
> He TIONXOAHT, Tak kak T
2+n=13 n=5
OMKHO ÖBTb ABYX3HAUHOS He OTPHUATeAbHOE UMCAO.
z-n=-3 2=-8
> He TIORXOAHT, Tak Kak
rtn=-13 n=-5

n HOMKHO 6bITb HaTypänbHoe YHCAO.
T-n=39 1=2
>

z+n=1 n=-19
1 ROMKHO ÓNITE HaTypambHoe uncno.

He MOAXONHT, TAK KaK

z-n=-39 z=-2
> He TOHXOAHT, TAK Kak
+n=-1 n=19
T HOMKHO ÖbITb ABYX3HAWHO€ He OTPAUATE/bHOE HHCIO.
-n=13 z=8
> He MOAXOXHT, TAK KaK 72
zs+n=3 n=-5
AOMKHO ÖbITb HATypanbHoe YHCO.
z-n=-13 z=-8
> He NOAXOAHT, TAK KAK

2+n=3 n=5
© nOnKHO ÓNTS AByXahaukoe He OTPHLATEABHOE YHCAO.

Orser: np n = 19.
63

263; y(1,7) = 2? = 2,9;
53122422 ya) = 2 =75 0%

8) y(-1,4) = 2? © 1,9; y(2,8) = 2? 7,8;

1) y(z) = 2,5 > 2% +16, pr) =5 > 1% +3.

817.) 1,51%? - 6,22y = 9,324y* = 9,32(cy)®. Mpa x =
1,25, y = 4. 9,32(zy)? = 9,3 - 1,25 -5° = 1453,125.
(318.] a) |a?| = a?;
6) npn a > 0; Jaÿ|
8) np a < 0; la?] = —

13. Ypapnenue 2? = a

[319.) a) Ha; 6) Ha; 8) Da; r) Her, tax ac 2? <0.
320.) a) 1? = 36; x = +6; 6) 2? = 0,49; x = 40,7;
8) @? = 121; ¢= 411; 1) 22=11; 2=+vV11

1) 2? =8, c= +V8=+4V2-4 = 42/2,

e) ct = 25,2 = 4/05.

64

321.)

a) c= 3, cx 1,7; 6) 2? = 5; 122 8) 2? = 4,5;
122,11) 2? =8,5; 129.

[322] a) 80+ y? = 81; y? = 1; y= 41;

6) 19+ €? = 10; c? = —9 nannoe BupaxeHHe He HMeeT
CMBICHA;

8) 20 — 6? = —5; D? = 25; b= +5;

1) 32° = 1,47; 2? = 0,49; x = +0,7;

a) ja? = 10; a? = 4-10; a = +2V10;

e) —5y? = 1,8; y? = —L£ nannoe Bupamenne He Heer
cubcra.

(823.] a) 16 + 2? = 0; 2? = —16 nannoe pupaxenne He
HMEET CMbICNa;

65

3 Anton, Bu.

6) (1 +4)? =9;
z=-7
2=6+v7

) (2-6)? =

5-0 2=6-y7
r= 6-2

r) (c+ 2)? =6; >
‘ ) 2+2=-y6 2=-v6-2

325.] Mpn x = —3,4; V8 — 51 = V8 + 17 = V25 =5.
Tipu x = 0; 8.
Tipu x
Tipu x .
Tipu = 2,4, Y8=5x = VB—12 = V—4 — nauoe
BupaxenHe He HMeeT CMBICIA, TAK KaK non KOPHEM
orpuuiaressHoe wAcz0.

[326.] a) a > 0; 6) r>0; 8) c>0;r) b<0.

[327.] a) x > 0; 6) x <0.

328] (V25) = 25; (VEN) = 9; (V2) = 2; (v3)? =3;
VA? = 4; (v8) = 5; (VO = 6 (JD = à
(VB) = 1,3, >
320, Ven 6) (-v26)

8) —2 T4 = -2. 14 = —28;
1) (85) = 9-5 = 45,

2) 0,5(-v8)"
9 (-2VT5) =
x) cy"
DIE =

(530. 030) 2) 0,49 + AV = 049 +2. 04=049+08=

9 (sv) — V6400 = 9 : 11 — 80 = 99 — 80 = 19;
66

8) (2V6) + (-3V2) = 4-6 49-2 = 24+ 18 = 42;
D 20 (v8) — (V2) = -0,1-120- 2 = -12-

(331.] a) (2- v5)" +475 = 4-475 +54 4V5 =9;
6) (5 + V3)" — 10V3 = 25 + 1073 +3 — 10V3 = 28;
8) (2— V5)" + (2+ V3) =4-4V5+5+4+4V5+
+5=18;

1) (5+ V3)’ + (5 — V3) = 25+10V3+3+25—10V3+
+3= 56.

332] a) 2V6- (V6) = -2-6 = -12

0) - (345) = -9-5=-45,
») TA-2(v08)° = /(1,2-2:0,6=1,2-12=0;
1) (0,1470) + Y1,89 = 0,01-70+/(1,3)? = 0,7+1,3 =

se o6unx roukn

dl:

14. Haxomaenne npn6nnennsix anauennk
KBAAPATHOTO KOPHA

6) Ti

339.

VE © 15,652; npa x =

336.) a) 5 < V27 < 6; 6) 6 < V40 < 7; 8) 10 <
< V120 < 11; 1) 3< ÿ9,2 < 4; 1) 0 < 04 < 1;
e) 3 < VI5 < 4; x) 12 < VI67 < 13; 3) 16 < V288 <
< 17.

337.) V6 ~ 2,449.

338.) a) yz; npu x = 16; yz = 4; np x = 0,25;
VE = 0,5; npu x = 3; Ya = ¥3~ 1,732; np 2 = 245;

‚37; VE # 0,608;
pus = 8,5; Vr+4 = yTZ5= 3,5355; mpn x =

= 14,1; Ve+4 = VIB ~ 4,2544; npn x = 0,2549;
VI +4 = JF 2545 ~ 2,0627.

a) V5 > 2; 6) V7 <3; 8) VII < V21.

[340]

6)

a) VV5 — 3; V5=2,236...; V5-3 = -0,7639...;

V-0,7639.... He Amer cMuicaa;

4-V12 Vi2 = 3,464...;5 4- VI2 =

= 0,53589... Y0,53589... umeer cmbicn.

341.

18 = 4,2.
68

342] a) /(a + bc; 6) Vb+a.

343.) a) /48,5-7,3 + 30,6 7,3 = (48,5 + 39,6) - 7,3%
= 25,36;

6) 8,567 + V54 = /54 + 8,567 = 15,91.

344.) a) 6 + VI7 10,12; 6) 12 — V34~ 6,16;

8) V10 + VI5 ~ 7,03;

1) V62 — V48 ~ 0,94;

2) V34-1,9 = 4,08;

e) 6,5 +3 /78 = VTE-D+ 6,5 ~ 14,87.

345.] ag = RV2— V2, V2- V2~0,765; a) Tlpn R =
=9,4 cm, ag 27,2 cm;

6) Tlpu R= 10,5 cm, ag 28 cm.

346] t = ve npn g = 10 m/c?; t = /¿. a) Mpn
s=175; t= (B= V%H=596;

6) Tlpx s = 225; t= (= 45 =6,7 c.

Bar = 2/5 = 6,28 5. a) 12 22; t = 6,28,/2 =
6) | = 126; t = 6,284/ 128 = 22,3 c.

348.] a) x? = 30; x = +V30; x = +5,48;

6) 72? = 10; a? = 39; u à pra

8) (x — 3)? =12%2-3= 412; x = 34 VI2 2 = 6,46
man z = —0,46;

(+1 =8,2+1=23V8, 2=-14 8; 2 = 1,83
mam x= 3,83.

(849. a) 3/0,16 - 0,1/225 = 3-04 — 0,1: 15 = 1,2—
-15=-03;

6) 0,2V900 + 1,8
8) 0,3/T,21 : 400 = 0,3 - 1,1 + 20 =
1) 5: 40,28 - /0,81

= 6+0,6= 6,6;

[850 lpn x = 7; 2 + |x| = 14
Tipu x = 10; 2 + [e] = 20
Tipu
Tipn
Tipu
Tipu
Tipu 0.
(351.] à) an — Es PR n
92. 4y?-120y _ (2y-32)?
6) rr 97° (2y-32)(2y+32) ine.

15. Pyuxuna y = ve H ee rpahnx
352.]S = ar, S= 74; a) rè =

Fr;

353] a) S = 6a?; 90

r=

354] S = 4mR°?; R? = a 8.
855.) a) TIpn x = 2,5; 5, Vz pasen 1,6; 2,3; 2,9
COOTBETCTBEHHO,

6) Mpm VE = 1,2; 1,7; 2,5; 2 pasen 1,4; 2,9; 6,3
COOTBETCTBEHHO.

(856) y = Vz; a) Tlpn x = 0,5; 1,5; 6,5; 7,2; y paren
0,7; 1,2; 2,5; 2,7 cootrercraenno;

6) Mpx y =0,5; 1,5; 1,8; 2,3; 2 pasen 0,25; 2,3; 3,2; 5,3
COOTBETCTRCHHO.

857.) A (64,8); Vz = V64 = 8. Touxa A npunansexnr.
B (10000; 100); 10000 = 100. Touxa B npananaexnr.
C(-81;9); BI ne meer cmicna. Touxa C He mpi
nannexut. D(25;-5); V25 = 5 # -5. Touka D ne
pancita

(858) y = Ve; a) y=1; VE = 1; x = 1, nepecexaer
B touKa (1;1);

70

6) y = 10; VE = 10; x = 100, nepecexaer B rouxe
(100; 10);

8) y = 100; Yz = 100; x = 10000, nepecexaer B TouKe
(10000; 100);

1) y= —100; VE =—100 He HMeeT cmbicna, Haunt, He
nepecexaer.

y=V7,y=2+05 2=2405;2=2? +04
—0,25. He nmeer cmbicna, 3HauHT, rpaHKH
DyHkum y = Vz u y = 240,5 He HMEIOT OÓLIAX Touek.
[360] a) Aa, mmesor o6ume TouKn (0;0); (1; 1);

6) Ha, umeor o6my1o rouxy (1000000; 1000);
By=y2>2>0y=x+10; y2=x+10 x=
= 2? +907 + 100; 2? = —19r — 100; nannoe BBipaxkenne
He HMeeT CMBICIA, TaK Kak x > 0. BHauuT, OÓLIMX TO¥eK
ner;

Ny=Va>r20; y=-25+15 VE =-c+15;
x = 2? — 3x +2,25,.2? = 2r — 2,25; nannoe upamenne
HMeeT CMBICA, SHAUAT, rpabHKH HMeIoT OÓLIME TOUKH.
861.) Tpapux y = —x — 0,1 me mepecekaer rpacux
YHKUHR y = VE.

71

(863.] a) Y10 < VII; 6) VOI < VTT. 8) V50 < v60;
1) 7= V49; 7 < V50; 2) V64 = 8; V60 < 8;

e) VT,96 = 1,4; V2> 1,4;

x) 1,8 = /3,24, V3 < 1,8;

3) 5,2 04, V28 > 5,2;

4) 9 < V95.

Da a) Var < vB; 6) VIS < VIS 8) VO = 3;
7 <3; 1) y6,25 = 2,5;

myi> E

e) VOS < 1; x) VOB > 0,4:

3) fis VE

1) VIS < /33.

(865.] a) 0,07 < (00 < y23 < 4 < YO;
6) Bi Veie 16,5 < V8;

0) À < 3 < VOB < 23 < 24:

1) -1<07< TO < yi} < VIT.

386] 2) 0,5 T2 +3y081 = 0,5-11+3-0,9 = 5,5 +

Pe re, vo: vQ,0I = 12: 30 - 0,1 = 36;

8) 400 — (4/05) = 20 — 16 :0,5 = 20 — 8 = 12;

D (SD — 10/084 = 9-4 -10-08=3-8= -5
72

a) (=

in ~ 5VOT6 = 3 -2= 118;

e E - 44030 = 36: 1 — 4.0/6 = 6— 2,4 = 3,6.

367.] a

(-9)? = V9? = 9;

6) wat He WMeeT CMBICIA, TaK Kak Ton KOpHeM
OTPHUATEABHOE 4HCAO;
VE = -9;

VA =-9.

Vil; V5 = 1; x = 121;

E
EU

$ 6. Csoñcrsa apapmeraueckoro
KBAAPATHOTO KOPHA

16. Knanparmsiit Kopen us npouszenenns
u apo6u

En

a) V100 : 49 = 10-7 = 70;

> 64-121 =

‘81 : 400 = ee 20

73

oie 14,4 5: 1,4
x) 90-64 = an G4 =3-

.] a) V8TO- 40 = /8T- 400 = 9 - 20
6) v10- 250 = 4100 - 25 = 50;
3) v2: : 36-64
1) V8-98 = V16- 49
a) va 18 = V100-9

V16,9-0,4
8) VA9- 360 5
1) VI60-64 = Y16-64=4.8= 32.
1876.) a) V137— 127 = /(13- 12)(13 + 12) = V25
6) VIT = VATER = VI00 = 10:
8) V3137—312 = /(313—312)(313 + 312)
= V625 = 25;
r) VI22-2# = (122 — 22)(122 + 22)

= 100 : 144 = 10:12 =

74

) Vis, 8-42 = S458
= 16-54.
9 Va 87 — 18,2

44,2)(45,8 + 44,2)

[)

877) a) VIT —8 = (17 —8)(17 +8) = V9-25
=3-5=15;

6) V+ 4 = V9 +16 = 125 = 5;

8) V827— 18? = \/(82— 18)(82 + 18) = v64-100

i]

y vio = Var =

VOSGES =

n-2=5 = n=10 n-ı=2
n+z=15 2=5 n+z=3
n=14

He NONXOAAT, Tak Kak 2 < 0.
z=-1

n-ı=1 er n=38 n-2=75
n+z=75 r= 37 n+z=l
n=38

He nogxoaut, Tak Kak € < 0.
r=-

n-ı=15 n=10
= He TIORXOAHT, Tak Kak
n+z=5 z=-5

z<0.
Orser: 10; 14; 38.
382.) a) v7500 = V75- 100 ~ 8,7 - 10 87:
6) v750000 = V75 - 10000 = 8,7 - 100 = 870;
8) v0,75 = y001-75:0,1-8,70,87;
1) v0,0075 = y0,0001 75 ~ 0,01 - 8,7 x 0,087.
383.) a) 57600 = 576: 100 = 24 - 10 = 240;
6) 48 - 10 = 480;
8) V152100 = V1521 - 100 = 39 : 10 = 390;
r) 129600 = pin 100

WOVE

gee acts KR
Hi

sseEs E
Besess

RS

GE DFA

z

VAN = 2

20;

HMCET CMHCA MPH AIOÓLIX SHAIEHHAX Z.

vai

[588] Vaoôuee nonssoparsen cnoco6om V6. V2. V3

at CEA

a in E 1 3e
3 ganas

i us]
sang Soe
Boz>2 TERS 2

7

300] a) at = (a?)?, 6) af = (a*)”; 8) a!8 = (0%);

2x — 5a — 90 = 690 + 2;

S221; 207 — 20 + 242 + 12 = 452 — 15;
17. Ksanparmañ nopemb na crenenn
33) a) (01? = 01; 6) y(04” = 04

8) V(-08) = 08 1) Yun? = 17 » Yer
= 19; e) RP = 24; x) 2/(-23)? = 2-23 =
3) 5V52? = 5: 52 = 260;

1) 0,2/(-61) = 0,2-61 = 12,2.

394.) a) Vz; mpn x = 22; Vr?
12 = 35; npu x =-13 Ya?
vi

© 2Va?; npu a =-7, 2Va = 14; mpn a = 12; 2/27 =
= 24;

8) 0,194 mp y = —15; 0,1447 = 1,5; mpa y = 27;
0,1 Vy? = 2,7.

B96.] a) ipl: 6) va = [uli 5) 34% =3 |b|;

; 6) npu n <0; Vn? = -n;

8) npn c > 0; 3V@ = 3c; 1) mpn y > 0; -5yy? =

= —5y; a) npu x < 0; V36z? = —6z; e) mpm y < 0;
VF

78

x) np x > 0; —5V4a? = -102;
3) mpm a < 0; 0,5V 16a? = —2a,

367] a) npu 0<a < 2; Ya?—4a44 = y/(a- 2? =

=2-a;

6) npu a > 2; Va?—4a+4= 4/(a-2) =a-2.
308] V9 — 6 Ve +a = Y(8 - yz)’ = |3— Val. a) npu
x = 2,89; [3 — yz] = [3 — 1,7) = 1,3;

6) npu x = 82,81; |3— /z| = [3-9,1| =

399] a) V4—2V3 = V1- 2343 = (1 - v3) =
= |1 - v3| = V3 - 1. Bepno;

6) V9-4¥5 = V4—-4¥5+5 = y(2- vay

- VB] =V8-242- V5. He sepuo.

1] a) VT+aV3 = V3+4V3+4 = (1342) =
= V3+2

6) V6-2V5 = Vb =2V5 41 = /(V5-1) = V5-

401.] a) V2 = 2? = 4; 6) V3 = 3? = 9; 5) V25 = 28 =
=&r) = 10% = 10000; 1) Y(-5)' = 5? = 25;

e) ÿ(-2) = 24 = 16;

x) V34- 5? =

1? = 121; 6) VE = 4 = 64
1; 1) (29) = 6? = 36;
48;

79

4) V8. 56 = 8? . 5% = 64 - 125 = 8000.

6) v50625 = 54. 34 = 57-3? = 25-9
8) V28224 = 1/26 . 32.7? =
r) V680625 = V54-3?- 11
404.) a) /2304 = V2 - 3:
6) V18225 = V5? 3°
8) V254016 = V2-31-72=5

$ 7. IIpnmenenne CBOÂCTB
APMpMETMUECKOTO KBAAPATHOTO KOPHA

= 225;

(403.] a) V20736 = V28 -31 = 21.32 = 16-9 = 144;

8-21 = 168;

18. Brinecenne MROKHTEAR 3a 3HAK KopHa.
Bhecemne MHOXHTENA nox 3HAK KOPHA

407.) a) V12 = V3-4=243;
6) VEB =

LE

ne Bae

2s

ni
a) 0,1V20000
e) -0,05/28800
= -6y2,

042

80

—0,05 14400 - 2 =—0,05-120/2 =

[209.] a) /20 = V4-5 = 2V5;
6) V98 = V2-49 = 7V2;
8) V200 = V2: 100 = 10,2;
r) V160 = 16: 10 = 4410;
1) 0,2V75 = 0,2V3-25 = V3;
e) 0,7300 = 0,7V3- 100 = 7V3;
a À ‚125/192 = —0,1253 - 64 = —0,125 - 8V3 =

a -1V/25-2=-%y2=-5y2
le ja) 7/10 = 49-10 va;

6) 5V3=

e) -}V iz = ne VE
x) 0172 ==

3) —} 09a = —

a) 3 VI86 = ,/18 = 2;

€) —0,1V200c = — 001-2006 = — Xe.
[414.] a) 3 9-3 =v27> VI2

6) 3V5 = V9-5 = v5 > 20;
8) 5V4 = 25.4 = y100, 495 = y16-5 = VB:
V100 > V80; 5y4 > 45;
1) 245 = Y4-5 = 20; 3V2 = V0-2 = VIS; V0 >
> VIB; 2V5 > 342;
1) -8V2 = -V9-2 =-y18; -y14 > -3 2;
9 707 A907 = 8,33, -11/005 =
‚05; —7/0,17 < -11/0,05.
415. a) VI = = 139, 1 V188 = y/% = var
= LVB51 < LVI
6) 3v8d = VE = V6: IVO = \/' = Vo; 1458 =
= 14150,

$150;
8) 4216 = \/28 = VA; VA = 1V216,

OP == LE
= VT < 7/3.

416. aie V9°3 = V2; 246 = Y1-6 = VX:
4y2 = VI6-2 = 32; 2/11 = V44; 2V6 < 3V3 <
< V29 < 4/2 < 2411.

6) 6V2 = V36.2 = V72 3/7 = VO-7 = V6;
2V14 = VA: 14 = V56, 5/3 = 75;

2/14 < VE < 3V7 < 62 < 5 V3.

Enr] Yate = VE er VE = d'u
b+i= a 27 = fF =2
Vit = Via E

S= Ypß-a)(p-b)(P-c); a) a = 12; b= 16;
peor p= elena = 26; $ = V26-2-10- 14~85,32;

82

6) a = 18; b = 22; c = 26; p = Mi — 33, S=
= ¥33-15- 11-7 == 195,25.

419.) liycre » nepauñ nen» yuanneca neperenn z KHHr,
sHa¥HT, BO BTopoñ Gtino nepenereno x + 12 KHHT, a B
TpeTHit neHb 24412). 24241248 (22 + 12) = 144;
(22 +12) +3 (22 +12) = 144; (2x + 12) (145 4
2 (on +19) = 144; ae en 2x = 72; 1 = 36;
2+ 12 = 48; §(2¢ + 12) =

Orser: » nepsun news 36, if o Bropoñ 48, 5 rperui 60.
420.) a) #247 = PGE, 127 + 60 =

=20- Ar; #67 40;
er Bas) _ 18; 102 — 45 -
2.

a)
-20z-12= Ts; —107—. 87 = 15; 10x = "72,

19. Tipeo6pasopanne pupaxennit, conepxamux

KBAnparame KOPHA

[421.] a) V75 + V48 — /300 = v25-3 + V16-3 —

— V100 -3 = 53 + 4/3 — 10V3 = — V3;

6) 3V8 — V50 + 2718 = 32-4 - V25-2+2V9-2 =

=6V2-5V2+6V2=7

3) ¥242 — V200+ V8 = V2-121- V2: 100+V2-4=

=11V2-10V2+2V2 = 3V2;

1) VT5 — 0,1/300 — V27
= V9-3 = 503 - V3-3V3= V3;

a) V98— V72+0,5V8 = Y2-49- V2-36+0,5V2-4 =

= Ty2 - 6y2 + V2 = 2V2.

422] a) V8p— V2 + /18p = JF 2p— pt Ip =

= 2/2p — /2p +3 /2p = 4y/2p;

6) V160c + 2V40c — 3V90c = V16 : 10c + 274 - 10c —

— 39: 100 = 4y/10c + 4y/10c — 9/10c = —V100;

8) 5/27m-4V18m-2V12m = 59 : 3m—4V16 - 3m—

— 2V4- 3m = 15V3m — 16V3m — 4V3m = -5V3m;

1) V54 — V24 + V150 = V9-6 - V4-6 + V25.6 =

= 3V6 - 2V6 + 5V6 = 6V6;

83

V25 +3 — 0,13 - 100 —

a) 3V2 + V32 - 200 = 3V2 + Vi6-2 - V100-2 =
= 3V2 + 4/2 - 102 = -3v2;
e) 2V72 — V50 — 2 1/36 :2- 25-2-2/4-2 =
= 12V2- 5/2 - 42 = 3v2.
(423.] a) (x + yy) (x yy)
9) (Va- vb) (Va+ vb) =a
) (vit ~3) (vit +3) =11-9=
r) (vi0+ v7) (V7- VI) =7-10= =3:
2) (Va+ Vb) =a+2Vab +b;
e) (Vm - Yn)” =n-2ymn+n;
x) (V2 +3)’ =2+6/2+9=11+6v2
3) (V5 - V2)’ =5-2/5:24+2=7-2410.
(324. a) (2v5+1) (2v5- 1) =4:5-1=20-1=19;
° (vie vB) (Vi3 + 5V7) = 25-7-13 = 175 -
-1 162;
ine 2V3) (2v3 + 342) = 9-2-4-3=18-

DH} =146V5+9-5 = 46+ 6v5;
a) (2V3-7) = 4-3 — 28V3 + 49 = 61 - 2843;
e) (2V10-— V3) = 4-10-4V10-2+2 = 40 +2 —
— 474-5 = 42-85.
425] a) War VT+ VI = 4+ +
+ 2/44 DU = Vi) +4 VT = 84 2016-7
=8+2V9=8+6=14;
6 (vat2V6-V5—2V6) = 5 + 2V6 -
- 2/(5+2V6) (5-2V6) + 5 - 2v6 = 10
~2/% —4-6 = 10-2v1=8.

84

2

Y

(25) a) (VE +1)(VE-1) =
6) (VE- Va) (z+ Ya) = 2—
») (vin + 2) = m+2V2m +2;

1) (V3- Vz) =3- 2432 +2;

a) (5V7 - 13) (5V7 + 13) = 25-7— 169 = 175-169 =
=e

o) (2v2 + 3v3) (2V2- 3,3) = 8-27 = -19;

x) (6- VB)’ + 3/32 = 36 - 12/23 + 2 + 316-9 =
= 38 — 122 + 12V2 = 38;

3) (V2 + VIS) - 30 = 2+ 2718-2 + 18 — 30 = 20—
— 30 + 2V36 = 12-10 = 2.

427.) a) 2? -7= ( - 7) («+ Vi): 6) 5-e=
= (VB -0)(V5 +e);

8) 4a? — 3 = (2a — V3)(2a+ V3);

1) 11 — 160? = (VII — 4b)( VII + 48);

2) Tipu y > 0; y-3= (Vy — VIA V9 + V3);

e) Tlpn x >0; y>0; 1—y=(Yz-— Vu) (VE+ V9).
(a28.] a) 3+ V3 = V3(V3 + 1);

6) 10 — 2410 = V10(V10 — 2);

8) fet c= yallı yz);
Dan

A a

e) V3m + Vöm = Vm(V3 + V5):

19 VAL = RT Vi = NVI 1):

0 VB VA VAR AER Y

420, a) Eh = CORD 6445;
9% u = Ber m), Soi = 745
DE = Wea = A

0 de ES os

85

D ipa = SEE = Va Vi

24723, 245-3, a
D SE = ane An = RE

v2;

(432.] a) 4, = ME;

6) += 4;

=

E AN

mas

a) 3 = B= 4,

CET cel:

433] a) — = 468-0 _ 9/3 - 1);

BH VD

AA
9) x = A = A = -1- Va

Yves.
) 7% = TR = ANT) CE
a(ya-V5) avi,

n a AAA = Ve

a) = U) ra) = MV) _
ar = ae = man —
139,

ER

15 _ __15@y8-5) _ 150V5-5) _ 150VS-5)
À da = parara = a =

15-695.

mu ha = GANA

4; paunonansuoe 4HCno;
6) J AA 2

FN ~ Brave = Go) ~~
ppaunonanunoe yncao:

3) 4 4(VI0+ V2) MVT0+V2) _ = YA,
0-3 (Ji0-v2)(Viorva) — 102

12 12(y3-. 8) = UA) _ UA _
Dz ms: A+ EC E mh
3);

= Avo —
aac ya) 5 = um - 9(3 + 22);
14

= MA) MUDA _
d ma = HS VD0-5/3) ¡di =
= A2 D.

a7] 0 02/18=1 VB = VE

0 = VE Vi

= JE

87

[438. |

+

(2- v3) (24 v8) = 4-3 = 1; sau, queue

2— V3 n 2+ V3 asamorca paammno o6parube, 2/6—5+

7

1 — (VIS) _ some 2 og;
1645 2645 Fi 2V6+5 2V6+5 ie
auaunt, amena 2V6—5 4 ¿yg ABARIOTCA NpoTHBONO-

AOKHBIMH.

| lporusononoxkHe uncaa V80—5V3 u V75—4V5.

IMHO eéraraue uncaa 153 —4V2 u wi

_2= Gern, se

mern “= er
a = =. In x = 2,5;

4

> za = 05

a) EA 428 4+1=0; 913 44-20+6=0;

-bz=-l
2,5; 2y — 20 — 15 + 6y = 30; 8y = 65;

S = aR? - ar; aR? = Star;

443.

Ypanienne npawoñ a: y = Lx — 2; Ypannenne

npamoh b: y=-—22 +1.

20. Mpeo6pasonanne apofimbix panukanop

a) V6+2V5 = V5+2V5+ = V(v5+1) =

(444.
=|V5+1|=vV5+5
© Vn-4vi = VI=4YT+4 = YV7-2)" =
=|v7-2| = v7-2.
2145.) a) V11 + 6V2 - V2 = V2+6V2+9 - V2 =

(V2+3) - V2=|V2+3| - v2=3;
88

6) SB + vo = Yo a+ -
= y27-10y2 + V2 = V25-10V2+2 + V2
(5- v2)" + V5=|5- v2] +v2=5.

HS) a) VE = “vi

i}

+
a

E [vr = 53 + [55 = A+
+1=1+3V6;

6) V86— V5A60 = y/ telmo _ [um _
= 3% — Es = v5 - va.

247) a) e=11+v85-2/(0+v8) (u - 485) +
+11 — ¥85 = 22— 2V101 ~ 85 = 22-12 = 10. a=
= v10;

6) a? = 34 ¥5+2y/(3+ V5)(3 - V5) +3— V5 =6+
+2/9-5 =64+4=10 + a = VI0.

148] a) /13 + 4/3 — V13 — 4V3 = V1+4V3+12-
= Vi=4V54 = yf (28 +1) - /(2/3-1)'=
= 2V8+1-(2V3-1) =2V34+1-2V/3+1=2,
PaLHOHANEHO AHCAO;

6) V19— 2734+ V19+2V84 = V17 = 2ViT-2 42+
+ VIT-VIT 242 = Vf(vir- vay +
+ VTT + V2)" = Vit — V24 VIT + V2 = 2417,

HPPALHOHANEHOE HHCAO.
AT _ Va VIT 4 _ 4-0

89

ea VEER VA - LE = Al =
150] V2+ V3: 2+ V2+ V3. V2- V2+ V5 =

2+ V8. 4 (24 V3) = V2+ V3. V2 VB =
=V4-3=1.
461.) a) (10+ V24+ AG + Vo) = 10+ V24 +

+ + VBI; (V2 + V3 + 8) = $34542¥6+
+ 2410 + 2V15 = en ne vA. 3haunr,
V2+ V3+ V5 = V10 + V24 + V40 + V60.

6) (VF VI — V0 - YOO) = 9 + VID— 20-60,
a+vs- V5) = 143454 2V8 - 2V5 — 2VT5 =

= 9+ VI2 - V20 — Y60. 3nauur, 1 + V3 — V5 =
= V9 + V12- V26 - 60.

452. a) ya-v - yE+vb
Via ANY

= = à =
= EMO an jar 0 2 2 70 MM _
= VELA _ :
= ME =
+ Ve (a ve = ML. _
AAA
1 ba 2 as 5 2
453.] a) Ya+2ya=1 = Ya-1+2ya-1+1
(Va—1 +1) = Va-141;
6) Va+b+1+2Va+b- Va+b+1-2yYa+b =
2 3
(roy - (var)
90

fT
"

= |Varb+1| - [Va+b-1| vax max a+b>1
v0 |Va+b+1|-|Va+b-1|=Va+Fb+1-vVa+0+
+1=2

HononnHreïbHbie YnpaKHEHAA

k rape II

[454.] a) Aa; 6) Her; 8) Ja; r) Her.

455.] a) Jla; 6) lla; 8) Ha; r) Her.

[456.] a) Ha; 6) Za; 8) Ha; r) Ha.

[457.] Mlycro x = 2n; y = 2m; rae n u m uenue yncna.
a) 2 — y = 2n—2m = 2(n— m) — sernoe uncno;

6) zy = In: 2m = Anm — ueruoe uncao;

8) 3x + y = 6n + 2m = 2(3n + m) — uernoe uncno.
458] Nycre x = 2n + 1; y=2m+1; rue n um uenue
ynena. a) z+y=2n+1+2m+1-2n+2m+2=
=2(n+m+1) — yernoe uneno;

6) 2-y=i+1-2m-1=n-2m=%Xn-m) —
MeTHO€ YHCIIO;

8) zy = (2n+1)(2m+1) = 4mn + 2n+2m+1=
= 2(2mn+m+n) +1 — He uernoe uncno.

459.] a) 0,001; 0,0015; 0,0016; 0,0012; 0,0006;

LH Ze Di
5 à 8.

(260) a) 22 = 0,359375 (0);

0,28 (0);

8) À = 0,(846153); r) 4 = 0,(037) a) E =

= 0,0(571428); e) -Z = -0,3(18); x) 3% = 0,7(6);

a) É = 0,2(18).

461.) Paunonansuwe 10,01; 10,002. Hppauxonansuie

10,001000100001 ...; 10,00245871235465.....

462.) a) Mppaunonambnoe «meno; 6) Hppaunokansnoe

nea.

91

[463] a) 0,3/289 = 0,
-4y081 =-4-0,
») Vva-

”) a u Ta
2) Womit. I = 2-0,114+10=
464] a) Mpu x = 2; V5r—10
mpa a = 2,2; V5r- 10 = VIT 10 = 1; npn
= 5,2; Vr - 10 = 26-10 = VI6 = 4; npn x=
‚Sr —10=yT10— 10 = v100
i VE 2y = VA ;
pn y ; V6 — 2y

= V36 = 6; npu y = —37,5 Vo—2y =

DET
0] aa Ha IEEE
a) 1+V2r Var 2x = 81; 2 = 40,5.
466. 1+ 424 yz 2 1+ Na =

2+ 3, 2+ VE=9 yi=
467.) a) Ha, nanpumep V5 + (-v5
[468.] a) x? = 4; umeer apa paunonanbnbix Kopun +2;
6) 1? = 2; umeer nea HppaLmonanbublx KopHa +V2;
8) 2? = —10; ne mueer Kopneñ.

92

(469.] a) x > 0;

6) x — moGoe zeficTBHTenBHOe uneno;
B) 2 — 11060e AehCTBHTENbHOE YHC.10;
r) æ — mo6oe nehctantenbhoe AHCAO;
a) t=0;e) r<0.

[470.] a) Vab; ab > 0; 1.a > 0b > 0; 2.a <0; b< 0;

6) V=ab; ab <0; 1.a>0; b <0; 2a <0; b>0;

8) vab; ab >

uncno. 2.a = 0; b < 0;

1) Valba u b moe neñcrerensame uncna;

1.b > 0; a nw6oe neÄctsutenbHoe

1) V—ab?; ab? < 0; La < 0; b mo6oe nehcrsnrenphoe

uncno. 2.b = 0; a > 0.

a -] a) Mpu z > 0;-6) Mpa x > 0: 3) Npuz > 0; 2-4 1.

6) (0,210) +0,5V16 = 0,04-10+0,5-

= /(-3,5 - 7,8)? + (4,3 — 0,4)? =

= 11,954.

474.) a) 75 < yT8; 6) VOT > VOUT:
8) 73 = V0,(3) > 03

1) 2} = VAIO > VAT:

2 § =0,(5); § =0,(54) + > VE:
9 Vi= WB:

x) V7 6457 --- > 2,6;

3) VOB = 3,13... < 3,2;

93

+

472] a) /0,16 + (240,1) = 0,4 +4 :0,1 = 0,8;
=0,4+2=24;
3) Vi — 05(VR) =12-05-12=12-6=6;

1) (8V3) + (— 3V3) =9- 34+9-3=27427 = 54;

a) (5V2) — (2V5) = 25.2 4.5 = 50 — 20 = 30;
e Cava) -a(v6) =9-6-3-6=36.
473. A(-3,5;4,3); B(7,8;0,4);

d =

WTB = 1,109... > 1,1.

475.

a) O, 1 nan 2 kopns; 6) 0 man 1 kopemb.

3 rn 09-06 = 7,56:

6) y:

1

12-51-001=,/2-2-001 5
KE {LE (037+082)
JA = yiM(121-04)
,2-0,9= 1,08.

= /Es-290e09 fasse —
ne _ VE HOTTE _ VE =

= VE =
mem = TA 6428 —
7:

) VE - (EE - Nera
ren 96,57 _ en -96,5)(145,5+96,5) _ 49242 _

1) Va = ER) 16228 —

= = &

478. a, 1520 - 01% = 1,50: 45 = 1,5V900 =

= 1,5: 30 = 45;

6) 0,310 : 0,215 - 0,546 = 0,03V10-15-6

= 0,03,/900 = 0,03 - 30

8) cs = 20V25 = 20-5 = 100;

ny =.

479. <0. a) Vab= Va: V—b;

6) e

(480. 12 = 12; 6) -V10? = -10;

») a = aa 100 ne nmeer cmuicna;

(-11)? = Vi = -11;
—(-15)? = V—15? He nmeer cmucna;
94

e) y (25) = —V25? = -25.

con pra .29=3:8=24;
6) —-2V10t = —2 - 10? = -200;

3-25 = -75;

+2 = 0,1-32 = 3,2;
2) 0,1 /(-3)* =: 3'=0,1-81=8,1;
e) 100,/0,17 = 100 - 0,1° = 0,001;
x) -/(-2)"? = -28 = -64;

3) 25/(-0,1)* = 25-012

482] a) VE = V3 = 2°

0,025.

. 4
e) V96- 486 = Vi: DE = ;
x) V750 : 270 = AS 450;
3) V194-776 = V2". 97? = 22.07 = 388.
[483.] Mpx x > 0.
484.) a) Tipu mo6on y; 6) lpu 11060 2; 8) Tipn x > 0;
1) Tipu c < 0; x) [px a <0; e) Tipn 060m b.

TT

D p20; y <0; VOTE = —0,5py*;
a) f= Bs

©) b> 0; a = 48;
x) © <0; y<0; VE = #
dex tart yea E.

MI EDICEDICEDERN
= ‘n(n +3): (n+1)(n+2)+1
(n? + 3n) : (n? + 3n +2) +1

| VEE =

= f(r? + 3n)? +2 (n? + 3n) +1 = V(r? + 3n +1)?

96

wud

= n?+3n+ 1 marypamnoe “meno mp mo60m

HATypanbHOM 7.

[489.] a)

E)

[490.] a) 0,5V60a? = 0.5V4a?- 15 = [al VIS:

6) 2,1V300z4

8) 0,1 15025

1) 0,2V225a5 B 5 Va:

1) av18a2b = aV9a? - 2b = 3a - |a| V2;

e) —mv/48amé = —my16m' - 3a = —4m°3a.

491] a) 0,2V200 = 0,2V100-2 = 2/2; 10V8 =

= 10V4-2 = 20V2 = 0,2V200 < 1048;

6) 1/3 = 311672 = 4v2; 0,8V50 = 0,8v25-2 =

=4 = 7/3 =08/5;

8) 0,5/108 = 0,5936 - 3 = 3V3 < 9V3;

1) 5V63 = $V9-7 = 7,5V7; 4,5V28 = 4,5V4-7 = 9V7
3 VB <4 < 45728.

[492] a) 3472 = iR = V32; 7V2 = VOB, VD <
< V2 <7V2

6) s/i= BTS: ¿402 = 4/8 = Vis:

3462 < VTT < 5/5;

8) 80,2 = VI2B; 2/250 = 4/20 = 40;
80,2 < 2V250 < VAI.

1) 12/05 = V72; 3V160 = 92 = V00;
12/05 < V89 < 3v160.

295] a) y3 (Va vb) = var - bz;
6) (VE+ yy) vz =x+ yzy;
97

4 Areco, din.

8) Vab (a+ vb =avb + bya;
1) (Ym — Jn) Vmn = myn — nym;
a) (VE + V9) (0V3- V9) = 22 — Vay +2/34 — y =
Ste NG

9 (va- vb) ies ala
— 2b = 3a - Vab — 21
») (2va+ vb Gun 2V5) = 6a - 4Vab + 3Vab—
— 2b = 6a - Vab-
3) (avr - Vz) (EVE) = aie avi
+27 = 62 - 5V2r.
494] a) (1 — VE) (1+ VE +2) =P Va = 1-2;
6) (Va+2)(a- 2Va +4) = Va + =ay/a+8;
5) (¥m-n)(m+n+Jmn) = ym - yn =
= my/m — n/n; ns
r) (2+ yy) (2? +y-2. + = +yyy.
(495. We nd 1-1) -4yr=1+4=
= (vr-1-2);
6) y+2Vy+2+3 = (y+2) + 2/yF2+1 =
=(V+2+1).
496] a) V6+4V2 = V4+4V2+2 = (2+ WM’ =
= 2+ v2;
6) Vav3+19 = V3+8V5+16 = ÿ(V3+4) =
= V3+4.
387) a) Tipu x = 14 v5; 22-6 = (1445) -6-
=1+2V5+5-6=2V5;
6) Tlpn x = 3- V3; 2? —67 = 9-6V3+3-18+6V3 =
=-6;
8) Mpa x = 2+ VS 22-40 +3 (2-2) 1 = v3 -
-1=3-1=2;

98

1) Tipn z = 36%; 9? — 3945 = (2-8)? +5-2=

= (ung)? sus 241-8,
208] V7+4V3 + VI= w= VA+AVS +3 +
+ VA 4553 = 4 v3" + Ve V3) = 2+
+ V3+2- V3 = 4 — narypansnoe uncno. V7 + 4V3x
x V7 —4V3 = V49— 48 = 1 — narypansnoe yncno.
100) à) a a = RANA) e N
Pauwonansiioe uncao;

qi. = | E
9 rat a = ane ev] ma = 3. Pauno

mnie
500] 2) am = Tram — (ins
= is

©) scan + cha ~ 5 (EAR) = 5st =

» ERES, 7, ARA -

= 520 AE _ 16 —
r) Bel à un = LE Hu van?

l=; 114 (11-V20)014V21)
= Dali _ 28 = 2,84,

en
E aa aca, yn = VE ve 3-45;

EL
may _ us Pr V8)(3- V5) _ CEE
=» ‘S+V5+5-VEe2

Er à = Ba = VAG. ES _ à
++

fa+vb fa far VE vun
Var Aja = pres VE = vai
») RE = Pa - ae En - vi- va:
DAA = cates = ane

99

BOS] a) YVR = AeA = V2
>= AS = À
0) aed = AA = À
” wee, - A =

1 a ea AG - = V3;

Ba) tf - Se

6) HE = warn a,
Ay ins _

VIF = _ (AB-1- ALYB-14 V9
e 9 Sp = ane = VIO -
ar,

5 re 2 ds BE ae Vi

a) es = ae ==,
e) ESA = 23-32 Lis
==,

2 Eme _ VV
Era aa GA = Se

= EY

=

ÈS Ge = B-va)9+3yYata) _ 3-Vas _ Maya.
6) ete PE = a,

1 = eee _ (1+2, -2yE+4z) _ 142° — IHBzyE.
en = MEE = BE,

a%+2aVb+4 _ (avb-2)(a?b+2aVb+4) _ aV55-2
” E ET ab

= eyes

7- ya (74 ya)
war = Tr Va)-Tyate) —

nt mn 1) fra}
Dn GORE =
100

az
Tita ya”

nn Te

L = 1

507. oon = Te = O 1,

= V2+¥3—1)(2—
an
A M Es 20+V0 0:
Fe ng

(wey

PS Ed

YE q VRT _
> Er es fae Sever
= LAVE _

ds

26-2 Aro Es MAS
Tan

"

[

=,

ei ya 1. :
500) EF JE 106 np
unuaer HauGonsuiee analene, Korda ee auamenaren
Hanmebumá, torna 2 = 0.

508) +) 15/2 - VI = 15/04 - Avid
= 15/0/0410 — 4/10 = 3/10 - 4910 = -V10;
6) VI35+10/08 = V9" 15+ 10/5 = 3/15+2V15
= 5vi5;

8) 61/13 — V27 = 6y/§ — 3V3 = 43 — 33 = V3;
1) 0,5V24+10/ =05/4-6+10/3 = V6+2,5V6 =

= 3,5v6.
(510, a) (x + =a) bl api. 12 -
22 yl 1

=a FSF

fa fa ba) _ Yalyaryb-Yaryb) (a-b)? _
0) (ag Es) a tt >
= Vab(a -b).
ESTA 6449-1416 + Vo+49+14V6 =

= VD + (647 = |vb-7| + |V5+7]
npn 0 <b < 49; | V6 7] + += vb+ +
+7=

14 — He 3aBHCHT OT b.

TJIABA III. KBAAPATHbIE
YPABHEHH4A

$ 8. KsanparHoe ypasHenHe 4 ero
KOPHH

21. Henonnsie KBAAPATHBIE ypannenna

512] a) Aeasetcs; 6) He annnerca; 8) Annneren; r) As-
aserca; x) Asnnercn; e) Henserca

513.] ar? +br+c = 0; a nepssih kosppauexr, b Bropoh
kosppuunent, c ceo6onmeñ usen. a) 5a? — I. + 4 = 0;
a=5 b= —9 He NPHBEAEHHOE;

9 Y +32 10 —10; npusenennos;
8 c= 1; He

—30; ne npuBenennoe;
: € = 0; He mpusenenoe.
; 3) 82? = 0.

6) —2? +3 =0; x? =3 a= +3;
8) 0,12? +10
ne-¿=
1) 607424 = :
e) 3m? = 1
516] a) 2x? — 17 = 0; 22? = 17; a? =
2x £2,
6) 3 —7,2 = 0; 38 = 7,2; Y = 24 y = ty:
ye £1,5;
8) —p? + 12,6 = 0; p? = 12,6; p = +./12,6; p= +3,5.

102

pa 2 (37 —4) =0; x = 0,32 = 4;

3
© Bt +60 0 (6-52) =0; 2=0; 5r=6;2=0
naw z= 1,2;

8) 102° +72 = 0; 2 (102 +7) = 0; 2 = 0,107 =

7;
; a (da — 3) = 0; a = 0, 4a = 3; a=0
= 0; 2(62— 1) = 0; = 0,62 = 1; z = 0 man

D ey =O; u(y +2) =0; y=0,y+2=0; y=0
man y = —2.

518.] a) 22? + 37 = 0; (27 +3) =0; c= 0,20 =
2=0 ñam 2=-1,5;

6) 327-2
8) Su? — du
an u = 0,8;

1) Ta— Ma? = 0; a (7 — Ma) = 0; a= 0, 14a = 7; a= 0

; 2? = 19,2 = 4/10. 2. 22 +10 = 0;
2? = -19. Her pemenna. 3. x? — 197 = 0; x (x — 19) =
0 nan x = 19. 4.2? + 190 = 0; x (x + 19) =

z Ha x = —19.
[520.] (a-2)c2 + lia + a? - 4 = 0;
-2
0-2%0 Jo „gen
@-4=0 a=+2
Orser: 3. a=-2,

[521] a) 41? - 3247 = 2c? +047; 20? — 4x
2x (x — 2) = 0; x = 0 mm x = 2;
6) —5y?+8y +8 = 8y +3; 5y?—5 = 0; y? =

103

8) 10~ 32? = 2? +10; 4x? ~2 = 0; 2 (4x - 1) = 0;

y — 2y +1; 2y? = 0: y=0.
3er) 4) 2 a 4z+3r-12=-1

ESPACE fran de
St + 2? -6t+t-3= 0,2 = 8
8) 3a (2x + 3) =

(523 a) 2? ~5 = (2 +5)(2z—1); 2-5 =? a+
+107 — 5; 22492 = 0; z(z+9) = 0; x = 0 um
z = —9;

6) 2 (2-41)? —1= 327-6;
4a? = 5; 2? = ;
8) 6a? - (a+2) = -4(a-4); 6a? — a? -4a-4=

= —4a + 16; 5a’ =
1) (5y + 2) (y— ; Sy? y + 2y — 6=
= —26 — 13y; 5y Her KopHel.

[524] llycrs mepeoe * uncna x Torna BTopoe z+ 1, 3HAUHT,
z(2+1) = 152% 2 +2 = 1,52% 0527-2 = 0;
2(0,5c—1) = 0; x = 0 mm x = 2. Ho x — 0 me
MOAXOAHT NO yCHOBHIO sanaun. 3HauHT, z= 2,x+ 1 = 3.
Orser: 2 14 3.
(526.] Tiycts wupuHa TehnncHoro Kopta paBHa x, Torna
anna 2r. 3naunt, x - 2x = 800; 2? = 400; x = 20;
2x = 40.

Orser: 20 m annua u 40 M wmpuua.
836.) Tyct» cropona xsanpara z. Tlnowans keanpara
panna 59 + 85 = 144. Bnaunr, 2? = 144; x = +12.
Ha cropona ksanpara He moxer ObiTh OTpHuatenbnol,
nosromy x = 12.

Orser: 12 cm.
104

[527.) lycre 3a t uacos paccroanne mexny. rypacram 6y-
ner 16 xm. Torna, y/(4t)” + (50)? = 16; VOR + BR =
= 16; 418 = 256; t= Jb 2,5 4.

528.) s = 2%; s = 80 m, 80
YCaoBHio sagaun t>0>t=

Orser: 2,5 4.
= WE: 2 = 16; t= +4; no
©

Orser: 4 c.
[E38] Mycre amma yuacrea pasma z > 0 m, Torna
umpnna 0,752 m. 4800 = x + 0,752; 2? = 6400; x =
0,757 = 60. Mepnmerp yuacrka pañen 2-80+2-
= 160 + 120 = 280 m.

Orser: 280 m.
536.) TI; ANMHHaA 9KpaHa paBHa Az, a wupHHa Ir.
(42)? + (32)? = 25; 12527 = 25; 2 = 5; 42 = 20;
= 15; 20 mofimos = 50,8 cm; 15 mofmos=38,1 cm.
Orser: 50,8 cm m 38,1 cm.
531.) a) y = ( - v2) «; 1-2 < 0; 3naunr, rpagux
pacrtonomer 80 2 u 4 4eTBepTH;
6) y=(V3B-57) 2 5,7 = VID < VE > V35 >
> 5,7; 3naunr, rpapux pacnonomen 8 1 4 3 uernepta.
532] tte Ye = E y VE= 2434 VE Dipu
x = 0,36; 2+3+ yz = 0,36 + 3 + 0,6 = 3,96. [px
n= +34 yz= 49+3+7 = 59.
22. Popmyaa Kopreñ kBaxparnoro ypannenus
533] a) 2x?+3r+1 = 0; D = 3?—4-2-1 = 9-8 =1>0;
YpasHeHHe HMeeT ABA KOPHA;
6) 27 +2+2=0; D=
ypabHeHve He HMeeT Kopne
8) 92? + 62+1=0; D=6*-4-9-1=36-36=0;
YPABHEHHE HMeeT OXMH KopeHb;
1) 224526 = 0; D = 5%—1-4-(-6) =25+24 = 49 > 0;
YpaBHeHHe HMeeT ABa KOPHA.

105

P-4.2.2=-15<0;

~ 48 = 1; z= 1=1l;
8) 4.5.3 = 64-60

(= 19) 4 3-14 = 169 -

-6) —4-5-1 = 36-20 =

a) 5y? —6y+1=0:D
a= 2 0,2; x2
e ‘+2 —33 = 0; D - ne 33) = 14528 =

rer
8) 22? +7 +67 =
r) 1- 18p + 81p2

—4-2:67 < 0; ner kopueñ;
re 18)? —4-81-1 = 324 —

— 324 = 0; x =

1) —11y+y? —152 =121+
+4: 152 = 729; |

e) 1843727 ; D = 1-4-3-18 <0
Her kopueñ.

(536, a) 52? — 11x +2=0; D=121 -4:5-2=121-
— 40 = 81; Er ;
9 ap? 1p -

9.+4:2-30 = 494240 = 280;
—6; 22 = 2,5;
D = 900—4-25-9 = 900—900 = 0;

106

a) 2 Mz +31 =i; 2? Mr + 30 = 0.
= 121- 4-30 = 121-120 = 1; 5 = UE, 7 = 5;
22 = 6;

6) a? — 52-3 = 27-5; 2? - 7 +2 =0; D=49-4x
x2=41; 2 = fl,

8) Tc +1 = 32? = 2x +1; 32? — 9x =0; x(x 3) =0;
di =0; 22 A

r) -20? +52 +6 = 47°? + 52; 61?-6=0; 2? = 1;
r=.

538] a) x? — Gr = 5x — 18; x? — 112 +18 = 0;
121 — 4-18 = 121-72 = 49, 2 = BETS a

2:
6 ja? 4243 2 +2041; 222 -52+2=0;
2 ;

+ 2220 = = 2704; z cmd 24;

2) 722202414 = 0; B= 204.7 14 400-908 = 8;
z= VS = ER,

107

3) y? — 10y — 25 = 0; D = 10? +.4- 25 = 200; D =
= 102/20 — 5452.

540. a) 82? — 140 +5 = 14? - 4.8.5 = 196 —
— 160 = 36; æ = Mats a $ 22 = 1,25;

6) 120? + 162-3 = 0: D = 1044-12:
= 400; z = ISA, 7, = -1,5; 23
9) 4a? +42 +1 = 0; D= 16-16 =0; = 5
1) 2? ~ 8c — 84 = 0; D = 64 + 4-84 = 64 + 336 = 400;
x= MM = 44 10; 2 = —6; 22 = 14;

a) 2? + 6x — 19 =0; D = 36 +4-19 = 36 + 76 = 112;
x = 5% = 3 4 2V7,
e) 5a? + 260 — 24 = 0; 6? +4-5-24 = 676 +480 =
= 1156; x 6, 22 =
x) 22 — 342 + 289 = 0; D = 32 — 4-289 = 1156 —
— 1156 = 0; x = # = 17;

3) 32? + 327 + 80 DES 4 3-80 = 1024 —

= 256 + 144 =

— 960 = 64; x = FE —4.
541.) a) 222 ra o; 25+4-2-3 = 49;
2= Mme do

6) 3x! — 8r+5 0; D=64-4.3.5=4; 2 = 88;
2 = 1, = 13
8) 5x? +97 +4=0; D.=81-4-4-5=1; x = =,
1, =-1; 22 = -0,

D 364? 12y+
T= 2%

; D=12-4-36 = 144-144 =0;

wer 0; D=9-4:3= -3; ner kopnek;

e) 2? + 9x — 22 = 0; D = 81+ 88 = 169; x = 4%;

2 =-1l; 27 =

xx) y?—12y+32=0; D = 124.32 = 144-128 = 16;
124 :

c= PH $642; =4, =
108

3) 1002? — 1607 + 63 = 0; Di = 80? — 100-63 = 6400 —

— 6300 = 100; x = 89420; y, = 0,7; a2
[542] a) 52? = 92 + 2; 51? - 92-2 D=8+

+4-5-2 = 81440 = 121; 2 = il; 7, = -02%
2 -

6) ~2? = 57-14; 2452-14 = 0; D = 2544-14 = 81;
n=2%
-62-9=0,D=36+4:9=36+
+3v2

e) 15y?—30 = =29y+7, 1570 ay 7 = 0; Di = 11+

+ 37-15 = 676; en ee 1

3) 2991? #002 = 500— 10127; 4002? +1008 — 500 = 0:
4a? +2 — 2;

543. à 25 = 262 — 2, 2? — 267 + 25 = 0; Di = 13? —
= 25 = 144; = 13412; 2) = 1; z:
6) 32? = 10 - 297; 32? + 292 — 10

+4: Fe 10 = 841 + 120 = 961; x =

D = 29 +
9251. 7 = —10;

2) y? = 4y +96; y? — dy — 96 = 0; D = 2? +96 = 100;
ee rer RQ th = 12;

1) 39? +3 =10p; 39? -10p+3= 0; Di = 5-9 = 25—
—9= 16; 0 = St; ns

a) 2? — 2x = — 402 — 100 = 0; Di =
Be er O

109

e) 252? — 132 = 102? —7; 152? — 13¢ +7 = 0; 13? —
x 7-15 = 169 — 420 = —251; Her kopueñ.

544, a) (2x — 3) (5x +1 ;
-3 = 22+2; 102? 152 — Y =0; 502? - 752 -17=0;
= 75% + 450. 17 = 5625 + 3400 = 9025; z= 158;
= -0,2; =

) 6D +3 = 2(1+6z); 31? + 9x - 2-3
; 322 — 7 +3 =0; D=49-4-3-3 = 13

B) (e~1)(e+1) = 2 (52-104); 2? - 1 = 107 — 21;
2?-102+20 = 0; D = 3-20, 25-20 = 5; x = 54 V5;
1) -2(¢+7) = (1-2) (142); —2? — Te = 2? - 4;
22? +72 — 4 D=49+4-2-4= 49+ 32 = 81;

mel
(535.

a) (x +4) = 3x + 40: 2° + 8x + 16 — 37 — 40 = 0:
2? +52 — 24 = 0; D = 25+4.24 = 25 + 96 = 121;
u, E

a ==, yy

o, (273) ;
— 230 +28 =

= 289

8) 3(1+4) o A
32? + 142 +16 d = 7-3-16 = 49-48 = 1;

1) 15a? +17 = 15(2 +1); 152? +17 = 152? + 307 + 15;
302 = 2; x= +;

1) («+ 1)? = 7918 — 20; 2? + 2x + 1 — 7918 + 2x = 0;
a?+44r—7917 = 0; Dy = 247917 = 7921; x = —-2+89;
a = —91; 22 = 87;

e) (e +2)? = 3131 — 2x; 2? + 4x + 4 — 3131 + 22 = 0;
x? +62—3127 = 0; Di = 3°+3127 = 3136; 2 = 3456;
2 = 59, 22 = 53;

110

x) (241)? = (2-1); (22-1)? - (@ +1)?
(22 -1-2-1)(2e~14+241) = | (@-2)-2= 0;
x? —2¢ = 0; (1-2) =0; 2, = 0; 0, = 2;

3) (a - 2)? +48 = (2 — 32)”; 2-42 +4448 = 4-12c+
+927; 81? -82—48 = 0; 2?—2z—6 = 0; D = 1424 = 25;
-2; a =3,

she = 11; 2? - 1-229 = 22; 27-220 —
0; Di = 121 + 23 = 144; x = 11 +12; 2, = 23;

SL. 32432 = 162- 14; 31? Berl =0;
— 43-14 = 169 — 168 = 1: r= à

2 (107 — 9); 42? — 1 = 302? — 272; 262? —

27241; D = 2774-26 = 729—104 = 625; r = 28;
12? 42.152? — 82 = 162? +15; 2? +82+

0; Di = 16-15 =1; z=-441; 2 = -5;

BAT] a) 5x? — 2-1 =0; D=1+20= 21; c= A,
2 = EE 20,56; 29 = HA 08

6) 22? + 72 +
ga HE, y
8) 3 (y? — 2)—
ns DV
= YB; 7 =
1) y? +8(y—1) = & y? + 8y— 11 = 0; Di = 16+
+11 = 27; c= -4+ V2, 2, = -4- y27 = -9,20;
Za ance

= 0,52 +.
D=144-2-6=49;

(550.

2=44y7, po V7:1,85; 22 = 4+ V7
6) 2y? — 8y +

(551.

2=-146 2
8) 22—1,6r—0,3

= 4; 2 = 182, q, =

DE

+4-7-20 = 1694560 = 729; x = 18827; y,

D = (2 -4.2= 8
ma = MM 42.

2) 2? -82+9=0, Di =4-9=16-9=

0; Dy = 4?-5-2 = 16-

z= EL 7, = Ao 22 = ul 23,22.

2) 0,722 = 13042; 7x? —132—20

ra ei
ma — 20 = 26,

day +0,29 Y + 2y —35 = 0; Di = 1+35 = 36;
—7, 22

‚6°+4-0,36 = 2,56+1,44 =
0,2; 22 = 15% = 1,8;
1- 2,91 = -1,91 < 0; ner

1,642,

— 22 + 2,91 =0; Di

xopneii;

a) 0,2y? — 10y + 125 =
= 257 — 625 = 0;
o 1a?

z

0; y? — 50y + 625 = 0; Di =
25;

) 2?+62-27=0; Di = 9+27 = 36;
—9; 22 = 3.

552.] a) 42? = 22 - 7; 2? — 14x + 49 = 0; Di = 49 —
-49=0, x
6) 2° +1,2 = 2,67: ne Die

x 6 = 169 — 120 = 49; x = 4847; 7,

10 +7

112

8) 42? = 7x +7,5; 42? - 72 — 7,5 =
X 7,5 = 169; x = 3213 q, = —3; 27 = 2;
a) 3a + 0,6 = Ja? + 0,36; 9a? — 30-024 = 0;

+4-9-0,24 = 17,64; a = 22, q,

+

Bok,
6) 0,40 + 1,2 = 0,160? + 1,44; 0,160? — 0 4a + 0,24 = 0;
4a? — 100+ 6 = 0; 20? — 5a +3 = 0; D = 25-2-3-4=
= 25-24 = 1; a = a = 1; ay = 1,5.

BEL] a) x? — Be +60 D=2%-%4=1 E
—5z+1—=0; D = 25-24=

6) 22? - 132 +6

= 169 — 48 = 121; 7 = Bill;
m=} 22 =6;
woe 0; D = 169 — 48 = 121: x= Bin,

D

2; Kopnn ypasnenun az? + ba +

A, ; Kopnn ypasmenna er? + br + a = 0; x =

= Bier, Kophn ypaBHeHHA o6pasyior Naps BSAHMHO

o6parmx ungen; HYPER. EVER — Ptos — 1,
Erz

(555.] 2? — -az+a-4= =a?-4(a-4)=a?-4a+

+16 = (a- 2)? +12 > 0; anaunr, nannoe ypannenne

Bcerxa HMeeT ABa PASAHUHHX KOPHA.
a

550] EE — datt, de _

a= 18 3(1— 0) =3-28=75

EE) +) (VA+VH-2V5) - 4 + VO =
=(V7-V34V7- 12-245: 7) + VO = V3+
+ V2-2V5+2V5 = V3 + V2;

6) (v5 + v3- v8) (V5 - V3)+V75 = 5-3-5V3+
+5V3+3V5=2+3V5.

113

= 3(1- 0); npa

23. Pemenne 32124 c NOMOIMEIO KBAIPATHBIX
ypasnennit

[559.] lycre nepsoe uncno x, Toraa Bropoe x +6, sHauT,
x(x + 6) = 187; 2? +62 —187 = 0; 9+187

x = —3+14; Ho no yenosuw ZEN > x = 11; 2+
Orger: 11 4 17.
[560.] Nycrs anunta Tpeyronstinka 2, Torma wupuHa 2 +

x(x +4) = 60; x? +42 —60 = 0; D, = 4+60 = 64;
—2 +8; no yenosnio x > 0 > x = 6; x +4 = 10;
2(6 +10) = 32.

Orser: 32 cm.

BOT] Tiyer» umpuna yuacrxa x, Torna umpuna + 10,
anaunt x(x + 10) = 1200; 2? + 107 — 1200 = 0; Di =
= 25 + 1200 = 1225; © = —5 + 35; no yenommo x > 0
=> x = 30; x + 10 = 40; P = 2(30 +40) = 2-70 =
= 140 cm

Orser: 140 cm.
(562.] Tlycr» ona cropona tpeyronbHHKa paBHsetca 2,
rorna apyran 2 —x = 31-2 > x-(31~2) = 210;
312-2? = 210; x? — 312 +210 31?-4-.210 =
= 961 — 840 = 121; a = EU; y, = 10; 2, = 21.

Orser: 21 mn 10 M.

114

5653.) Myctb onux Kater namnoro rpeyronbHuka pasen x
em Tora apyroñ 23 — z. Ilnowaab TpeyronbHHka paBHa
Lo (23 52) = 60; 232 — 2? = 120; 22 — 232 + 120 = 0;
— 4-120 = 529 — 480 = 49; x = au; a = 15;

8;

Orser: 15 cm 4 8 cm.
[564.] n; n + 1 — nocnenosatenphble ABA HATyPanbHbIX
uncaa, n(n+1)=n+n+1+109; n?4n =2n + 110;
n-n-110=0; D = 1+440 = 441; n = HE no
ycnosnio NEN => n=11;n+1=12.

Orser: 11 4 12.
[565.] Myers 2 cm cTopona KBanpara 4 WMpHHa npa-
MoyronëHka, torna, 2? + 1207 = 4500; 2? + 1202 —
— 4500 = 0; Di = 60? + 4500 = 3600 + 4500 = 8100;
æ = —60 + 90 Ho no ycaosun x > 0 > x = 30.

Orser: 30 cm.
(566.] Tiyers wupua mpamoyrombmoro aucta x, Torna
(26 22) x = 80; 26x — 2x? = 80; 2x? — 267 + 80 = 0;
2? — 132 + 40 = 0; D = 169 — 4-40 = 9; x = 1888;
2 = 5; a =8.

Orser: 5 cm Hau 8 cM.
567] Tlyctb runoreuysa tpeyrombHHKa pabmaerca x,
Torza Karer past z—3 y 26, 13 reopeun Ilndaropa
caenyer wro a? = (1-3 + (2-6); 22 = 22-62 +
+942? — 122 + 36; 2? — 187 +4 =9-45=
= 81-45 = 36; x = 946; a = 15; 12 = 3 He nogxoguT
Tax Kak KaTeT TpeyrombHHka Gonbue 0.

Orser: 15 em.
[568.] lycrs 8 kunorearpe 2 uncno panos, rorna YHCAO
ect B paay z +8, sHaunt, x (x + 8) = ? + Br —
—884 = 0; D, = 424884 = 164884 = 900; —4+30;
no ycnosmio x > 0; x = 26.

Orser: 26.
115

569] Tiyern cero x o6essan, Tora, (5)? +12 = z;
+12 = 2; a? — 642 + 768 = 0; Di = 32 - 768 =
1024 — 768 = 256; x = 32 + 16; 7, = 48; 27 = 16.
Orser: 16 uan 48.
570. Flyers acero x o6esbau, torna, (7 — 3) +1= x;
5-$2+9+1= x; 2? — 307 + 250 = 257; a? — 557 +
0; 55? — 4+ 250 = 3025 — 1000 = 2025;
5; 22

50; x = 5 He nogxogur, Tak kak

Orser: 50 obessan.
BTE] LD = n + 25; n? 3n = Zn +50; n? — bn —
— 50 = 0 D=25+4.50 = 225; n = 5415; no ycrosmio
n>0>n=10

Orner: » necarayroubuom.
[572.] lycrs yuacrsosano x KOMAHA, KONHYECTBO CHIrPAH-
maux Mardell pano: 14+2+3+=>-+(2 — 1) = se) — 36;
2-ı1=-m 2-2-2 = ; Daa. 2 = 289;
x = 412; no yenopnm sanauu x > 0 => x =

Cae 9 komana.
[573.] Mlycro 6uino x yuseramnon, KonuNectno crpaHiitx
napra paso: EU = 45; Fa x = 90; 12-29 = 0;

D=144-90 = 361; 2 >1=10
Orser: 10 yuacraukoB.
574] MMaowanb ocmomamma — KopoOKH pabma

(60 — 25) (40 - 22) = 800; 2400 — 1207 — 807 +
+42? = 800; 4? —200z + 1600 = 0; 2?—50x +400 = 0;
625 — 400 = 225; = 25+ 15;
; 1 = 40 He MOAXOAMT, Tak Kak

10; 22 =

40 — 22 = ~40 <0.
Orser: 10 cm.
[575.] n, (n + 1), (n+2) — Tpn nocaenoBaTenbHblx uenbix
uncaa. n°+(n + 1)’ + (n + 2)? = 869; n° +n?+2n+1+
+n?+4n+4 = 869; 3n?+6n—864 = 0; n?+2n—288 = 0;
Dy = 1+ 288 = 289; n= -1+ 17; ni = 18; rg = 16.
Orser: —18, —17, —16 man 16, 17, 18.

116

676.) a) (2a—3)(4a? +6a+9)
a) a = - nn „ tg 3) ze,
ae 2(e-2)-4(0-2 2
6) SE = A = =
Br) Et a RS: npn a = 5;

54210

OH =
(578. yo? — te -62=0;
z(¢— 6) =0; 2 = 0; 27 =6;

6) + ; dx? + 4r+24+37 = 4 42?+72 = 0;
2 Ar) 0; 2) =0; 22 =

[579.] Touxa nepeceyenHa c OcbIO x:
137 = 2,6; 2 = 0,2; (0,2;0).

Touka nepeceuenna c ocbio y: z = 0; y = 0 — 2,6;
y = —2,6; (0; -2,6).

24. Teopema Buera
580) a) 21 +22 = 37; 21

YN +y=-41; Ya - Ya
8) 21+27 = 21

= 182-2,6;

1) 22? — 9x — 10
Tia = 5;

e) 5a? +122+7 = 0; 27+2,40-+1,4 = 0; 21 +29 = —2,4;
dm = 1,4;

x)-2+z

0; 2? - 4,52 - 5=0;

+
6) 32? — 42 — a
aq=-$

8) 22? +72 -6 = 49+4-2-6 = 49 + 48 = 97;
EM, 7, = i.

224352 8

ga

582) a) 2? — 157 — 16 = 0; D = 15? 44-16 = 280;
v= BE; q, = 1; 29 = 16; 21:07 = 16; 2) +272 = 15;
6) 262-11 =0; Di = 8 + 11 = 20; r = 34 V0 —
=3+2V5; x +275; 22 =3— 245;
-5=9-20=-I;m+7=6:
%2-1=0, Di = 2412 = 16, 0 = 2;

=02-23=-— 0 +22=

z= +v6; 11 = V6; 12 = -VG

1-22 = 6, 11 + a2 = 0;

1) 512182 = 0; x (52 — 18) = 0; 2, = 0; 51218 = 0;
n= 5

a? — 3,67 = 0; 21-2 = 0; 11 + 22 = 3,6;

e) 2x? ; 2? = 20,5; 2 = 44205, 21 = 20,5;

nm = —20,

583] a) x? — Or + 20 = 0;

iz Pen
>

a +22=0.

ay +22.=9 ta=4
6) 2? +lir—12=0;
mms _[2=1

titi 1 =-12

Be = -56
2 +22 =-1

|

2+ 22 = 88

1) 2? — 197 +88 = 0;
Ti +22 = 19 T=8

[584.) a) 2? + 167 + 63 =

2 +22 = 63 t11=-9
>
T1+23=-16 T=-7
eT E
9+2-48=0,( m | m=-8
ata -2 m=6

(585.] x? + px — 35=0; 2
21:22 =-35 Taz
>
dl —P=7+ 12

@ ~132+9=0; 2 = 12,5;

= 12,577 =
T-2%=q >) 125m =¢ =
2 +2 =13 2 = 13-125

= 0,5
q= me

7.) 52? + br + 24 = 0; x + 0,2bx + 4,8 = 0: 7,
T1 -22=4,8 = 822 = 4,8 =
21 +29 = b= a

m= 06
b= -43
119

[588.] 102? — 33x + c = 0; 2? - 3,32 + 0,1c = 0;
zı%=0,lc c= So

a = 5,3; > >
a +22 =3,3 2 =3,3-5,3
a= -2
c= -106
689]? — 1274+q=0; 2-2, =2;
2 -2m=2 2x =14 n=7
n+rm=12 +) m=12-n +4 2-5.
zm=q Ti°T2=Q q=35
21,-2m=6

590.) 2? +24+0=0,2-22=6 À m+m=-1 >

TI 22 =

2x, =5 a = 2,5

xy? — xq” = (a — 22) (01 + 2) = 12;
(21 — 22) (21 + 22) = 12
a +22 =-2 >
zm=q
120

2 (21 — 22) = 12 © ~

21 +22 >] ttm
9=2%1:2% 9=2-2%
Qn, =-8 =
n=-2-2 =! n=2
4=71:Z2 q=-8
692] ? — 32 +0 = 0; 2 +22 = 65; (11 +29) —
1+m=3
A {AT > 9 — 2a = 65;
2 2=4

2a = 9 — 65; a=-28.
693) a) 2?+72—1=0; D=49+4 = 53 >0; 1-22 =
= —]; ypapnenne uMeeT 8a KOPHA NPOTABONOJOMHEX
3HAKOB;

6) 22-72+1=0; D=49-4= 45 >0; 1 m=1;
T1 +22 = 7 > ypabnenme HMeeT ABa NOAOKHTEADHEX
KOpHa;

8) 52? +172 +16 = 0; D = 17° —4-5-16 = 289-320 =
= —31 < 0 > ypannenne He meer KopHeli

1) 1922237 +5 = 0; D = 23?—4-5-19 = 529-380 =
= 149 > 0; 2122 = §; m1 +22 = É > ypannenne
HMeeT Ba HOJOXHTENBHEX KOPHA;

a) 27? + 5W8r +11 =0; D=25-3-4-2- 11 =75—
— 88 = —13 < 0 > ypaBHeHHe He HMeeT KopHei

e) 11z?—92+7-5y2 = 0; D= aros va =
= 81-308+220V2 = 220Y2-227 > 0; 2-22 = I <
<0 > ypapHeHHe HMeer 18a KOPHA MPOTHBONOJOXHHX

sHakos.
[594.] a) 327+ 1187 -7 = 0; 2°+r-7=0; D>0>
2, > ypasnenne umeer

1

no Teopeme BHera: 2, : Za
ABA KOPHA NIPOTHBONONOMHLIX 3HAKOB;

121

6) 51? — 2917 — 16 = 0; x? — 58,27 -3,2=0; D>0>
no Teopeme Buera: x; : 13 = —3,2, => ypanhenne meer
ABA KOPHA NPOTHBONONOMHEIX SHAKOB.

565] a) 2? — 181 + 17 = 0; D = 18°-4-17 > 0;
© +22 = 17; 2; +22 = 18 > ypapHenwe umeeT 1Ba
NONOKHTENBHBIX KOPHA;

6) 2?-27-1=0,D=444=8>0, 1: m=-1.>
YpaBHeHHe HMeeT ABa KOPHA IPOTHBONIOOKHEIX SHAKOB;
8) 2 — 157 + 56 = 0; D = 15? — 4-56 = 225 — 224 =
=1> 0; 2-22 = 56; 2, +22 = 15 > ypasHenne Hmeer
ABA NIONOKHTENBHBIX KOPHA;

1) 52?-2-108 = 0; D = 144-5-108 > 0; 11-22 = 1%
=> ypaskeHHe HMeeT ABa KOPHA NPOTHBONONOKHLIX 3HA-

V5z+1=0, D=5-4=1>0; m-m=1;
11 +22 = V5 > ypabuenne HMeer ABa NONOKHTENBHEX
Kopha;

e) ¥32? — 122-743 = 0; D=12+4+4-y43-7x
x V3 > 0; 21:22 = —7 > ypaBnenne HMeer ¡BA KopHA
NPOTHBONONOKHHX 3HAKOB.

(596.] a) (3x + 1)? = 3x +1; 92? + 67+1— 3x
92? + 32 = 0; 32 (32 +1) =0; 11 =

pen Es
zeit,

r) (oe) 4 (2-43); 92? +242 + 16 = 4x + 12;
9x? + 207 +4 D 10? — 4-9 = 100 — 36 = 64;
2= Ei a,

a) A(x +3)? = (204 5%, id 3) = 2243);
TIPA MOGOM 2;

122

e) (62 +3)" = (x 4)?; 362? + 362 + 9 = 2? — 82 + 16;
352? +440—7 = 0; Di 12? 47-35 = 4844245 = 729;
x= ER, y, £=-1402=)
597.) Flyers onu karer pasngerca 82 torna Bropolt 152,
no reopeme Tuaropa (82)? + (152)? = 6,8; 642? +

+ 2252? = 46,24; 2802? = 46,24; 2? = 0,16; Maomans
Tpeyronunna: À : 82-152 = 602? = 60 : 0,16 = 9,6 w2.
[598.] Flyers runorenysa Tpeyronsunka pannnercn 137,
Toraa karer 12x.

To teopeme TInparopa: (122)? + 15? = (132); 1442? +
+ 225 = 16927; 252? = 225; a? = 9; x = 3; Tlepumerp
Tpeyronsunka: 137 + 127 + 15 = 252 +15 = 75-+ 15 =
= 90 cu.

[599.] [lycts wmphka Tpeyro/bHuKa paBHaerca x, Torna
AnuHHa x + 14.

Tlo teopeme TInparopa 2? + (x + 14)? = 342; a? +07 +
+ 287 + 196 = 1156; 27° + 287 — 960 = 0; 2? + 142 —
— 480 = 0; Di = 7? + 480 = 529; x = -7+ 23, x >0
+2 = 16; x +14 = 30.

Orser: 16 cm 4 30 cm.

$ 9. Jlpo6ubre paumoHasibHBIe
ypabHeHna

25. Pemenue APOÓHBIX paunonansirnix
ypapnennit

hy Y = y; y(y-1) = 0:

51+6=0;D=2-2%=1l,1=
Ho x # +2; tak Kak anamenateno

oopaujmeren, B0>z
= 4, 2

T=2 He © NOAXORHT, Tak KaK 3HaMeHaTenb OÓpautaerca

suayeuarens, oGpauaeren y 0 ù + y
ea = tet esl
- Geta) +7) =
— (32? + 212 + de + 28) = 22? — 32 + 1 — 3x? —
— 28 = 0; 2? + 28¢ + 27 = 0; Di = 14? —
— 27 = 169; x = -14 + 13; 2, = —27; 22 = —1 06a
KopHa He o6uyanioy 3HAMEHATENB;
e) 245 = 2u43 y=

© 27 -ı-z+1-

u 13 = 0; (2¥+3)(y+3) —
AT 0; 2 + Oy + 3y + 9 —
y + Ou + 9 — Qy? + Ly —

-5=0; 20y+4 = 3; Kopenb He o6nynñer
shamenarenb;
x) UE = Le; yy +I) (+0 (+2) = ; Sy? +
Me ty ty + 2) =0; 5? +y— É -3y-2=0;
aa a 2-6 2? -y-1=-0 D=148=%
z= E x, = 1; 2 = —}; 06a KopmA He o6hyasıor
Saison se

3) ÉÈ = Soke, be ES = 0; (1+ 32) (1+ 27) —
- (5-32) (1 — 27) 0 1 + 2c + 3x + 62? —
= (5 107 — 3x + 622) = 1+52-+627 —62?+132— 5=0;

» E = 0; (e-1)(3-2) -
Neid) = 0; 87 — 20 3+ 2e —
- (d+ 62203) = 5-2 - 3 ~
- (42? +42 — 3) = 0; 61? + 2 = 0; 2 (62 —1) = 0;
a = 0; 2 = À; 06a Kopua He oGnynnior aHaMeHaTenb.
601, ES _ 0; 27 — 5 — da —
ae = -3 = 125;
ABARETCA KOPHEM, TAK KAK BHAMeHaTeNb He O6pamaeTcA
8 0;

124

x, 2 -2=0, PA 0, 12-7 +2? =
Te+ 12 =0; D= 494-12 = 1; 2 = 141,
4; 27 = 3; ABARETCA KOPHAMH YPABHEHHA, TAK Kak
awamenaren He oßpauaercn B 0:

De a Fe) L 0; 2? — 4 — 62 +4 = 0;
2 —6r = 0; «(2 —6) = 0; 21 = 0; a2 = 6, Ho x 40

ES wee 3HaMeHaTenb OÓpauaerca B 0. >
= 2-1 Pene

El 22-3 io
2 08 22-3043) = 0; 10 20? + 52
21% - 52-7 ; D=25+4:2:7=8l; x
21 = 3,5; 22 = —L; ananercn KOpHAMH ypapkennn, TaK

Lu 3HaMeHaTeJb He gSpamaerca 80;

1) £ = 3042; Se 30 +2-8=0;
=4+4-3-8= 100; 2 = 0, q, = —2; 72 =
ABARETCA KOPHAMH YPABHEHHA, TAK KaK sHaMeHaTemb He
o6pautaerca 8 0;

(22. |-2z(=-

ag, APA _ 0; 822 + 127 — 22? —
2? +82 =0; 2 (248) =0; 2, =0; 27 =-8;
ABARETCA KOPHAMH YPABHEHHA, TAK KAK SHamenaTen He
o6pamaerca 8 0;

x) EE = D=25-4.2.3=
a1 14; apagerca Kopnamn

0; 4 — 92 = 0; 2(42?—9) = 0; m
¡2 = % 2 = 21,5 no mpn z = —1,5
sHaMeHaTedb oGpauaeres B0»>r AIM 1,5.
602] a) $5 = JE; 2? — Te = 0; (07) =0; 2 =
= 0; 22 ="; mbnheren kophnmn YPABHEHHA, Tak KaK
shamenarenb ne sioner, 20: en
Woah = À aa + u

y 12 OD, = 16-12 = 4 ye 442" = 2:
Ho y #6 tak Kak sHameHarenb o6paulaercn B 0.
2

125

222 28. (Dl 0) (249) u =
2) 58 = Ea, DA — 0; 72-40-2048

(rl 0 2! — 6248-22 506 = 0
—1lr +2 = 0; 2 = 2; amaserca Kophamu ypapHenua,
Tax Kak sHamenarenb He oGpamaeren 5 0;

0) Met o MEL Fllen what
CERTES oy? = OF By? Hy 109 = 0:
y +My 10 0 y -11y+10=0; D = 121—40 =
= 81; x= UE; 2, = 1; 23 = 10; apaserca KOpHAMH

ypanenna, tax KaK onamenarens ne oGpamaeren 8 0;

DA 2; 5 -2= 0; Harta -2?+1=0;
LG x = 41 spnseten KOpMAMH YpaBHeHKA, TAK Kak

anamenarens He o6pauiaercn 8 0;

db et

+2=0; D=9-8=,2=- $y =1,n=2%1
ABAACTCA KOPHAMH ypaBHeHHA, TAK Kak 3naMenare/o He
o6pamaerca 8 0;

M) 2+2= ght ag 2-20 HE = 0;
42? -15+1+82+2 +82 -1 ; 2? +27 —

-3=0; D=143=&2=-143% 2 = -3; 2 =1;
ABNAETCA KOPHAMH ypaBHeHUs, TAK KAK 3HAMEHATE/Ib He
o6pamaerca 8 0;

3) E = lei, 0 Tapio 2 9, = En
=0 gd ce +102 ~72=10)=6, 922 = 45 —
D=9+4-2x
3,5; t= Y =5
ABAReTCH KOPHAMH YPaBHCHHA, Tak KAK SHAMCHATENS He
o6pauiaercs 8 0.
(603.] a) EH! — 1

+
Gere) (er2)e-1) _ |
u ;
322-6242-2-(#2- 2427-2) #24 = 0;
Pi ui

126

tere) _

Were — 9; 22-6044 = 0; Di =9-
-4=5;0=34 V5; apañerca KopHaMH YPABHEKHA, Tak
kak sHaMeHarenb He o6pamaerca 8 0;
6) Bes +=
ati GW) _ 5 _ 0;
mE —6y— 2y+6-+y?+6y+9— Sy? +45 =
+60 = 0; y?-+y—30 = 0; D = 144-30 = 121; x =
Ly = —6; 72 = 5; ABnnerca KOPHAMA YPABHEHHA, TaK Kak
atamenarent ne oGpauizeres B
gr —
mat = Sy
0; End X Putt) = 0; 8 - 12y + 15y +5 = 0;
0; 3y = —13; y = —4]; spnaeres Kopnem
ypanyettis, ra kak snauetarens He ¡o ópauperca 80;
r) + LL + at
PESE 4x—12+40+12+2?—9
2? 482-9 =0; Di =16+9 = 25; 2= 445; 2,
= —9; 23 = 1; ABAJETCA KOPHAMH ypaBHeHHA, TAK Kak
suawenarent ne oßpauizercn » 0;
Hie — foe = 0; 82-3 +
£1; no mu z = 1
sHaMeHaTesb oGpauserca 8 0, > MaHHoe ypaBHeHHe He

guta. DY Spt
Ty Py vv: 5 =

We ty prt Ip _ 9, Sy? - 12y = 0; 3y (y — 0,
4; Ho npu y = 0 3Hamenarens o6pauiaercn

=3

ES

Boi y = 5; Be
; 32+ 31 =0; 7 = À

Adnnoe Bilpawenne He meer
127

cena. 6) y = 242-2; y = —10; io + HELD =

Erna ; + le + 28 = 0;
= —7, 2

we Buzz y Se) .
w+o-24+50+15 ) a+ 62+ 18 = 0; B= 36 -
— 4:13 = 36 —52 < 0; namnoe Bupaxenne He HMeer

CMBICIA.
+58 EEE _ 9 0)

Patat52-2042?~6052490-2(2?—28 at: og ~ 102 +10—

Dr-l= 1 ten =

29012) (2
0; asta a — Sg = 0 6 2 Ge —12—
a cart à 6— 7x — 32 0; 3a? + 72 —6

D=49+4. 3 121; == =-3 22
1-3 1 5 .
DE ru = oh + an = 0

Er = 03=8y = 0 y= L no npn y 1 m

HaTenb OÓpamaerca B 0, SHaHT, Aahnoe BHpaXeHHE He
mer Kopueñi;

r=, suet (4-2) _ 1099-40

= 4) wa)

ee y 147" 40 ~ 0, 8y + 40 ;

INM :

en - 3 0

= 0; 3(22? + 18) — 102? +

+90 = 0; 6s? + 54 — 1072 +90 = 0; Ar? = 144; 2? = 36;

[CODA _

a+
Sirio rada = a Sole =

3(52? + 172 + Mean 17x + 42) — 262? + 104
3 (32? + 56)—26x?+104 = 0; 927+ 168-262? +104 = 0;
172? = 272; 2? = 16; x = +4.

128

e =
a) B+ Re =

al Bringen -10(22-9)

+5)

245)
(ay +9) Cu +8) + a à =o = aay 1) x
x (2y + 5) = 0;
6y? + 15y + 18y + 45 + 6y? —.39y — 2y + 13 —
= 2 (6y? + 15y — 2y — 5) = 0; 12y? — By + 58 — 12y? —

—34y +68 = 0; y =
3=0;
ie
23
(3y- Ny 4413) — Eu AT
x (By — 1) =0;

15y? aby d'ou — 18 — (20y— 30y? + 16 — 24y) —
— 3(15y? — 5y + 12y — 4) = 0;

15y? +34y — 13+ 30y? — 16+ 4y — 3 (15y? + 7y — 4) = 0;
Sp + 989 — 29 45y? — 21y + 12 = 0; 17y — 17 = 0;

WEIN +5)+10(y-5) _ 10(y+
ye AE O — =
y Ar 50-10y-10 = 0; yP+6y-55
Di =9+55 = 64; y= —-3 +8; y = —1l; ya
mpn y = 5 sHamekarens o6pamaerca B 0, => y
y 8 — = 8, tol _
RS ENT oe, GDS
6y + 12 — y? + dy — by = + 4y +12 = 0; y —
= 4y — 12 =0; D rete 6 y= 244; y =6;
—2 samenatens o6pamaerca 8 0,

= 0 pes

Br
0; yr —Ty-y? +
= 3 Ho npn stom
sHaveHHH sHameHaTenb OÓPautaerca B O, ypaBHenHe He
HMeeT Kopheh;

129

5 Anrep, sun.

9) seat a aa 59 + a 0
ERENTCHEILEIEHEIICHRIERTERRITER

ADS 0; a? +32 +2r+6+
+2(2? +30+2+3) ~ 6 (x +22 4242) = = 0; +

+52+6+22°4+82+6-62?-182— 12 = 32?—5r = 0;
(es. +5)=

5) ata Sen = 0
arte 2-6=0;
D=1+24 = 2; =; 22 = —2; no npn

2. Suamenatent oSpamaerca BO +
Bu

D Eu = Hi ow 5 = 0;
) Fy Ta 5 wu
A _ 9, 10 y — 1 — y + y 9;

21)
Ye 85; 45 45 14
a) 1+ prea che

Feet) — 0; 22 — Br +61 — 142 + 56 = 0;

PUTO; Dy =i? 117 = 121-117 = 4;

Lg 5 AL .
= 3 2 ~ area 0;

E = 0: 157 — 15 — 4 — 9 (2? — 2n +1)
ee 90 +182 — 9 = 0; 92? — 332 + 28

1089 — 1008
E
Jan HS amo th =
ER) = 0; 10 + 27 — 5x — 32 — 3 = 0;

2-8:+47=0, D=16-7=-9 72-443; 4, =7;

y
era = at = he

ee) = =
EN = 0; 17-2 -4- 22430 = 0; 2? — 22

-13= ies anaes me eng a
AE et _ 9.
8) Em wip t ath = 0 ea =0;

ae P(e ea 1=0; 4(2? — 22+ 1)-2'
130

-82+44-2?-27-142?-1=0;
-52+1=0, D=35-8=17;

n) aie a + 2 -
ait? sty > do mn
am fl) z02+1)@e-1)

E — 1 — 1 as, en ner deem

164+9=25 x= ri

: alee
- 167 (z+ 1) + 6(2+1) (2-2)

— 162? — 167 + 6 (x? — 2r + x — 2) = 0;
+6(2? 22) = 0; 52? — 582 + 62° — 62
11a? — 642 — 12 = 0; Di = 32 +12- 11 10044182 =
= 1156; 2 = Ex a 22 — 6;
oz = a
= 0; 246 y?—3y-5 = Bei 1=0;
Dal +4= 5; 1 = 16
6
8) wien Hal u = ep “aly - om =
0; 182(22-1)-(22+1)?-6z(22+1)

Lee = ON

— 187 — (42? + 4x +1) — 127 =0; 247? = Dr —

— 42? — 4r-1 jx? — 282 — 1 = 0; Di = 147 +
= MAYER _ LAVE — TAG,

(613, (@-W; Az 2346;
- v5; 6 y= (3+ V5- 34 V5) = (245)
x5=

(614. ‘eer A(1,5; 7,25); 2? +2045 = 1,57 +
+2-1,5+5 = 2,25 +345 = 10,25 4 7,25 > rouxa A
He NPHHAMIEXAT.

B(-3,2;9); 2? +2245 = (-3,2)? -3,2-245= 10,24—
—6,4+5=8,84 49 > rouxa B we npunamiexar.
C(V3- 1,7); 02+22+5=(V3-1)'+2-(vV3-1)+
+5=3-2V34+14+2V/3-24+5=7 => rouxa C
NPHHALIEKHT.

[615.] a)

eee O E =

a VO) a+ _ 2 Vi Yz+ yv)

Des == SE -
GE à Tin a > ; b< 0; Fl < 0; 6) Tlpn a <0;
b<0; M > 0.

= 4x

AA _ ee _

26. Pemenve sanay c nOMOMBIO PAUHOHANBHBIX
ypasnennit
[617.] Tlyctb uucaurens uckomoñ npo64 paBen z, ahame-

tl lat 2 1
Harenb 243, 3HAMHT, fs 25 4718 à

133

(247)(2246)—2e(248)~(2+3)(248) — q, =
MES =0; 227 + ra 14x + 42

— 2x? — 167 — 2? — 8x — 3x — 24 = —Tx+18

“ar æ

22472 - 18 49+4-18
= $ ne nonxom. + x = = 2;

is

618.] Tlycrk ckopoctb OnHoro astomoGuan pasunerca x,
Toraa stoporo x + 20, 12 — ppema, sarpauenHoe nep-
Bun anromoOnnem, 22, — speun, sarpauennoe BTopHiM

anromo6nnem. 120 = 2%, + 1; M+20 Prat +20)

1207 +2400 — 1202. 21-202 = 0; 2° 4 207 — 2400 = 0;
Di = 10? + 2400 = 2500; x = -10 + 50; zı = —60 —
He nonxonuT, 73 = 40; x + 20 = 60.

Orser: 40 «m/4 4 60 km/a.
619.) Hycre ekopoers mepsoro AWXHHKA PAHAETCA 7,
Toraa Broporo 2 + 2, À — npenn, sarpaseHoe nepaoro

aka, 22; — apema, satpaveniioe BTOPOTO JIBDKHHKA.
2 wun = 1 u ; Suauur, 2 20 = 1; MEME _
A _ 0 100-2 2
2422 ~ 120 = ne Di = 1 + 120 = 121; g=-1+11;

a = —12 ne nonxomnt, 23 = 10; +2 = 12.

Orser: 10 um/u m 12 km/a.
(620.] Tlycrb cKopoctb nepsoro aBToMo6HAA Pasmaerca
æ + 10, Toraa stoporo x, 5 — Bpems, 3arpayennoe
neppbim astomoGusem, 20 — ppema, 3arpauenHoe BTOPBIM
astomo6mem. => 5% — 500. = 1; ONE _ 1 =
ee = 0; 224107 — 5600 = 0; Di = 25+5600 =
= Br = 5475; à >0 + 2 = 70; r+ 10 = 80.

Orser: 70 Km/4 4 80 km/9.
[621.] Flyer» ckopocts noe3nano pacnucaHuio 2, Tora Ha

neperone ero cxopocre x + 10, Inaunr, 120 — 22% = 1;

720(2+10)-7207 . 7200-z(e410) _ D 22 =
+(x+10) se a(2+10) = 0; 2? + 10x

134

Di = 25 + 7200 = 7225; 2 = —5 + 85;
80; x + 10 = 90.
Orser: 80 xm/u.

se

[623.] Tiycrs croumocrs Ónseta norepen «Hanemna» co-
crasaser z p, Torna, 2 — 28 — 4; 20 20 14-0;

>1=

[622.] Flyers nnomanp nora e ons pasta, RG ypo-
añHocTE B npoumom roy 12 => = 2;
m _ meta = q; Tee =0;
an? — 0,87 — 76,8 = 0; D

644 -2-76,8 = 615,04;
;2>0327=64 2 0.
Orser: 30 uentnepon ¢ rexrapa.

% sine

2-5

Pl _ 0; © 1900+ 47207 = 0; 22-50
300

0; D = 25+ 1200 = 1225; x = 588; x >0
20 p.
Orser: 20 py6neñ.

r=

2
aoontee-n) dert) _ 0; 5500000 202? — 10002 = 0;

Flyer» nena axunh wa naa Moment = p. Sia
+20; 11900 110000 _ 20 = 0;

25? + 275000 = 275625;
—25 + 525; 2>0 > x = 500; 198 = 220 axunit.
Ber: 220 anil,

] Nyers oGeaaao z venonex. Toraa

1 2

Orser: 7 yenopek o6enano.

7200
:] Myers 8 ornene x corpyannxon. Baunr 200

— 720 — 200, Meet) _ 1 =

; 22 — 32 - 108 = 0;
944-108 = 441; x = 821; 2 > 0 ae = 12.
Orser: 12 COTPyAHHKOB.

1627.|

Tlyctb cKopocTb JIOAKH npoTHB TeYeHHA peKH x,

Tora CKOPOCTb ABHKEHHA JONKH NO osepy r+ 2. 3HaunT,

135

Orser: cxopocrs JOAKH no osepy pasma 5 Km/u HAH
6 km/9,
(628. Flyers ckopocth Teuennn pen x, torna 72> =

= 2 35 (15 — 2) = 25 (15 + 2); 525 — 352 = 25a +
+315; 60% = 150; 2 = 25.
Ortner: ckopocts TeueHHA pekH papa 2,5 km/9.
[629.] Tlycrb ckopoctb Teuenus pekH 7 ha
ma + = à A _

20-2 400-2"

on one 12004882 9, 3524 14x — 40 A pa
= Ud? + 423740 = 196 + 480 = 676; 2
2=2

Orser: 2 m/s.
(630. Tiycrs nepsonauansnan macca pactsopa 2 rpaww,
torna, Y = 240,01, Y — Y — 0,01 = 0
30 ei ao ER) _ 9, 3000 — 0,012? — EM
+ 1002 300000 = 0; Dj = 2500 + 300000 = 302500;
x= ~50 +550; x > 0 = x = 500.

Orser: 500 r.
651] Myers » cnsave Guao 7 rpamm cepeöpa. Torna,
= 02, 0 MS,
40 Ge +90) = (c+ 40) (72 — 0,92), 402 + 00 Br-
— 0,22? + 2880 — 82; 0,22? — 24r + 720 = 0; 2? - 1202 +
+ 3600 = 0; Di = 60? — 3600 = 0; x = 60.
Orser: 60 rpamm.
(632.] liycrs nepenñ xpan pasrpyxaer 6apxy 3a x 4acoB,
Tora BTopoñ sa x — 5 yacop, m Macca rpysa y Kr. Torna
3a OHH ac pa6orsi nepsuiit KpaH pasrpyxaer X a Bropoñ

136

; 127 — 30 — 2? + 5x = 0;

Orser: 10 n 15 uacos.
635] Nycre nepsui asromar sa 2 YacoB HaTOTABAMBAET
y aeTaseñ, torna Bropoñ 3a x — 2 uacos. Torna 3a onu
sac pa6oTH nepeuñ aBromar HsroraBaHBaer L, a Bropoñ
Hy 20 55 mm = u B(x £35) = 9
2-22 _ y. wen _ 1 — q; MD _ 9,
2@-2) 5 T2 J
122% 9dr + 70 = 0; 62? — 472 +35 = 0:
x 35 - 6 = 2209 — 840 = 1369; x = 47487; no ycnopno
2>2>2=%=7;

Orser: 3a 7 4acoB.
634) Nycrs FepBongsanstan cxopgers peabchnenners 2
Torna ya = 12 à + oes © 6 mess = a; 120 +80 =
= v2 £50, 0 — 70 — 30 = 0; D = 49 + 4: 30 = 169;
v= 8; 0>0>0=10,

Orser: 10 Km/4.
635.] Nycrs cxopocre morounkancra na nepeok mononnne
ny pasta 2. Toraa, = 37,5; ea
HR = 4; 1502 — 1500 ‘x? — 800, et
+ 1500 = 0; 2x? — 1152 + 750 = 0; D = 115? — 4- 2x
x 750 = 13225 — 6000 = 7225; z = 1348; x — 20 >0
=> r= 50.

Orser: 50 xm/u.
1142930 11-280

eas a) ga + ive © dae =
ma =

9 +f (O PT

-4V5+

137

i]

637) a) x = 5+2V6, y = 5-2v6 ¿e
54+2v8)(5~2v6) _ 1

B42V6+5-2V6
6) c= vit =
LV) (VV) _ ae
"AAA 11-8 3
a +22=10
(638,] [lo reopeme Buera Y * " *? „a no YCJOBHLO
=
2 +2 = 10 2x1 = 16
u-m=6= >
1-2=6 =10-2

a=
>(=m2m-2m=16.
m=2

(639.] x? + ba +c = 0; reopema Buera 21 + 22 = —b;
T+ a2 = 6, a) a +g = 4 4 BH = nm
Bx + 0,5 = 0;

bg = Haig = a =

2 -4+1=0.

27. Ypasnenua c napamerpom

[640.] br + 2x = 3b + 6; 2(b+2) = 3(b+ 2);

1. Tip b= —2; x — moboe uncao.

2. Tipu b #2; 2 =2,

(AL. a) py—p—1=0; py=p+1; mpn p #0; y = Bi;
npn p = 0 Briparenne He HMeeT CMBICIA.

6) py ~ 3y — 4p +12 = 0: y(p 3) = 4p— 12%

npu p # 3 2: np p = 3; 3y—3y—12+12=0;
0 =0; y — a060e uncno.

138

(642. az — 21 = a? — 2a? — Ja + 18; z(a-2) =
= a? (a — 2) —9(a—2); Mpa a # 2; x =a? — 9; [pu
a — aW060e uncno.

2? — de +b = 0; Di = 4 — 2b = 2(2 -b); Tipn
= VS, Tipu b = 2; 2 = 1; Tlpu b> 2; mer

; D = 250? — 160? = 9a?,
Tipu a
100a? — 36a*

-36=0; 2 =
OE 0;
D=8-4-2-50 aa 400 = 0; t? = 400; t = +20;

172 = a? — 2(a-3)
Cymma ksanparos Kophefi KAHHOTO ypaBHeHHA npHHHMaeT
Hanmenbulee sHaueHHe np a = 1.
(647.] (a —1)1? + 2ar +a+1 ; pu a A 1; Dy =

2 I(a+l)=a@-(@?-1)=1; 2 4;
etl; 13 = 1; Mpna=1;2r+2

(648. (4k+1)2 + 2(2kh+hk-3) = 0; D =

ner 2+ (2k? +k —3) = 16k? + 8k + 1 —
— 16k? — 8k + 24 = 25; z = tl, 7 1 = 2k — 2;
12 = 2k +3.

(649.] 1, +22 = 2b-1=7>b=4.
139
Tags