8 GráFicas De Funciones

jve18 171,124 views 14 slides Mar 11, 2010
Slide 1
Slide 1 of 14
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14

About This Presentation

No description available for this slideshow.


Slide Content

Prof. Lic. Javier Velásquez Espinoza

GRÁFICAS EN COORDENADAS RECTANGULARES
Un punto se ubica en el plano por medio de sus coordenadas
rectangulares, escritas en la forma de un par ordenado.


“a” : Abscisa de “P”
“b” : Ordenada de “P”
(a; b) : Coordenadas de “P”

Y (Eje de ordenadas)
X (Eje de abscisas)
P=(a; b)
a
b

Utilizando un sistema de coordenadas rectangulares podemos
representar geométricamente a una función, entre las principales
tenemos:
FUNCIÓN LINEAL: y = mx + b
Ejemplo: Graficar y = 2x + 6
(-3; 0) : Intersección sobre el eje X
(0; 6) : Intersección sobre el eje Y.
X
Y
(- 3; 0)
(0: 6) Hacemos una tabulación:
xy
06
-30
Dominio = R
Rango = R

FUNCIÓN CONSTANTE: y = c
Ejemplo: Graficar y = 5
(0; 5) : Intersección sobre el eje Y
Y
X
(0; 5)
Dominio = R
Rango = {5}

(0; 0) : Origen de la curva
(0; 0) : Intersección sobre el eje X
(0; 0) : Intersección sobre el eje Y.
FUNCIÓN RAÍZ CUADRADA: y = x
Y
X
Dominio = [0; ¥ >
Rango = [0; ¥ >

VARIACIONES DE LA GRÁFICA FUNCIÓN RAÍZ CUADRADA:
Y
X
xy --=
Y
X
xy-=
Gráfica reflejada
respecto al eje Y
Y
X
xy-=
Gráfica reflejada
respecto al eje X
Gráfica reflejada respecto
al eje X y luego respecto
a Y
xy=
Y
X
Gráfica original
ORIGEN: (0;0)

Ejemplo: Graficar
3x15y +--=
SOLUCIÓN
Primero debemos encontrar el punto que corresponde al origen de la curva,
para lo cual igualamos a cero la cantidad subradical.
15 – x = 0 ® x = 15 Reemplazando en la función: y = 3
Luego el punto donde se inicia la curva es: (15; 3)
Y
X
(6; 0)
(15; 3)
3x15y +--=
Dominio: á- ¥; 15]
Rango: á- ¥; 3]
El signo menos que antecede al radical indica que la curva se extiende
hacia la izquierda

FUNCIÓN CUADRÁTICA: y = ax
2
+bx +c
Y
X
y = x
2

Y
X
y = -x
2

La gráfica de toda función cuadrática es una parábola.
Un caso especial y recurrente es:
VÉRTICE: (0;0)
VÉRTICE: (0;0)

Ejemplo: Graficar la función: y = -x
2
+ 6x + 7
SOLUCIÓN
Primero debemos encontrar el vértice de la parábola, para lo cual aplicamos el
método de completar cuadrados:
y = -(x – 3)
2
+ 16
Igualando a cero el binomio al cuadrado: x = 3
Reemplazando en la función: y = 16
Luego el vértice de la
parábola está en el
punto: ( 3; 16) y se
abre hacia abajo
Y
X
(3; 16)
(7; 0)(-1; 0)
(0; 7)
Dominio: R
Rango: á-¥; 16]

FUNCIÓN VALOR ABSOLUTO:
Y
X
y = êX ê
Y
X
y = - êX ê
VÉRTICE: (0;0)
VÉRTICE: (0;0)

Ejemplo: Graficar la función: y = -| x - 3 | + 6
SOLUCIÓN
Primero debemos encontrar el vértice de la gráfica, para lo cual igualamos a
cero el valor absoluto
-| x - 3 | = 0 ® x = 3 Reemplazando en la función: y = 6
Luego el vértice de la
gráfica es: (3; 6) y se
abre hacia abajo
Y
X
(3; 6)
(9; 0) (-3; 0)
(0; 3)
Dominio: R
Rango: á-¥; 6 ]

Dominio = R -{0}
Rango = R -{0}
No existen intersecciones sobre los
ejes
LA FUNCIÓN:
x
y
1
=
Y
X
Asíntota horizontal
Asíntota vertical
Las asíntotas se determinan así:
a) La A. Vertical: se iguala a cero
el denominador de la fracción.
b) La A. Horizontal: se iguala a cero
la fracción que contiene a “x”.
HIPÉRBOLA

Ejemplo: Graficar la función:
SOLUCIÓN
Debemos encontrar las asíntotas de la gráfica, para lo cual:
a) Igualamos a cero el denominador
6
x5
3
y +
-
=
® La asíntota vertical es : x = 5
b) Igualamos a cero la fracción
x = 5
y = 6
X
Y
Dominio: R – {5}
Rango: R – {6}
® La asíntota horizontal es : y = 6

OBSERVACIONES:
1. Toda recta vertical debe intersecar sólo en un punto a la
gráfica de una función.
1.Si la gráfica de una función interseca a los ejes coordenados, los
puntos de intersección se obtienen de la siguiente forma:
Intersección sobre el eje Y: se obtiene haciendo que x = 0, es
decir calculando f(0). Si no existe f(0) significa que la gráfica no
interseca al eje Y.
Intersección sobre el eje X: se obtiene haciendo que y = 0 y
resolviendo la ecuación para x. Si la ecuación no tiene solución
significa que la gráfica no interseca al eje X.
•Si la variable “x” se cambia por “-x”, la gráfica se refleja respecto al
eje Y
4. Si la función “f(x)” se cambia por “-f(x)”, la gráfica se refleja
respecto al eje X
Tags