A_05_FDD-LTE Radio Network Planning doc.ppt

ssuser8ec4f8 10 views 70 slides Sep 16, 2025
Slide 1
Slide 1 of 70
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70

About This Presentation

LTE network optimization


Slide Content

FDD-LTE Radio Network Planning
ZTE University

Contents
FDD-LTE network deployment strategy
FDD-LTE site selection
FDD-LTE network simulation
FDD-LTE spectral efficiency

The process of FDD-LTE network planning

Information collection
Information collection is to gather any information
relate to LTE network proposal, such as:

Operator’s requirements

Operator’s existent network sites density and distribution

The frequency band and bandwidth available for LTE system

The environment information of the city to be covered

Subscribers and traffic model forecast

Digital map

….

Deployment strategy
Which area the LTE radio network will be introduced in first?

Deployment strategy

800M LTE
Operators need to operate their pipe precisely !
Urban RuralHot Spots
Voice capacity + data capacity Voice/Data coverage
2.1 HSPA
900/1800 GSM 900 GSM/UMTS2.6G LTE
Large cell for coverage
Small cell for capacity
Better indoor coverage to reduce power consumption
Deployment strategy

Requirements and targets
Coverage requirements
Coverage area
Coverage QoS
 
Dense
Urban
Urban
Subu
rban
Rural
Cell Edge User
Throughput
(kbps)
512 384 256 128
Morphology
Dense
Urban
Urban
Subur
ban
Rural
Shadowing Standard
Deviation(dB)
8 8 6 6
Area Coverage
Probability
95% 95% 95% 90%
Coverage special target

Capacity requirements
Typical
service
RAB
Type
Bearer Rate
UL (kbps)
Bearer Rate
DL (kbps)
Intensity
(mErl)
UL Vol.
(kByte)
DL Vol.
(kByte)
Voice Voice 12.2 12.2 20 - -
 
Video
conference
Data 128 128 1.5 - -
 
Video/Audio
Streaming
Data 256 256 - 180 750
Web Browsing
/ HTTP
Data 128 500 - 125 450
FTP Data 500 2000 - 225 900
Gaming
Interactive
Data 128 128 - 125 450
P2P Data 500 2000 - 5001500
Requirements and targets
subscriber target and
density
Traffic model
Stages and phases

Propagation model calibration
CW test
Tune the propagation
model parameters
After calibration, the
exact propagation model
will be used in network
design and planning

Radio network design
Link budget analysis
Capacity analysis

Radio network design
Link BudgetLink Budget
Cell radius and Cell radius and
site numbersite number
Coverage Coverage
Requirements Requirements
Which is Which is
limitationlimitation
The final site numberThe final site number
and cell radiusand cell radius
Capacity analysisCapacity analysis
Site number andSite number and
Cell radiusCell radius
Capacity Capacity
Requirements Requirements

Site selection and survey
Base on the network design result
of cell range or inter-site distance
Base on existent network site
distribution information or other
candidate site, select fit legacy
site to reuse or add new site.
Site selection can be run by tools
or manually.
Candidate site Result site

Coverage prediction and simulation
Parameters setting
Coverage prediction
Monte carol simulation

The process of FDD-LTE network planning

Contents
FDD-LTE network deployment strategy
FDD-LTE site selection
FDD-LTE network simulation
FDD-LTE spectral efficiency

Site Selection
How to process so many candidate sites and so large area
How to priority covered POI

Site Selection Principle
Inter site distance following network design result.
Preference for the existing base station
Try to select the ideal honeycomb structure of the site
The selected site should be close to important areas
and dense areas
Antenna must have enough isolation space to avoid
interference between systems
Try to avoid select very high build or hill as site
address in urban area

Manual site selection
We found tool has obvious limits in term of balancing between
threshold, coverage, traffic load, cost of sites etc. Manually adjust the
result is necessary.
Network design result:
•Cell range
•Inter site distance

Site Selection Method
Proposal I
Proposal II

Proposal I
Proposal I
Best Signal Level (dBm) >=-80number of POI%
coverage>95% 363 69%
95%>coverage>85% 13 2%
85%>coverage>75% 12 2%
coverage<75% 146 27%
Total 534 100%
295 site cover POI
Site Selection Method

total 445
Anchor Sites 154
ProposalII
Proposal II
Best Signal Level (dBm) >=-80number of POI%
coverage>95% 499 93%
95%>coverage>85% 6 1%
85%>coverage>75% 5 1%
coverage<75% 26 5%
Total 534 100%
Site Selection Method

total 1000
Anchor Sites 188
ProposalII
Proposal II
Site Selection Method

Contents
FDD-LTE network deployment strategy
FDD-LTE site selection
FDD-LTE network simulation
FDD-LTE spectral efficiency

FDD-LTE network planning flow

Planning Parameters
Digital map
database
Network
parameter
Propagation
model
Service
parameters

Digital map

Clutter Name
Surface
(km2)
Percentage(%
)
POI 51.257 0.13%
High Density Urban - City Center 1.861 0.005%
Commercial/Industrial 111.895 0.28%
Airports 42.062 0.11%
Medium Density Urban 705.708 1.79%
Low Density Urban 2,142.73 5.42%
Dense Forest 13,071.82 34.83%
Water 3,953.01 10.00%
Open - Vegetated 121.342 0.31%
Open - Non Vegetated 18,636.93 47.14%
total 39533.137 100%
Digital map

Propagation model

 
Dense
Urban
Urba
n
Suburba
n
Rura
l
Highwa
y
Coastal High Rise 0 0 0 0 0
Dense Forest 1.14 2.03 1.54 3.04 0
Open - Vegetated -0.690.95 -0.66 2.2 0
Open - Non Vegetated0.52 0.12 -0.42 1.54 0
Low Density Urban 0.76 1.54 0.89 1.55 0
Medium Density
Urban
-0.03-0.48 -1.22 0.68 0
High Density Urban -
City Center
1.95-3.57 0 -3.21 0
Commercial/Industrial-2.23-2.72 -0.25 2.63 0
Airports 0 -2.15 0 -7.78 0
Water 0 0.44 0 -5.7 0
  K1 K2 K3 K4 K5
K
6
K7
Dense
Urban
64.9
9
48.7
2
-26.5
0.6
1
-
8.64
03.23
Urban
13.6
6
44.4
1
5.77
0.0
6
-
6.55
01.63
Suburban -7.01
42.6
9
22.8
3
0.4
5
-
6.55
02.31
Rural 3.85
41.2
4
19.2
6
0.3
3
-
7.05
0
-
0.33
Highway 28.644.45.9 0 -100
-
1.21
Propagation model

Propagation model
3D Ray Tracing Model
Building
Data Base

Network information
Sites
Transmitters
Cells
Neighbours
n
n
n
1
n
1
Site Equipment
1n

n
Mobility
n
n
Clutter Weights
1
1n
Environment
Traffic Map
n
n
User Profile
Terminals
Service Usage
1
n
1
n
1
n
Services Mobility
Radio Beare
1
n
1
n
Service information

Servic
e
Type
Typical service
RAB Type
(UL:DL)
Bearer
Rate
UL (kbps)
Bearer
Rate
DL (kbps)
Intensit
y
(mErl)
UL
Vol.
(kbit)
DL
Vol.
(kbit)
CS Voice DCH:DCH 12.2 12.2 20.0 - -
 
CS Video telephony DCH:DCH 64 64 1.5 - -
 
PS E-mail DCH:DCH 64 64 - 60 250
PS
Audio/video
streaming
DCH:DCH 64 128 - 6 150
PS
Mobile office Internet
/e-commerce
DCH:HSDPA 64 500 - 50 300
PS
Mobile office Internet
/e-commerce
HSUPA:HSDPA 300 500 - 200 600
3G traffic mix example
Traffic mix

iPhone and other new terminals push the Data serveic
%

S
u
b
s

M
o
b
i
l
e

T
V

o
r

V
i
d
e
o
Average iPhone
Total Bandw
idth
2008
$199
SMALLER
CHEAPER
FASTER
2007
$599
36%30.4%20%49.7%30.9%
% of users
1.5%
Facebook
1%
YouTube
4%
Social
networks
2.6%4.6%All phones
Google
Maps
Mobile
video
iPhone
New application
147 million devices in 2014
• 50% = embedded modems
• 42% = USB modems
Orange France
Typical user :~20 MB /month
iPhone : 400 MB/month
Data card : 600 MB/month
Traffic mix

  UL DL
Speech 12.2(erl) 0.02
CS64(erl) 0.001
PS64/64(kbps) 0.0113 0.0452
PS64/128(kbps)0.0045 0.0226
PS64/384(kbps)0.0019 0.0113
HSPA(kbps) 0.1751 1.0509
Average Date traffic
@BH : 0.51MB
For a month:
64MB
Data Taffic/month
iPhone :400 MB
Data card : 600 MB
Data Taffic@BH
iPhone :4 MB
Data card : 4.8 MB
China Unicom UMTS/HSPA traffic mix
iPhone and Data card
Traffic mix

FDD-LTE network planning flow

Signal Level Coverage Prediction

RS receive level prediction
Coverage by Signal Level 0
Surface
(km2)
% Focus
Zone
  31,422.26 79.5
Best Signal Level (dBm) >=-80 4,186.34 10.6
Best Signal Level (dBm) >=-82 5,522.01 14
Best Signal Level (dBm) >=-86 8,962.24 22.7
Best Signal Level (dBm) >=-93 17,507.21 44.3
Best Signal Level (dBm) >=-96 21,793.95 55.1
Best Signal Level (dBm) >=-
105
31,422.26 79.5
0
4
9
13
18
22
27
31
36
40
45
49
54
58
63
67
72
76
81
85
90
94
99
-
1
0
5
-
1
0
4
-
1
0
3
-
1
0
2
-
1
0
1
-
1
0
0
-
9
9
-
9
8
-
9
7
-
9
6
-
9
5
-
9
4
-
9
3
-
9
2
-
9
1
-
9
0
-
8
9
-
8
8
-
8
7
-
8
6
-
8
5
-
8
4
-
8
3
-
8
2
-
8
1
-
8
0
-
7
9
-
7
8
%
Best Signal Level ( dBm)
Focus Zone

Proposal II Proposal I
Focus Zone
RS receive level prediction

POI
Best Signal Level (dBm) >=-
80
number of
POI
%
coverage>95% 499 93%
95%>coverage>85% 6 1%
85%>coverage>75% 5 1%
coverage<75% 26 5%
Total 534
100
%
RS receive level prediction

Population or
Traffic
Coverage by Signal Level 0
%Populatio
n
99.82
Best Signal Level (dBm) >=-8037.49
Best Signal Level (dBm) >=-8246.57
Best Signal Level (dBm) >=-8665.73
Best Signal Level (dBm) >=-9390.62
Best Signal Level (dBm) >=-9696.33
Best Signal Level (dBm) >=-
105
99.82
RS receive level prediction

High Way
Coverage by Signal Level 0 %
Best Signal Level (dBm) >=-80 31.76
Best Signal Level (dBm) >=-82 37.9
Best Signal Level (dBm) >=-86 51.02
Best Signal Level (dBm) >=-93 74.38
Best Signal Level (dBm) >=-96 82.2
Best Signal Level (dBm) >=-105 93.66
RS receive level prediction

2000sites
Coverage by Signal Level
Surface
(km2)
% Focus
Zone
Best Signal Level (dBm) >=-80 8,258.52 20.9
Best Signal Level (dBm) >=-82 10,305.11 26.1
Best Signal Level (dBm) >=-86 15,134.02 38.3
Best Signal Level (dBm) >=-93 25,553.83 64.6
Best Signal Level (dBm) >=-96 29,983.91 75.8
Best Signal Level (dBm) >=-
105
37,613.23 95.1
RS receive level prediction
sites
S
u
r
f
a
c
e

11.13Mbps
RU
0
4
8
12
17
21
25
29
33
37
42
46
50
54
58
62
67
71
75
79
83
87
92
96
100
0
2
,0
0
0
4
,0
0
0
6
,0
0
0
8
,0
0
0
1
0
,0
0
0
1
2
,0
0
0
1
4
,0
0
0
1
6
,0
0
0
1
8
,0
0
0
2
0
,0
0
0
2
2
,0
0
0
2
4
,0
0
0
2
6
,0
0
0
2
8
,
0
0
0
3
0
,0
0
0
3
2
,
0
0
0
3
4
,0
0
0
3
6
,0
0
0
3
8
,0
0
0
4
0
,0
0
0
4
2
,0
0
0
4
4
,
0
0
0
4
6
,0
0
0
4
8
,0
0
0
5
0
,0
0
0
%
Application Channel Throughput ( DL) ( kbps)
9.16Mbps
CDF
50%CDF
  RU SU MU DU
50%CDF kbps 9159 8594.4
6558.
9
6106.
5
Average(kbps
)
11138.
5
10479.
8
7633.
2
6930.
5
Average throughput prediction

ServiceTerminalCalls/hour
UL
Volume
(KBytes)
DL
Volume
(KBytes)
FTP
Downloa
d
MIMO
Terminal
1 1,000 4,000
Density
(Subscribers/km2
)
50010001500200025003000
Total number of
connected users
94.8
%
94.5
%
93.7
%
92.4
%
92.3
%
91.0
%
User profile
Average throughput prediction

Signal Level Coverage Prediction

FDD-LTE network planning flow

Other coverage prediction

Monte Carlo simulation

FDD-LTE network planning flow

Signal quality prediction

Throughput prediction

Other coverage prediction
Handover
Effective modulation

FDD-LTE network planning flow

Contents
FDD-LTE network deployment strategy
FDD-LTE site selection
FDD-LTE network simulation
FDD-LTE spectral efficiency

Evolution of Speed

LTE Frequency and Bandwidth
E-UTRAN Band UL: eNode B receive, UE transmitDL: eNode B transmit, UE receiveDuplex Mode
F
UL_low
– F
UL_high
F
DL_low
– F
DL_high
1 1920 MHz – 1980 MHz 2110 MHz – 2170 MHz FDD
2 1850 MHz – 1910 MHz 1930 MHz – 1990 MHz FDD
3 1710 MHz – 1785 MHz 1805 MHz – 1880 MHz FDD
4 1710 MHz – 1755 MHz 2110 MHz – 2155 MHz FDD
5 824 MHz – 849 MHz 869 MHz – 894MHz FDD
6 830 MHz – 840 MHz 875 MHz – 885 MHz FDD
7 2500 MHz – 2570 MHz 2620 MHz – 2690 MHz FDD
8 880 MHz – 915 MHz 925 MHz – 960 MHz FDD
9 1749.9 MHz – 1784.9 MHz 1844.9 MHz – 1879.9 MHz FDD
10 1710 MHz – 1770 MHz 2110 MHz – 2170 MHz FDD
11 1427.9 MHz – 1452.9 MHz 1475.9 MHz – 1500.9 MHz FDD
12 [TBD]– [TBD] [TBD]– [TBD] FDD
13 777 MHz – 787 MHz 746 MHz – 756 MHz FDD
14 788 MHz – 798 MHz 758 MHz – 768 MHz FDD
...              
33 1900 MHz – 1920 MHz 1900 MHz – 1920 MHz TDD
34 2010 MHz – 2025 MHz 2010 MHz – 2025 MHz TDD
35 1850 MHz – 1910 MHz 1850 MHz – 1910 MHz TDD
36 1930 MHz – 1990 MHz 1930 MHz – 1990 MHz TDD
37 1910 MHz – 1930 MHz 1910 MHz – 1930 MHz TDD
38 2570 MHz – 2620 MHz 2570 MHz – 2620 MHz TDD
39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD
40 2300 MHz - 2400 MHz 2300 MHz - 2400 MHz TDD

Flexible Bandwidth
1.4M1.4M
3M3M
5M5M
10M10M
15M15M
20M20M
Paired-Spectrum
Unpaired-Spectrum

LTE Spectrum Defined by 3GPP

Different bandwidth and antenna, different
speed

Spectrum efficiency
A comparison between different bandwidth
Conclusion: It’s a little different between different

Spectrum efficiency
A comparison between different MIMO mode
Conclusion: The spectrum efficiency will increase if
antenna increases.

Spectrum efficiency
A comparison between different frequency
Conclusion: The spectrum efficiency will be different in
different frequency. With the increase of frequency, the
spectrum efficiency decreases, especially when in a
large scale difference.

FDD-LTE BBU Solution Product - B8200
Compact, light-weight, easy
installation
Plug & play, easy maintenance
Low, green equipment
Automatically network planning
and optimizing
B8200
Carrier Support 3*20MHz
Baseband Capacity DL:450Mbps & UL:150Mbps
Active Users Support 1200 Users/Sector
Availability index ≥99.9997%
Interface 3xCPRI; 3xGE/FE 1xGPS;
8xE1/T1
Dimension (mm) 88.4(H)×482.6(W)×197 (D)
Weight 7.48kg Max.
Power Consumption 303W Max.
Power Supply -48VDC
Cooling Fan Cooling
Working Temperature -15

~+50

FDD-LTE RRU Solution Product -
R8882
Compact, light-weight, easy
installation
Plug & play, easy maintenance
Low TX power, green equipment
Automatically network planning
and optimizing
R8882
Carrier & Sector 20MHz Frequency Bandwidth
Availability 99.9998%
RF Output 2*40W
Receive Sensitivity (dBm) -131.15 dBm@QPSK;
-100.81 dBm@16QAM;
-89.6 dBm@64QAM
Interface 2 CPRI Ports and 4 Antenna Ports
Dimension (mm) 380(H) x 320(W) x 140(D)
Weight 18kg
Power Consumption 330W Max; 197W AVG.
Power Supply -48VDC
Cooling Natural Cooling (No FAN)
Working Temperature -40

~+55

Large Capacity
Rich Interface
Higher Efficiency, Lower Power
Consumption
Automatically network planning
and optimizing
BS8800
Carrier & Sector 3*20MHz
RF Output 4*40W
Receive Sensitivity (dBm) -131.15 dBm@QPSK;
-100.81 dBm@16QAM;
-89.6 dBm@64QAM
Active Users Support 1600 Users/Sector
Baseband Capacity DL:450Mbps & UL:150Mbps
Availability 99.9997%
Backhaul Interface 3xGE/FE; 8xE1/T1
Dimension (mm) 950(H) × 600(W) × 450(D)
Weight <150kg
Power Consumption 994W Avg. with S111(3*20MHz)
Power Supply -48VDC; 110~220VAC;+24VDC
Cooling Fan Cooling
Working Temperature -15

~+50

FDD-LTE eNB Solution Product -
B8800

Compact, light-weight, easy
installation
Plug & play, easy maintenance
Low TX power, green equipment
Automatically network planning
and optimizing
BS8900
Carrier & Sector 3*20MHz
RF Output 4*40W
Receive Sensitivity (dBm) -131.15 dBm@QPSK;
-100.81 dBm@16QAM;
-89.6 dBm@64QAM
Active Users Support 1600 Users/Sector
Baseband Capacity DL:450Mbps & UL:150Mbps
Availability 99.9997%
Backhaul Interface 3xGE/FE; 8xE1/T1
Dimension (mm) 1700(H)×950(D)×600(W)
Weight Full configuration without
battery: 355Kg
Power Consumption 1105W Avg. with S111(3*20MHz)
Power Supply -48VDC; 110~220VAC;+24VDC
Conditioner Heat Exchanger
Working Temperature -40

~+55

FDD-LTE eNB Solution Product - B8900

Glossary
CBD: Central Business District
QOS: Quality of Service
RAB: Radio Access Bearer
CW: Continuous Wave
POI: Point of Interest
RNP: Radio Network Planning
DU: Dense urban
SU: Suburbs urban
RU: Rural urban
MU: Medium urban
SE: Spectrum Efficiency
ESE: Effective Spectrum Efficiency
ISD: Inter-station Distance
CPRI: Common Public Radio Interface
QPSK: Quaternary Phase Shift Keying
QAM: Quadrature Amplitude Modulation
CDF: Cumulated Distribution Function
Tags