A presentation on complex numbers of mathematics

sujaksul 8 views 24 slides Sep 12, 2024
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

A brief introduction to complex numbers


Slide Content

Complex Numbers
10.710.7
1.Write imaginary numbers using i.
2.Perform arithmetic operations with complex numbers.
3.Raise i to powers.

Imaginary unit:

Imaginary number: A number that can be expressed
in the form bi, where b is a real number and i is the
imaginary unit.
i3 i9
i
5
2
1i
1
2
i

16
21
32
1 16   4i  4i
1 21   21i
1 32   16 2i  4 2i
1
1
2


i
i

Complex number: A number that can be expressed in
the form a + bi, where a and b are real numbers and i
is the imaginary unit.
i34 i57 i
5
4
3
2

Examples:
real
im
a
g
in
a
ry

Complex Numbers: a + bComplex Numbers: a + bii
b = 0: Real numbers
a = 0: Imaginary numbers
real imaginary

Add Complex NumbersAdd Complex Numbers
  ii 5435 
1
1
2


i
i
ii 5435 
Add the real parts – add the imaginary parts
i89

Subtract Complex NumbersSubtract Complex Numbers
  ii 2138 
1
1
2


i
i
ii 2138 
i9

Slide 10- 9Copyright © 2011 Pearson Education, Inc.
Simplify. (4 + 7i) – (2 + i)
a) 2 + 7i
2
b) 2 + 8i
c) 6 + 6i
d) 6 + 8i

Slide 10- 10Copyright © 2011 Pearson Education, Inc.
Simplify. (4 + 7i) – (2 + i)
a) 2 + 7i
2
b) 2 + 8i
c) 6 + 6i
d) 6 + 8i

Multiply Complex NumbersMultiply Complex Numbers
ii74
1
1
2


i
i
2
28i
128
28

Multiply Complex NumbersMultiply Complex Numbers
 ii857
1
1
2


i
i
2
5635 ii
15635 i
5635i
i3556
standard a + bi form

Multiply Complex NumbersMultiply Complex Numbers
 ii425
1
1
2


i
i
2
28520 iii 
2
2320 ii
12320 i
2320 i
i322

Multiply Complex NumbersMultiply Complex Numbers
 
2
35i
1
1
2


i
i
2
9151525 iii 
193025 i
93025 i
i3016
Rewrite & Foil
  ii 3535 

Slide 10- 15Copyright © 2011 Pearson Education, Inc.
Multiply. (4 + 7i)(2 + i)
a) 15 + 10i
b) 1 + 10i
c) 15 + 18i
d) 15 + 18i

Slide 10- 16Copyright © 2011 Pearson Education, Inc.
Multiply. (4 + 7i)(2 + i)
a) 15 + 10i
b) 1 + 10i
c) 15 + 18i
d) 15 + 18i

Divide Complex NumbersDivide Complex Numbers
i7
6
1
1
2


i
i
i
i
i

7
6
2
7
6
i
i

17
6


i
7
6


i
7
6i

7
6i

Binomial denominator conjugate
Divide Complex NumbersDivide Complex Numbers
i6
5
1
1
2


i
i


i
i
i 


 6
6
6
5
2
36
530
i
i



136
530



i
i
37
5
37
30
standard a + bi form
37
530i

Slide 10- 19Copyright © 2011 Pearson Education, Inc.
Write in standard form.
a)
b)
c)
d)
4
2 3
i
i


5 14
13 13
i

5 14
13 13
i

11 14
13 13
i

11 14
13 13
i

Slide 10- 20Copyright © 2011 Pearson Education, Inc.
Write in standard form.
a)
b)
c)
d)
4
2 3
i
i


5 14
13 13
i

5 14
13 13
i

11 14
13 13
i

11 14
13 13
i

Powers of i:Powers of i:
1
1
2


i
i
i
111
224
iii
iiiii  1
23
1
2
i



111
1
111
1
448
347
246
45




iii
iiiii
iii
iiiii


41
i ii
10
4
ii1

15
i 
3
3
4
ii ii1
i
111
224
iii
iiiii  1
23
1
2
i
Powers of i:Powers of i:

432
iiii 
Simplify:
Tags