abcsdsfsGeneral-Mathematics-Week-7_1.pdf

SyrusLeonardPasawaJu 27 views 39 slides Sep 09, 2024
Slide 1
Slide 1 of 39
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39

About This Presentation

General mathematics grade 11


Slide Content

“To educate children, you must
love them and love them all
equally.”
-St. Marcellin Champagnat
Notre Dame of
Kidapawan College
Integrated Basic Education
Department
General Mathematics
Week 7

Notre Dame of Kidapawan College
Integrated Basic Education Department | 2
Solve for the value of x
in the equation
1
2
??????
=32.
Ans.: X=-5
Solve the inequality
3
2�−4
<9.
Ans.: x<3
Solve the equation
5
2+2&#3627408485;
=
1
5
.
Ans. : x=−
&#3627409361;
&#3627409360;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 3
Logarithmic
Functions,
Equations and
Inequalities

Notre Dame of Kidapawan College
Integrated Basic Education Department | 4
Represent real-life situations using logarithmic function.
Distinguish logarithmic function, logarithmic equation,
and logarithmic inequality.
Solve logarithmic equations and inequalities.
Learning Competencies
Represent logarithmic function through its: (a) table of
values, (b) graph, and (c) equation.
Find the domain and range of a logarithmic function.
Determine the intercepts, zeroes, and asymptotes of
logarithmic function.
Solve problems involving logarithmic function,
logarithmic equation, and logarithmic inequality.

Notre Dame of Kidapawan College
Integrated Basic Education Department | 5
Thinkofalogarithmofxtothebaseb(denoted
by??????&#3627408476;&#3627408468;
&#3627408463;&#3627408485;)astheexponentofbthatgives??????.For
example,??????&#3627408476;&#3627408468;
381=4because3
4
=81.Some
additionalexamplesaregivenbelow:
(a)??????&#3627408476;&#3627408468;
51=0because5
0
=1
(b)??????&#3627408476;&#3627408468;
6
1
6
=−1because6
−1
=
1
6
Concept of Logarithm

Notre Dame of Kidapawan College
Integrated Basic Education Department | 6
1.??????&#3627408476;&#3627408468;
232
2.??????&#3627408476;&#3627408468;
9729
3.??????&#3627408476;&#3627408468;
55
Try this!!!

Notre Dame of Kidapawan College
Integrated Basic Education Department | 7
Logarithmic Form:??????&#3627408476;&#3627408468;
&#3627408463;&#3627408462;=&#3627408464;Exponential Form: &#3627408463;
&#3627408464;
=&#3627408462;
??????&#3627408476;&#3627408468;
232=5 2
5
=32
??????&#3627408476;&#3627408468;
9729=3 9
3
=729
??????&#3627408476;&#3627408468;
55=1 5
1
=5
??????&#3627408476;&#3627408468;Τ1216=−4 Τ12
−4
=16
??????&#3627408476;&#3627408468;
101000=3 10
3
=1000
•In both the logarithmic and exponential forms, b is the base.
•In the exponential form, c is an exponent. But c=??????&#3627408476;&#3627408468;
&#3627408463;&#3627408462;. This implies
that the logarithm is actually an exponent.
•In the logarithmic form ??????&#3627408476;&#3627408468;
&#3627408463;&#3627408462;, a cannot be negative. For example,
??????&#3627408476;&#3627408468;
2−8is not defined since 2 raised to any exponent will never
result to a negative number.
•The value of ??????&#3627408476;&#3627408468;
&#3627408463;&#3627408485;can be negative. For example, ??????&#3627408476;&#3627408468;
5
1
125
=−3
because 5
−3
=
1
125
.

Notre Dame of Kidapawan College
Integrated Basic Education Department | 8
CommonLogarithm
Commonlogarithmsarelogarithmswithbase10.Thebase10
isusuallyomittedwhenwritingcommonlogarithms.Thismeansthat
??????&#3627408476;&#3627408468;&#3627408485;isashortnotationfor??????&#3627408476;&#3627408468;
10&#3627408485;.
Example:??????&#3627408476;&#3627408468;100=2because10
2
=100
NaturalLogarithm
Logarithmswithbaseearecallednaturallogarithmsandare
denotedby"??????&#3627408475;“.Inotherwords,ln&#3627408485;isanotherwayofwriting
??????&#3627408476;&#3627408468;
??????&#3627408485;.
Example:ln&#3627408485;=2because&#3627408466;
2
=&#3627408485;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 9
log
&#3627408463;&#3627408485;=&#3627408486;if and only if &#3627408463;
&#3627408486;
=&#3627408485;for b>0,
b≠1.
A logarithm is an exponent which bmust
have to produce x.
In either equation,b is called the base and
must be a positive number, not equal to 1.
Conversion Rules

Notre Dame of Kidapawan College
Integrated Basic Education Department | 10
Write 3
2
=&#3627408485;in logarithmic
form.
Example:
3
2
=&#3627408485;means log
3&#3627408485;=2
The base remains
the same.
Exponents are logarithms

Notre Dame of Kidapawan College
Integrated Basic Education Department | 11
Write the logarithmic
equation ??????????????????
&#3627409363;??????=&#3627409362;into
exponential form.
Try This!

Notre Dame of Kidapawan College
Integrated Basic Education Department | 12
Logarithmic Equation Logarithmic Inequality Logarithmic Function
DefinitionAn equation involving
logarithms
An inequality involving
logarithms
Function of the form
&#3627408467;&#3627408485;=??????&#3627408476;&#3627408468;
&#3627408463;&#3627408485;, &#3627408463;>0, &#3627408463;≠1.
Example log
&#3627408485;2=4 ln&#3627408485;
2
>(ln&#3627408485;)
2
&#3627408468;&#3627408485;=log
3&#3627408485;
Logarithmic Functions, Equations, and
Inequalities
1.) log
&#3627408485;2<4
2.) &#3627408467;&#3627408485;=log
2&#3627408485;
3.) x=log
255
4.) log
42&#3627408485;=log
410
5.) log
7(&#3627408485;+18)≥4
Logarithmic Inequality
Logarithmic Function
Logarithmic Equation
Logarithmic Inequality
Logarithmic Equation

Notre Dame of Kidapawan College
Integrated Basic Education Department | 13
??????&#3627408476;&#3627408468;
2&#3627408485;=4
2
4
=&#3627408485;
&#3627408485;=16
Solve the following simple
logarithmic equations:
??????&#3627408476;&#3627408468;1000=−&#3627408485;
10
−&#3627408485;
=1000
10
−&#3627408485;
=10
3
−&#3627408485;=3
&#3627408485;=−3

Notre Dame of Kidapawan College
Integrated Basic Education Department | 14
Let&#3627408463;and&#3627408485;berealnumberssuchthat&#3627408463;>0,and
&#3627408463;≠1.
1.??????&#3627408476;&#3627408468;
&#3627408463;1=0
Example:??????&#3627408476;&#3627408468;1=0
2.??????&#3627408476;&#3627408468;
&#3627408463;&#3627408463;
&#3627408485;
=&#3627408485;
Example:??????&#3627408476;&#3627408468;
464=??????&#3627408476;&#3627408468;
44
3
=3
3.If&#3627408485;>0,then&#3627408463;
??????&#3627408476;??????&#3627408463;&#3627408485;
=&#3627408485;
Example:5
??????&#3627408476;??????52
=2
Basic Properties of Logarithms

Notre Dame of Kidapawan College
Integrated Basic Education Department | 15
Laws of Logarithms
Laws of Logarithms
Let &#3627408463;>0, &#3627408463;≠1and &#3627408475;∈ℝ.
For &#3627408482;>0, &#3627408483;>0, then: Examples:
1. ??????&#3627408476;&#3627408468;
&#3627408463;&#3627408482;&#3627408483;=??????&#3627408476;&#3627408468;
&#3627408463;&#3627408482;+??????&#3627408476;&#3627408468;
&#3627408463;&#3627408483;1. ??????&#3627408476;&#3627408468;
327⋅81=??????&#3627408476;&#3627408468;
327+??????&#3627408476;&#3627408468;
381
2. ??????&#3627408476;&#3627408468;
&#3627408463;
&#3627408482;
&#3627408483;
=??????&#3627408476;&#3627408468;
&#3627408463;&#3627408482;−??????&#3627408476;&#3627408468;
&#3627408463;&#3627408483;2. ??????&#3627408476;&#3627408468;
7
49
&#3627408485;
=??????&#3627408476;&#3627408468;
749−??????&#3627408476;&#3627408468;
7&#3627408485;
3. ??????&#3627408476;&#3627408468;
&#3627408463;&#3627408482;
&#3627408475;
=&#3627408475;??????&#3627408476;&#3627408468;
&#3627408463;&#3627408482;3. ??????&#3627408476;&#3627408468;
77
5
=5⋅??????&#3627408476;&#3627408468;
77

Notre Dame of Kidapawan College
Integrated Basic Education Department | 16
log(&#3627408462;&#3627408463;
2
)
Solution:
log(&#3627408462;&#3627408463;
2
)
=loga+logb
2
=loga+2logb
Use the properties/laws of logarithms to expand each
expression in terms of the logarithms of the factors. Assume
each factor is positive.
log
3
3
&#3627408485;
3
Solution:
=3log
3
3
&#3627408485;
=3(log
33−log
3&#3627408485;)
=3(1−log
3&#3627408485;)
=3−3log
3&#3627408485;
Law 1
Law 3
Property 2
Law 2
Law 3
Distributive
Property

Notre Dame of Kidapawan College
Integrated Basic Education Department | 17
log2+log3
=log2⋅3
=log6
Use the properties/laws of logarithms to
condense the expressions as a single logarithm.
log
5(&#3627408485;
2
)−3log
5&#3627408485;
=log
5
&#3627408485;
2
&#3627408485;
3
=log
5(&#3627408485;
2−3
)
=log
5(&#3627408485;
−1
)
=−log
5&#3627408485;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 18
Leta,bandxbepositiverealnumberssuchthat&#3627408462;≠
1,b≠1.
log
&#3627408463;&#3627408485;=
log&#3627408462;&#3627408485;
log&#3627408462;&#3627408463;
Change-of-Base Formula
log
832
=
log
232
log28
=
5
3
log
243
1
27
=
log
3
1
27
log
3243
=
−3
5

Notre Dame of Kidapawan College
Integrated Basic Education Department | 19
Somestrategiesinsolvinglogarithmicequations:
a.rewritingtoexponentialform
b.usinglogarithmicproperties/laws
c.applyingtheone-to-onepropertyofalogarithmic
functions,iflog
&#3627408463;&#3627408482;=log
&#3627408463;&#3627408483;,then&#3627408482;=&#3627408483;.
d.applyingtheZeroFactorProperty,ifab=0,then
a=0orb=0.
e.Aftersolving,checkifeachoftheobtained
valuesdoesnotresultinundefinedexpressionsinthe
givenequation.Ifso,thenthesevalueswouldNOTbe
consideredsolutions.
Solving Logarithmic Equations

Notre Dame of Kidapawan College
Integrated Basic Education Department | 20
Findthevalueofxinthefollowinglogarithmicequations:
log
42&#3627408485;=log
412
2&#3627408485;=12
&#3627408485;=6
log
3(2&#3627408485;−1)=2
2&#3627408485;−1=3
2
2&#3627408485;−1=9
2&#3627408485;=10
&#3627408485;=5

Notre Dame of Kidapawan College
Integrated Basic Education Department | 21
Giventhelogarithmicexpressionlog
&#3627408463;&#3627408485;,
If0<&#3627408463;<1,then&#3627408485;
1<&#3627408485;
2ifandonlyiflog
&#3627408463;&#3627408485;
1>
log
&#3627408463;&#3627408485;
2.
If&#3627408463;>1,then&#3627408485;
1<&#3627408485;
2ifandonlyiflog
&#3627408463;&#3627408485;
1<
log
&#3627408463;&#3627408485;
2.
Solving Logarithmic Inequalities

Notre Dame of Kidapawan College
Integrated Basic Education Department | 22
Solve the following logarithmic
inequalities:
log
3(2&#3627408485;−1)>log
3(&#3627408485;+2)
2&#3627408485;−1>&#3627408485;+2
2&#3627408485;−&#3627408485;>1+2
&#3627408485;>3or (3,+∞)
log
3&#3627408485;≤5
&#3627408485;≤3
5
&#3627408485;≤243The solution is (0,ሿ243.

Notre Dame of Kidapawan College
Integrated Basic Education Department | 23
Logarithmcanbewritten
inexponentialform.
Infact,theinverse
ofanexponentialfunction
isthelogarithmicfunction.
Table of Values, Graphs, and
Equations of Logarithmic Functions
&#3627408467;&#3627408485;=&#3627408463;
&#3627408485;
&#3627408486;=&#3627408463;
&#3627408485;
&#3627408485;=&#3627408463;
&#3627408486;
&#3627408486;=log
&#3627408463;&#3627408485;
&#3627408467;
−1
&#3627408485;=log
&#3627408463;&#3627408485;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 24
Representthelogarithmicfunction&#3627408467;&#3627408485;=log
2&#3627408485;(base
greaterthan1)throughitstableofvalues,graphand
equation:
&#3627408485;
1
16
1
8
1
4
1
2
1 2 4 8
&#3627408467;&#3627408485;-4 -3 -2 -1 0 1 2 3
&#3627408467;(&#3627408485;)=log
2&#3627408485;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 25
Comparison of the graphs of
????????????=&#3627409360;
??????
and ????????????=log
2&#3627408485;.
&#3627408486;=2
&#3627408485;
&#3627408486;=log
2&#3627408485;
&#3627408486;=&#3627408485;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 26
Constructatableofvaluesoforderedpairsforthe
logarithmicfunction&#3627408486;=log1
2
&#3627408485;anddrawitsgraph.
&#3627408485;
1
16
1
8
1
4
1
2
1 2 4 8
&#3627408467;&#3627408485;4 3 2 1 0 -1 -2 -3
&#3627408486;=log1
2
&#3627408485;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 27
Thegraphsof&#3627408486;=log
2&#3627408485;and&#3627408486;=log1
2
&#3627408485;indicatethatthegraphsofthe
logarithmicfunction&#3627408486;=log
&#3627408463;&#3627408485;dependsonthevalueof&#3627408463;.We
generalizetheresultsasfollows:
Analyzing the logarithmic function
&#3627408486;=log
2&#3627408485;
&#3627408486;=log1
2
&#3627408485;
&#3627408486;=log
&#3627408463;&#3627408485;(&#3627408463;>1) &#3627408486;=log
&#3627408463;&#3627408485;(0<&#3627408463;<1)

Notre Dame of Kidapawan College
Integrated Basic Education Department | 28
i.Thedomainisthesetofallpositivenumbers,
&#3627408485;∈ℝ∣&#3627408485;>0.Recallthatthesearepreciselythe
permittedvaluesof&#3627408485;intheexpressionlog
&#3627408463;&#3627408485;.
ii.Therangeisthesetofallpositiverealnumbers.
iii.Itisone-to-onefunction.ItsatisfiestheHorizontal
LineTest.
iv.Thex-interceptis1.thereisnoy-intercept.
v.Theverticalasymptoteistheline&#3627408485;=0(orthey-
axis).Thereisnohorizontalasymptote.
Properties of Logarithmic Functions of
the form &#3627408486;=log
&#3627408463;&#3627408485;, (??????>&#3627409359;or &#3627409358;<??????<&#3627409359;)

Notre Dame of Kidapawan College
Integrated Basic Education Department | 29
Relationship between Graphs of
Logarithmic and Exponential Function
&#3627408486;=&#3627408463;
&#3627408485;
and &#3627408486;=log
&#3627408463;&#3627408485;(&#3627408463;>1) &#3627408486;=&#3627408463;
&#3627408485;
and &#3627408486;=log
&#3627408463;&#3627408485;(0<&#3627408463;<1)
&#3627408486;=&#3627408463;
&#3627408485;
&#3627408486;=log
&#3627408463;&#3627408485;
&#3627408486;=&#3627408463;
&#3627408485;
&#3627408486;=log
&#3627408463;&#3627408485;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 30
Graphanddeterminethedomain,range,x-intercept,zero
andverticalasymptoteof&#3627408486;=2log
2&#3627408485;.
The Domain, Range, Intercepts, Zeroes, and
Asymptotes of Logarithmic Function
&#3627408485;
1
16
1
8
1
4
1
2
1248
log
2&#3627408485;-4-3-2-10123
2log
2&#3627408485;-8-6-4-20246
Domain: &#3627408485;∣&#3627408485;∈ℝ,&#3627408485;>0or (0,+∞)
Range: &#3627408485;∣&#3627408485;∈ℝor (−∞,+∞)
Vertical Asymptote: &#3627408485;=0
x-intercept: 1
Zero of a function: 1
log
2&#3627408485;
2log
2&#3627408485;

Notre Dame of Kidapawan College
Integrated Basic Education Department | 31
Graphanddeterminethedomain,range,x-intercept,zero
andverticalasymptoteof&#3627408486;=log
3&#3627408485;−1
Domain: &#3627408485;∣&#3627408485;∈ℝ,&#3627408485;>0or (0,+∞)
Range: &#3627408485;∣&#3627408485;∈ℝor (−∞,+∞)
Vertical Asymptote: &#3627408485;=0
x-intercept: 3
Zero of a function: 3
Note that x-intercept can be obtained
graphically and algebraically by setting &#3627408486;=0
&#3627408485;139
log
3&#3627408485;012
log
3&#3627408485;−1-101
log
3&#3627408485;
log
3&#3627408485;−1

Notre Dame of Kidapawan College
Integrated Basic Education Department | 32
Graphof&#3627408467;&#3627408485;=&#3627408462;⋅??????&#3627408476;&#3627408468;
&#3627408463;&#3627408485;−&#3627408464;+&#3627408465;
i.Thevalueof&#3627408463;(either&#3627408463;>1or0<&#3627408463;<1)
determineswhetherthegraphisincreasingor
decreasing.
ii.Thevalueof&#3627408462;determinesthestretchorshrinkingof
thegraph.Further,if&#3627408462;isnegative,thereisa
reflectionofthegraphaboutx-axis.
iii.Basedon&#3627408467;&#3627408485;=&#3627408462;⋅??????&#3627408476;&#3627408468;
&#3627408463;&#3627408485;theverticalshiftis&#3627408465;units
up(if&#3627408465;>0)or&#3627408465;unitsdown(if&#3627408465;<0),andthe
horizontalshiftis&#3627408464;unitstotheright(ifc>0)or&#3627408464;units
totheleft(ifc>0).
General Guidelines for Graphing
Transformations of Logarithmic Functions

Notre Dame of Kidapawan College
Integrated Basic Education Department | 33
&#3627408467;&#3627408485;=2??????&#3627408476;&#3627408468;
Τ
1
2
(&#3627408485;+2)
&#3627408485;-2−
3
2
-1 0 1 2 4 6
&#3627408467;&#3627408485;E 2 0 -2-3.17-4-5.17-6
Domain: (−2,+∞)
Range: (−∞,+∞)
Vertical Asymptote: &#3627408485;=−2
x-intercept: -1
y-intercept: -2
Zero of a function: -1

Notre Dame of Kidapawan College
Integrated Basic Education Department | 34
EarhquakeMagnitudeonaRichterScale
Themagnitude??????ofanearthquakeisgivenby,
??????=
2
3
log
??????
10
4.40
where??????(injoules)istheenergyreleasedbythe
earthquake(thequantity10
4.40
istheenergyreleasedbya
verysmallreferenceearthquake).
Representation of Real-life
Situation that Use Logarithms

Notre Dame of Kidapawan College
Integrated Basic Education Department | 35
Supposethatanearthquakereleasedapproximately10
12
joulesofenergy.
(a)WhatisitsmagnitudeonaRichterscale?
(b)Howmuchmoreenergydoesthisearthquakereleasethanthatbythe
referenceearthquake?
Example
(a)Since ??????=10
12
, then ??????=
2
3
log
??????
10
4.40
??????=
2
3
log
10
12
10
4.40
??????=
2
3
log10
7.6
Since by the definition, log10
7.6
=7.6
??????=
2
3
(7.6)
??????≈5.1
(b) The earthquake releases
10
12
10
4.40
=10
7.6
10
7.6
≈39,810,717joules

Notre Dame of Kidapawan College
Integrated Basic Education Department | 36
Exponential Form Logarithmic Form
1. 2
4
=16
2. 11
2
=&#3627408485;
3. 7
&#3627408486;
=400
4. 4=log
8&#3627408485;
5. 3=log
&#3627408463;27
ASSESSMENT
Solve the logarithmic equation:
•log
&#3627408462;&#3627408485;=2log
&#3627408462;3+log
&#3627408462;5
Solve the logarithmic inequality and identify the solution set:
•log
2(&#3627408485;−7)<3

Notre Dame of Kidapawan College
Integrated Basic Education Department | 37
ASSESSMENT
&#3627408467;&#3627408485;=??????&#3627408476;&#3627408468;
2(&#3627408485;+4)
Do the following:
1. Set up a table of values
2. Draw the graph of the function
3. Determine the sets of domain and range
4. Find the asymptotes
5. Find the x-and y-intercepts

Notre Dame of Kidapawan College
Integrated Basic Education Department | 38
Do you have
clarifications about
the discussion?

Notre Dame of Kidapawan College
Integrated Basic Education Department | 39
References
‣Dimasuay,L.,Alcala,J.,&Palacio,J.(2021).
GeneralMathematicsforSeniorHighSchool.
Quezon:C&EPublishing.
‣Versoza,D.M.,A,C.L.,Hao,L.C.,Miro,E.
D.,Ocampo,S.R.,Palomo,E.G.,&
Tresvalles,R.M.(2016).TeachingGuidefor
SeniorHighSchoolGeneralMathematics.
Quezon:CommissiononHigherEducation.