ace academy notes of complex variables for gate and ese with examples

HarshPant18 12 views 103 slides Aug 14, 2024
Slide 1
Slide 1 of 103
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103

About This Presentation

complex numbers


Slide Content

COMPLEX VARIABLES

Complex number :
no a ow *

ÆNcrf complet mumker can be
represented im a form 2: KH -Cay

whee y are real numbers.
L£NEr] com
ach the

eL mumier 3. X+J make some emsle xe)

post HVE dueclion 4 X- axcy called a (08)
amp le bade La Complex umber fre lr Vay" à

called modalus (ar) absolute value A a complex Be,

Ficoding argument day
From the cag ram sinb= 2» 66> A =>70m0= I
o Y x

36: Tom! (4) y the als Fae:

pler form ue hove 4: x4ly
= HCAOET SEND = ¥C CBO FSO?
- x el

al ere? 5 Ic paler form F 3: 24

pta nd ‘i dy ba
comfez mumier ¡hem Ihe -
y $ 4 denoteÀ by 3-2 re)
proper tes € miles (4 13-2] 7 141-181
4 AE 12, (à) # lar att lanai’: 2( 1st lJ
+ |4)- a it 1240 A ay ica
33 = GAY

A + a; < ide asl AN
lar

observahions on aime a)
a te

ars CAY) = Tan ne

2

7
Here Jane = 32 Jane= !
= 79 (9%) +1
algo Ton (27+) = |
Tan nC amt Th) =|

Tan (enmF)=1 dos W20.2,-°

ade Oh pou d a a a 207
you Le Ep 4 a e A
a fal 4 3 5 ag ds BtanT for m201%
Cc A SN
Here 82 Asa is called principal value 4 any 3

Generally [1 < ang 447 |

oherva Kon
PATAS

Ag CH) > Ars 01)
Tond= 42) Ten 6-1
>) 9-1
: 4
a)
«y

. @= Toms! (à)

Ars Citi) = AX Cu)

Ton 0: >"!

> 70m CA) = "|

49-1 x nt
correr

" Fad) (1-4) 24

oe Ton! (1) +7

EN ‘

=, +

* Ars (x4%0) 20 tf x70
iT if x60

# ag (etiy) : FY yro
Mp Y y<0

# as (ot!) = mt port ble

&) principal value 7 aquel € yee

22 -V3 += (ERED =|)
A Hore

= TO 2 =
E Genera] value 4 agament € 14830
sh Here 3- I+Bi= C3)

General value E ang gs ras! (2) +297

Mat any ! ned215-

>

*

proper fies € ¿ encia] value q argument
A CB... An) = E ~~ +05 Ry
ang (2): ag 4,- any à
arg ca) = naná
ay Ge - 21 Ca)

# AT Cay 4 dm) = ABTA A - - HG bn + 207

for n-où-l Al

Lis” ee Ag AGAR for me OAI
4 Ag a= KAng CA) +2nT fos n=0 a IA
* AS a - Arg (A) +27 for mo &I à -|

@ The Value 4 (y

pr 4- Hi set. zu a a
ST =
Wen Gti) E (e u“ e- rañl(+)= We
oe] oF.
ars
= 254 [esar+ isto 4m)
= 206 (1409)

AS (role 258

ey

¿y : dy

443 = 2 2-3 = +9

X= Ara née a
EN

| Real (4) = ara ue)
a op (2) = 33,
(oR

observan
OA >

Mala aA. chat sim : oe esa -(són 3
—€) 2

Ot@ 4 283 ky ta Lo A ¿A aising

a ta, età = AS

jee Gases - lgmas € m

| 2 | | m
LI

obgervahon eo.
AALS ia kta stamilasly
e

# simi) © = AL + ca sha
2 ne
(À À + Tan 3) tom ha
= "le -&
* 4
O AK
CS,
„.[ser@a) 2 Soha

Ho +
= c&ot (seno

observation
t+ompt e
Ke ZI for ne 0y1,3- - = Iti@=t
+ (anti rt 2 my CSM ET
A GntDri for 9 20)0123- - ee
il,
FE == + is_nn
Hal = -1+ 1 @)=-1
+ = = a Per Et
e += com) isto Th
= otic: à

&

e

* ®

iit

RE hen the value & it
ip

>

qe 7 (A,

Ma
ae
ae

Fem he real past 4 Pa

qt
4 =

ROLE „sr
“Ug 4)

ot = ase es fe Clgo - is do)

Now veal part q 44T = ase co list)

(aa = m (34
O. cas i900

. » q es )
Ægnaken q cirde im complex form safe
( 2 AR):
, E

he egueñon 4 a circle wh centre ee

4, Au) with yadius +' cs

(2-2): Y Equation $ cirde &

S y
volticafion : 13-Z=r @-ay't -W > Y
> [@+1y)- iti) Y
> lx) cy-wl=r
4 SENSE
laa VA (Yi) 2 7

Ed 13-5-5)= 2 13-5+2c)= 1
= |a-(3-2D]=1

En [a+] 2

2 |2-cstsUlza all

ct al ps

€) = WH
a ga)

À an)

Tf 2- Y ¿CAD im 2- plot they fhe complex June
corres por to 2- Atly can le corten En a forn
fale ario im W-plane. Herr UV art Yeal valued
fomchon, $ Loy
& $: 3Y- Hay”
za)
a v

ED Ya: lay (ED fay: sing

ED Ya: lay (ED fay: sing

ma ie
: les ore” ) ie = semCatiy)
= log 74 (ge = Sina cH CE) + BE sim (13)
- lgr+ie = sina c&hy +0 x Smhy
> eV AA oes
E lg Cat) + ron (4) u 60]
0 an

u

(374 = cah2
sim ia: ¿mba

Periva tive d a Compler function

A complex function fa) ès sud to le
. . 42

difer embiable at 3za |
Le WIKI exist. 74 is embed by Hla)

da ¿ua l
(a: q Be ee Usp nou
A Ja fur) „ U- AAA (a: a”
ler Er 7-0) on ET ya) > 22
Le (24010) Par - aux)
= (ri) +0) =24+2
= 2+2t

. D
& fa: x5
Brno ale
£ (a): an”
Ihre {'(2) dees mer exist at A=2-
FQ mt differential at azo bot US diftrenKable eu
all values opor hom 4-2

Note :

* fu): sina
fu): BA are diff ren hioble evezy hese

£CA)= eA
a

fa) = €

* polynomial fonctions are differentiable e veryuhere
£a: fu): 143844: Ya): 242 de

cauchy- Riemann egpations €<-2 egpattons)
A complex Junc Hon Y) = VHD & differen Hobk then
a and © sabsfes cK egpattons
ce Qu = Sy (u,= Py)
and 2% - 90 Uy = - 0.
a ee
om amd d Va By, Dar By am

No: If 0,9 gakgfics c-R eguah
[28 differen Hoble

comtinuoss fhem ft) = WTO

Ga tm: asa

(Ly) 130)

(039) +! (223439)

u v
U: 243 : Vx = 23

Dy = 3 5 Vyps 2x43

Here Un= vy

amd Vy: - Vx and Ur, Uy, tx, by 7%
con Bru 004

at every point m hole complex plume
> jar: a & Aipprentiobe everyakert-

Fxg) Ya): àt3
ED ES) ga: 2(3maz)

= a-ty+3 c
ip =
v a oy
Vas 1? Vaio Uq=¥ : V0
Uy=0 2 Bye A : By 22

Fer Unt By at all points on were c-2 egpalions
salts fied ar (09 on

cohde complex far
. a E . 43) is diferenk able of
.. faj=4+3 5 moler differentiable a soit €

nok: 34 fear mio yy diffembioble they
4102) = U + dx
2 Ugtt Uy) [- Uy =-%]
2 Bytit, [o my)
CR eguaticos in poler Ferm
4 49. ano ino) & Aiferenkoble then
wee eo (Hs +58)
Up: -y Vr (2%: -r à)

Amaly Ke functor
A complex fun chon fa) Y said to be

analy fic at gza it { da) &
differen Hable at every pol within som
d- disc 4 3-9

Examplc$
EX: In previos example © LISA hb

{az 3432 à dyferemkelle eve] where

340) à amaly Kc every were
cd do Ya) DH fem

obgeryatm: Tf ck espakons sabs hi
where omd fence ft) &

fa) à differenti ale everf
amaly Xe everyushe7? :

E12) m previos example O
da= A+3 ty nowherc Aferenliable

7 43) [63 mo where analy fic

ED In prions example ©
a): achma)
Here $) y Ayferen Hable only at he
origin det met Un 3- disc H origin
5 #9) & mocihere analy he imlodirg or
Cow), bar ck ds AifferenHable at co0)-

NO

fa): sa
$A): a
fu): «A ome amaly he eveay where

#0): a
ia) = poyrommial famchen

Key potas
# analytic fumetions are algo called regular (en holomorphi<

func Hons
x A fume Kon which y amaly tic every here m cole complex plane

is called entire fanction
+ Amalyfc fanchon is infinitely differentiable
# Tf tig are analpfic gunchow they 143, 17, § alse
fic fumchons
* pmalyhic funchen is alow differenhable bur differen Hable
funckon red mg de analytic:

observa Ron
ET a
x
f(a)- e ze ICE & amaly le)
ee
cet Coes ti siny)

lex Urt Uyy O

5 u_ Su _o CS
be FUN TL TO
A Y y

stm lary Var Vyy =? ) ACTE
clearly W% sah fies op (acter,
espahon 8 -o

Wand Y are harmonic Yumchorg

=e chy +i eTsiny
un <<
U D
Y Lay: Uy: = * siny
Aa : Ac&y à: Uyy = A chy

WKY If yrg-o mem Bis called
harmonic fumchon

Note. Jf ARS UA iO à amalyfe Fm vuz0 and 0-0
4 vand Y are harmonic funchens amd ‘v' is called
harmonie comjug ate Ku

24 fa)= U+i0 y amalyhe and if u à give
BPP = ae i a)

=> Fimd Var Uy
> 92 fonder fra Au
fort
yan Sen
KH): Uti ds analyke and | VEAP
m m —LÉ nn
> Find Vy vy
=> Me S ryder hr +k
+ y cont gern SA

nets
70 write Ihc
amaly Ke fumch'e
far atid lo
kom € 2
pat x=3 and y=0
cm u Y

En) For am analytic fumchioo fa): uo, f Me veal part
Us 2x. find cts harmonic comjuzar Y
sl Gem u: XP TA co
Un- 2142: Uy =-2) 70 wrıf fa) mkrms ÿ 2
Pst X=3 and yzo im UN

ale + dy +15
Now) »-) y Az Sun 7 Ur a 2a: peotork
"yimt 175 .
witha Nou) Ya) Ut

3 ve Secada +fady+r = AMHR +61

Ed AGE amalyhe famchen $12) UD cf Uz eX siny fond
a. Algo wrile Yıa) teams f 2

A Giv™ B= e*smy = u: fetcosydx+ fo dy +
a

= er simy a IAS

Vy= ec3y por f(a) pur X=, 720 tn

Wes uf By dat [= Vx dy + wand Y m
PG hon te rer... a. e+e! V0
L sito Now Ya): ui

= 4e

complex ines vatton

HC ig a path bekweem foo pains
AtoB If we define a complex
funcio» along he path 2 from APB,

fem woredeme by 108) alorg fhe pac’

At 322+iY
da: dati dj
workdom by fc4) at 4

8
E (vealaa > | gcarcar +idy)
À = fC4)A4

e

note! 24 fA) 3 cmaly fic hey (kana $ agerrienk rks

hen { #2) 44 is Emdepedent q poh e. z

à A divecHy amd %
Im this cose imtegrofe fc) 24 $03) & omalyhe
apply the limibs- Ira along all pbs

A is Same -

aw)
fícaraa lisa -3 007) (daridy)


en)

y
: | rm 87] arian)
Per)

y
= | [ddr da )
o
. > !
el 3), +3( 2)
DA 1 21-8

u

ceo Lime SYA
dy da

e of the integral a Gy)
(ara az | MESE)
a

(0,9)

curve y = x? from (0. 0) to 1 +i is

: \Grrelonaanel!
42
=f [eras 2x2] (aut oe]

Oo;
7 [aria de
ö - ains Ax +2 aa

424 #)

FRE ETS amalyKe > (saitg is Independent q PRE
[a

ee mi , 5
| scaras: Swan: et. G4". pit . aïe
aro 6 3 3 3 3

comp! ex pouxry Series

Lautemt Series BY Ha) & amalyke im am armada,
a

fhem Ihe Zowrent seriy 2 fa) at 3-a &
faa)= Zayca-ay + Ein ca-aj”
mu

(2 by $A) 43
where Ay =: a rer (PART) Ds “mí e Nt)

Ti<13-a

173

obscrvafion

Fo

[a-al= Y

Taylor aus > 26 year à conalyhc im the region 121er

They [he Zement Sn & fi ak 72: a [23

$03) 2 ay ca-ay C Bn this case by ba ore 7
np

ike en

= AA
where am: = FE a3 I In Ca-a) 4
i @ @-ayıtı , 3 j à
ag iene Cal = ea)

ty a, = ha ae gm.

21

a LA
From D 43) = E anta”: a+ a Cara) + ag As

A = sco) + El
2 Cr les Fe) (2-9) + Cm CA ¢ END) (a-a34- - >
§ > 3!

This erparsiom is called royler seriy 4 fin im the
vaio IA-alsy af 224

Note ! [69 maly -al7 Y fu mt
a y
cc 12 al Josh
sa Kris

4 Mea abst da
= s

§ (8): Zs 5?
(4-9
«heat eye = ate PE
2qi C ei
M4 ¿-aj 1

LD £ ES .
E) Expand qa): e usieg Toy lor Serres ahout- Y) 3=0 dir 471

Bd Gwen 42): en 340) = 0°21 ge: €
dien: er L'to)- e see
gay A gel ze
piteaye ui AE pears

(i) Now Toy lor Sex ces 4 403) ab 4-0 &
fen: $0) 4 9 (4.0) + CLASH as

E 21 7.
ne thar Li a

Be ein +4 + a gs
naa

R'o-c és 13-1< ©
€ hesion & ewogent)

UN A+ 221
(dm: F0) + eo Ca) 880) Cast OY Case - -
E bu 3!

A 3

AC A EEE en +5

Ro-C & Jaleo



Alternate method ar 32,

per 4-1: € 9 3: ltt
Now fCä)- ce ES aan = de


ln re |

ze 3
[+ Eno + GW, C1.

el 3%

|

some Standard Aossemt Series erpanstors ar 2:0

#4 eÀ: más A - poc u 1a0l<e
re
= 2 32-0120
an. - Roc % |
* SINE: 4-93, 05 34. - ROC 8 Idee)
cH Ss! :
CÍA: 1 ah, 24 _ 26 . goce 1421<%

DTA ar
# Tomy: E Lo : LAS 13-0147 i
ah

gun: à a 4 +2 - a, Lee Roc à
12

ye 4) 23. a ET poc és 13-041
= (-3)7 = 142,27 2%. Loc ts 14-olej
poc (aol

Roc & 12-015)

pos Y 13-01<

# Fer (+392 2440-23 + - =

(majos 172; 44633
*k ca 20-3) ERES ESO
x ara 122432484

oa

O
Erpamd fa): A asin Lear en)- Cexte§ ar Ci) 220
G&z 3

4a] NA]

a [4-2

}
MN E 3
442 2 (144) Roc 3 12-ola

4

Oj) PE 423

pt 9-3-4 93 4- 143

y /

a — a lo a e
Hi aan ES sE)

at dl e (Y ES IS es
a+ |é-01<
a AE

— 182121
= 12-31<£

Nod Kia):

D Expand fa)< Sn at 221
a-T
a PH at=t > ae 447

Med 403)= simá = = Sin HH). -Sint, 1 Es bso
$ aa E ca t(t-£ iste |
2 + ET _ (Bak Fe
al gs!

- ja) Ea: am), |
ee ka

ER Expand 18 = “ =) LZaurenf Ceriy (NM

37 3242
ci) 14171 dh 131<2 aim 1<121<2
i J
, 1 | - —
A Given Ka) = Pas. Sy 3-2 4-1

OG) In Roc 17171 x Ay: ==
HUSOS NENE a

J

/
Aa)" u)

ah Or ay tO

Lt E+ GP Jt ght ra

Uh In Roc .} ares kaye Er 35

ell Si
(AD “abra
SY 8-2) uy”

BCA) = “3 (148) + (Givers }+ ciara - -

Gi) Tm poe Mareo;
a A a

AO
Fo a) = 4-2 Ad

a =
A Faye 30-3) AC
) Kia) = 4 {:-37"- 46-47"

3a 2-4 fr +4 ya TE (1 Gt (ays --]

1
f(z) = E when expandec

series around z = 2, would result in A Aa: —_ 4 A:2

ith the region of

por Bart = ax tt?

The coefficient ax, k E i = 1 = Al
On) FLA). —— + ae
expression = A) fe (- +2) Cal
(a) (1 ji Grou!
AA TE

=) f(a)=- ['- t+ CZs e 3
2 - [a a]
AG) = -1+02-2)- 2-34 apr -

Ar EEN

a kK
Gum LA) £ ak Cda)

¡ezo —©

ape cy El
From 050 %

4e "lg
A Ka)-

y 4
Va + Ca DRS ca), --]
+ ar !
atcay= à {md

43 ar at J J
31 ER a
F(4)- 4 41

e

2
; 4
u nf
sa senguler po
zo

Here 47 ;
coef A a = =
i
coef $ AE ae

ch
Corre
ca), Ch), AH) 2%

. ophons

SA FA) = yp 2 cm |ati<)
pyr a-1=t 9 Flee 166

te leg cay = [gU+t)
2 t- E, LN
3%

„fa (4) Cam” (AD? ant.
2 3
4

6. In the Laurent series expansion of He x ade
dos region sl Give Yca) 7 Gnas = 37

Im ROC (513142 (/31<2 amd 13171]

z D Be
ET ah)

Zn AG dC"
1:4 (+ CB) Era >)
“Z(G +4) J

Conff d pe a]

fesidue : IE gra % am Kolated Simgalos polar $ 42) then
(PEE ee coef q tao" Im Laurent Seras 4 fa)
ab Aza
a = mon Be sour por: If Aza Ey a vemovalle
Sémçu larihy (nen fs fea] 0

¿za
@ ja: 53
: e
Hen Alo 5 am iso (ak A Singular pont

Nous Jıal- SYA _ 1
2 Él ES

this expansion confaing mo mega pue pose as & (49
“ aro 8 Yemoalle scm alarily

pele 4 Ae am Bolaked simgu lazikr gza & calkd a
ple order oy fe Laurent Sert §
44) abut 424 comtaim negative proses

apto (4-0) *,
£u 403) - al
a) | . pot 4-17
Here 41 & ¿solajed sogaler pon 2: I1k

HE _ ¿er

ns fu): E 7 LE: Lo
A) [24 er ES rt )

2
ha) -
2 La
3 ES
El
e
21 a
ao
=
mo

= fe
HE
Ze
ca
el ae
@
ek ie or
= fe “
“5 | ‘
. 8! ca
a ; D+ =
ql ays
Y .

Nofe! pl & Ed

order m
4 4
iS
8 cale
fe Y x A
e
pole.

Jaden fication 2 ze omeva ble sing arily and cod hou
Louvrent series
if he given fonction 412): we
3 1 aa y om wolated sims alavity wih multiplicity m'
If 9
cal, Tf $la)to hen da à a pole 4 oer m"
cased: 2% G64) =0, Pica) =9, $'ta)2 0. Papo : compere mm

#24 mom they gra is a pole $ order m”
* A men Men A:a y a rumovalle semgularih

a
Ed) Ja. e +23 . GCA) Ed fcar- 243. da

(4-4)! cart pla) (34) (arr) PA)
Pere pta) 4o amd 615) +0 Here dito amd bn 40
4:4 isa pole 4 order (0:0 asl, 2 or poles § otr

Hr

ds ga pole q order 4
be 42 1-2 ase simple poles.

& fa: sing - és) SE) yar wa : 62)

3° PCR) 302 PA)
A a Singulosily bias Cees Gi ct Singular pdt

u win mai
dia): sima: — Ko +0

62): $2 9 ECM)=0
gim cha HN: ¡+2 3021

ges -sma > 60m) 1+0
her m>n

i mm
4:08 a ple & oder mon: 3422 L Be Y ie moral Singular)

hese nel

Exenfiol Singular point : pn Esolated singular pomt ara es
called am epentiol salat Y IR Aouremt Saris G fa)
abst Ara comfaims infivile nemer € E poux £ Ca-a)

au, ta: Sm(4) G) Ca), Oe ca
his expansion contain imfinte member E neçahw poes
q (4-0) .
320 à esenhal singulorih-

Residue’ 2f ¿a is am isolated sirpulow pone 8 fa then

| residue 4 vn], 2 cacfficient Y Ga” in eurent
za
Series Y fa) at A=a

calculate 2 residus
a

Resi due of aemoy able simgalor pont . 2% dea MA certe

sen alar ly hen (sé), >

ca): SA , dia)
a pia)

Her 4:0 & singular poor ah m=

dia): HPA => £co=0
: 20
$ca). 257052 $190 pesto...
2 SMA
g"ua): zung + $01.240
ale

MEN. ao ig vemovalle siwalen y

pagano of pl ere
ap Ava pole of order E fan

Note!
A

Y“ 664) amd 4
pla)

ee
(res 02) e 4 Abel (ea) 4=a wa simple pole

20 (en) ata 27
# 26 da y a Simple ple len Ez

[Sk Vaca = 4 El (3-1 f{@)

Ltda 2 a C4-a)* ga)

hen [res fan], = 60)
a= a q da)

(E) vesidas E fray: UL „at & ples:
¿na
6 por), ‚tr Lea

Here Buıyto : fondo cita

© der ds a pole of order 2 (silo ple) ¿e da aL

1! asa 48 4.) (247
22 wa pole ÿ order 2 (422) me (Ens _ 209)

“2 a”
pesgear] . À Cade TES) ES
Ti u | ) 1-3
ee pastels, : =: -2
al Ena)”

Zee?

EN regidue € fia). CHA at 3-0 YAM Has da). cad

a

wir) soa
Einen fc): «+2: DA _ dia)
son ea) y re Cal: 02

pd): $673

Here Azo is a simple pole ar ca
es 4.3) - 4 (2.940) ves (ca) Sa . wo
Í Lo 40 [ lazo * o) cdo
z=4 2x eS - © Eu

330 sy o
HA
LH. wok yegund

Residue of eenhd simeulancly = coef E ie
Sorig at 224
N
Be ale e ‘le fe Ca) | Car” ane

+

I! 2! Ti

: J TT Do
O0 a> at 3s

Here 4-0 ty am egenfial singulsriy
[S$]. dl cat: oof 4 L: 1

Simple € closed cure F

vas
Y a cled cure imienech isch only © =
firme Ihm fhe curve à calle d Simple
cé cure:

Simple clad curves

© Sy

mot semple claed curves

Cauchy - Pesidue Fhorem

24 fa) amalyhe thin a semple
clogd curve EN (Hraversed im posibwe,
divechon ) except af Some isolated

Sugulor points a1, %3- me Ff Yi, Va > Im are heir qescduss

then (HA: ant Cri pat m

<

27. The residue of £(2)=— ze? at Sl Here F=38a pole 9 order 2
a ¿e 4: 3 8 a semple pk

Pega) _ G- Ca-3)* Fa)

3° 333 23
A) À =
IV year (34)
ae el

(6x1 7

8. If the residue of f(z

SA Prom ophin co par 421: @:0
them fa: a _

cap (ard)
3:1 ba pole q order (k=2)
3:2 ly a Sèmpk pole

11 42143 ane
LL y A4“ cos . 4 (amen POY
EN asa ap [ a) am [ (dr? | =

7
Lal) (0), Ce) ae covacct

29. The residue of f(z

ol

=>

= 3 Kr la ¿
here à ? is a 3 ju point
win m=2

BUM) = Tray (Ma) = Eto +0

2-3 8 a simple pole

/ ca,
an: E. Fr ae
tal" m a)

2 TZ
Ast + Geo
= Te

es) : U Carta)
4 2%

2G 4x2 > +
a ays ES . ca) 272 ie
. SA (2) 2 4 Rett OI (yat
Cog

Here Blo) #O
+ do Ga sémple pole

Bay sea]
gg) = CBA

sA fa) = jeer

. MENA es, Gail oat
pal I- (+ ar rie Ta?
He ]

a4

Dee 4 a2 Ar
ie 7 35 Eb pá 13" o
)
psfan,., TAE
= «eff 4: 4

sin(z)
is

32. The residue of f(z) =

A Herr 3:0 & zemoable sing ulavihy

Ban

33. The residue of z.e’” is sa $A) = aca

ETE

2 ALLI L+
Att t ade 2

4 r 93
(3 143,2 => 3
ai bres tao - caf can”
= coc & 4
- 4

2

ata, al MITO

uni cirde 1a) =1

a) fa): 4: 4

1-1 am) d-)

dal y a simple pole
besten], nr =

2 Cana)
opta) ts corre eh

Es amalype everyuhere( cc) Pr $ 3

b) pak Ana”

> no rescues Ces impide 0 her 4-0 & A Simple pole

oy (dy raiduc hesrem Úg imgide “Cc!
a-oxL
fra: air sam J vida ee | +. ir
€ img Es” =)
ophim (5) ix correct pao BY yesiclug hsorem
(443 =2 0x7 =2mx)

G
et
7 ( 4 OPH) corres

ar integral th fe? as faz e"3. 192, way, CaP,
ER 731

e unit circle in the

(GATES thre 4:0 & à singer par
C& dag de c'
mn en = coed a 3 =}

© By yi due peeve
5. fea da: 2x7 = MA |

a < am

= Ja

15. If c is a closed path in the compl

dz is

-3*
Here fea) e 3 es amely fic every here Gy

Ae) cohole complet plane -

See o yes (das emside OT close À path: E

Grasa = amix 0
2 = ©

The valle of [2 ES £ € Hor 424-212 are

Simgulor points Ces

curve ‘
outside €
. Sener. dl
sel Gwen circle Y 12-212, I regidues impide €
are ¿ero

By residue heorem

(ca) 430

=

The

value

y =fresfıa | me ES)

2
of INR 4-

a,
axe Gray AaB
5-2 (trey

= (Mette = si-4
Here 32-06 &
a simple ple Ces

mside 0

OS Ihres)

(fanaa = aqix yy

¿E = un (6-4)
- 4mll 3-2)
= 4G (2k- 3)

8 he value wh A 2 + q a 31: L— = &
in y Wa es =
=Lis ur
: EE Al
@) Ai $) 0 >, ¿mL [i a E
{c) -2mi a >
=1f14) - ent Fat 45%
eee) = frs) = cold +
420
Lo = pP
2 = In. AL, ya Al) =

+2: E
wy 13% yr Cr" Ey residue Les

fos aix y

y LA
y 2 zarix)= -277

Let (-1 -j). (3 - j). (3 + j) and (-1 + j) be
the vertice: rectangle C in the complex
plane. Assuming th is tranversed in

counterclockwise direction. the value of the

counter integral $ is (GATE-21)

faye ——

4*(a-4)

Here 8:08 4 pole Y order Y les
inside 'c'

Her Ket

22. An ir 11

circle *C* is

If C is defined as |z| = 3 then the value of 1

is

(a) -zi sin(1) (b) Zi sin(1

(c) —3zi sin (1) (d) — 4mi sin (1)

(GATE-17)

3 (a: EN
Cri X2-Ù)

Her arta ore Sim ple poles lees

inside °c! 3
G- C3A)x Gye
vie [ves fea) LE 3% Can) (aD
= 2 xl - „ziel
Be L -2
E

path C in the complex sá ph La) Es
——

1 in the figure. If

rn am)
Sa OFA is_ (Rounded off to two Yer 4:18 à simple pole les inside e
d e
= Ari
y. E cami] "7 HZ 7%
4 C4/+1) (44)

e ( falda = aix C4): E
= —O0
Given (fa: ATA, 9
(2
Frm DAD AZ

The value o

curve c. where c is |z|=4. is

27 (b) 0

along a pot $ 3)- ESA

<a4)car2)
2 ar Simple poles

Hem 82, -
Cig, inside E
_4
_ 4 (ara
= a = 242
4, {res fc la, ER Gr G2)
2 4
3 —— —
vs [res Bt]. 9 = & oY GH) Cys)
2

Sócaras = agicrtrs)

2211 (142) = 20

Tae ps $31)

3:4

By residue oye

(ete ar x (+72)



=amxçiet-iet)

2-2 ¿A
x (ED) yal
al
Ani Sima)

u

261, i, id
Er lá
2
rel
Ze
. 12 -ia
Sim 3 = ee

: ue [> Paria 4 { "ar =] 7
By residue herr om
eee x Tr

= ımx GE) - =